
Contrast Documentation
March 22, 2024 EOP 3.11.1

This document contains guidance on the core, supported, and recommended way to use Contrast
Security products.

Copyright © 2024 Contrast Security

Table of Contents
Welcome to Contrast .. 13

Customization ... 13
Next steps ... 15
How Contrast works ... 15

How Contrast integrates with your development environment 15
Analysis techniques and data sources ... 15
Contrast agents ... 16
Agent configuration .. 16
Static scans ... 16
Protection for cloud-native applications ... 16
Integrations ... 17

Contrast walk through .. 17
Customize the Contrast environment .. 17
Step 1: Configure applications for security testing .. 19
Step 2: Configure applications to block attacks .. 21
Step 3: Fix code and retest applications .. 23

Hosted versus on-premises deployment .. 23
Benefits and drawbacks of hosted solutions .. 23
Benefits and drawbacks of on-premises solutions .. 23
Contrast feature comparison ... 24

Assess .. 25
Features ... 25
Customization ... 26

SCA .. 26
Features ... 26
Contrast data ... 27

Protect .. 27
How Protect works ... 27
Customization ... 27
Contrast Protect licensing guide .. 28

Scan ... 29
Features ... 30
See also .. 30

Serverless Application Security ... 30
Features ... 31
Benefits ... 31
How it works .. 31
Security and privacy ... 32
See also .. 32

Performance ... 33
See also .. 33

Community Edition (CE) ... 33
Community Edition features .. 33
Community Edition portal ... 34
Next steps ... 34

 Contrast for developers ... 35
The Contrast platform .. 35
Code analysis during development ... 35
Analysis of open source libraries ... 35
Code analysis during runtime ... 36
Protection for production builds ... 36
Next step .. 36

 Contrast analysis paths ... 36

Contrast Documentation

3

Analysis paths during development ... 37
Analysis paths for open source libraries .. 37
Analysis path during runtime ... 37
Protection path for production builds ... 37

 GitHub Actions ... 37
 Code analysis .. 38

Next steps ... 38
Use CLI for open source libraries .. 38

 Use CLI for static scanning ... 39
 Use CLI for serverless function scanning ... 39
 Use CLI to find vulnerabilities .. 40

Use GitHub app for open source libraries .. 41
 Use GitHub action for static scanning .. 41

Instrument applications for open source libraries .. 42
 Instrument applications to find vulnerabilities .. 42
 Use Contrast web interface to set up function scanning 43
 Use Contrast web interface for static scanning ... 43

 Analysis results .. 43
 Get results from the CLI .. 44
 Get results from IDE integration ... 44
 Get results in SARIF files .. 44
 Get results in the Contrast web interface .. 45

 Monitor or block attacks .. 45
 Instrument applications for Protect ... 45
 View attack data in the Contrast web interface ... 46

 CI/CD integration options ... 46
Agents .. 47

Install an agent .. 48
Java .. 48
.NET Framework ... 49
.NET Core ... 49
Node.js ... 50
PHP .. 50
Python .. 50
Ruby ... 50
Go .. 50
Download an agent configuration file ... 50
Java workflows .. 51
.NET Framework workflows .. 54
.NET Core workflows ... 55
Node.js workflows .. 57
PHP workflow .. 59
Python workflow .. 60
Ruby workflow ... 60
Go workflow .. 61
Ansible playbook ... 61
Install .NET agents with infrastructure as code tools ... 62
.NET agents with Terraform .. 62
.NET agents with Azure Resource Manager .. 65

Configure an agent .. 70
Steps .. 70
Find the agent keys ... 71

Contrast Documentation

4

Order of precedence .. 72
Additional configuration .. 77

Exercise applications ... 82
Deployment to CI/CD pipeline ... 82
Deployment with manual testing ... 83
Deployment with web application test tools .. 83
Deployment with API test tools ... 83
Deployment with DAST tools .. 83
Deployment with open-source crawlers ... 83
Deployment with manual penetration testing .. 84
Deployment with Burp Suite-based penetration testing ... 84
User curl commands with Assess data .. 84

Java (Kotlin, Scala) .. 84
Supported technologies .. 85
Install .. 86
Configure .. 112
Legacy Java agent ... 172
Java agent telemetry .. 173

.NET Framework ... 173
Supported technologies .. 174
System requirements ... 175
Install .. 176
Configure .. 190
Use with IIS Express .. 222
Use with Azure .. 223
Azure Service Fabric .. 223
Profiler chaining ... 225
.NET Agent Explorer .. 226
.NET Framework Contrast tray ... 228
Application pools ... 229
Telemetry .. 230

.NET Core ... 232
Supported technologies .. 232
System requirements ... 233
Install .. 234
Configure .. 251
.NET Agent Explorer .. 281
Profiler chaining ... 283
Telemetry .. 284
Azure functions .. 286

Node.js ... 288
Contrast service .. 288
Supported technologies .. 288
System requirements ... 291
Install .. 292
Configure .. 306
Reduce container startup time .. 339
Use the Node.js agent with ESM ... 341
Transpilers, compilers and source maps .. 342
Telemetry .. 342

PHP .. 343
Supported technologies .. 343
System requirements ... 343
Install .. 344
Configure .. 346

Contrast Documentation

5

Python .. 359
Supported technologies .. 360
System requirements ... 361
Install .. 361
Configure .. 363
Telemetry .. 413
Contrast Runner .. 413

Ruby ... 414
Supported technologies .. 414
System requirements ... 416
Install .. 416
Configure .. 418
Telemetry .. 473

Go .. 473
Supported technologies .. 473
Install the Go agent .. 474
Configure .. 477

Contrast service .. 491
Install .. 491
Configure .. 492
Install .. 493
Configure .. 494

Agent Operator (Kubernetes operator) .. 494
Security policies .. 495
See also .. 495
Supported technologies .. 495
Networking requirements .. 496
Install .. 496
Uninstall .. 505
Configuration ... 506
.NET Core chaining support ... 510
Telemetry .. 511

Agent performance .. 511
See also .. 511
Performance with Protect ... 511

Use Contrast ... 515
Contrast supported languages .. 516

Additional technologies for Contrast Scan ... 516
User settings ... 516

Log in ... 517
Change password .. 517
Two-step verification .. 517
Manage profile ... 518
View API keys ... 518
Manage notifications .. 519
View permissions ... 519

Projects ... 519
See also .. 520
View projects ... 520
Export project details ... 521
Connect accounts .. 521

Applications ... 523
View ... 523
Edit application settings .. 526
Tag ... 527

Contrast Documentation

6

Merge ... 528
Archive ... 529
Reset .. 530
Delete ... 531
Session metadata filters ... 531
Route coverage ... 534
Flow maps .. 540

Scans ... 542
Scan tasks .. 542
See also .. 542
Scan release notes .. 542
Scan process .. 552
Contrast Scan supported languages and technologies ... 553
Scan package preparation .. 554
View scan projects ... 555
Create a scan project ... 556
Delete scan projects .. 558
Start a scan ... 559
Cancel a scan ... 559
Monitor scans .. 560
SAST Attestation report .. 561
Contrast Scan local engine ... 562
Analyze results .. 569
View scan policies ... 582
Change scan settings ... 582
Archive scan projects ... 583
Unarchive scan projects ... 583
Integrate scans with build pipelines ... 583

Servers ... 588
Server settings .. 588
Settings in a configuration file ... 588
Agent configuration instructions .. 588
Contrast options .. 589
View servers .. 589
Configure .. 592
Application sampling .. 593
Automatic diagnostic collection ... 593
Output to syslog .. 595

Libraries .. 598
See also .. 599
SCA release notes ... 599
View libraries ... 599
Discover or delete .. 602
Tags .. 602
Send ... 603
Runtime library usage .. 604
Export ... 606
Open-source licenses .. 607
View dependency trees .. 607
Library scoring guide .. 608
CVE search ... 609

Serverless ... 609
See also .. 610
Release notes ... 610
Contrast Serverless supported languages ... 636

Contrast Documentation

7

Contrast Serverless supported platforms ... 636
Multi-region support ... 636
Inventory ... 638
Scan types and monitoring ... 638
Get started with Contrast Serverless for AWS .. 639
Get started with Contrast Serverless for Azure ... 646
Scan functions on demand ... 647
View results ... 648
Change inventory criteria .. 653
Change serverless scan settings .. 654
View function and service relationships ... 655
Contextual risk scores .. 659
Upgrade Contrast Serverless .. 661
Block accounts .. 664
Offboard .. 665
Uninstall .. 665

Contrast CLI .. 665
Before you start ... 665
About Contrast CLI .. 665
Contrast CLI supported languages and package managers 666
Install Contrast CLI .. 666
Authenticate .. 667
Analyze ... 667
Contrast CLI commands ... 673
Legacy Contrast CLI .. 684

Vulnerabilities .. 690
View for organization .. 691
View application vulnerabilities ... 692
View vulnerability rates ... 694
Add and delete vulnerabilities ... 695
Group vulnerabilities by sink ... 695
Merge vulnerabilities .. 696
Tag ... 696
Track .. 697
Events .. 699
Fix .. 699
Export ... 700
Find CWEs associated with CVEs ... 701
Status ... 701
Edit severity .. 706

Attacks .. 706
Event data retention ... 706
Tasks .. 707
View attacks .. 707
Monitor attacks .. 709
Manage attacks ... 710
Add tags to attacks .. 712
Run attack scripts .. 713

Contrast Security GitHub App ... 714
How it works .. 714
Contrast Security GitHub App supported languages ... 715
Install and authorize ... 715
GitHub repository connections .. 716
Troubleshoot ... 717

Reports ... 717

Contrast Documentation

8

Attestation reports .. 717
DISA STIG Viewer checklists .. 719
Software bill of materials .. 720
Vulnerability trend reports ... 721
Organization statistics .. 722
Remediation summary ... 723

Integrations ... 724
Cloud integrations .. 724
Chat tools .. 726
Code repository integrations ... 726
Continuous integration and build tools ... 727
Enterprise and extensibility integrations ... 729
IDE plugins .. 731
Incident management systems ... 732
SIEM tools .. 733
Work tracking platforms .. 734
Agile Central ... 735

Manage credentials ... 736
AWS Security Hub ... 736

Before you begin ... 737
Configure .. 737
Set up applications in Contrast Assess .. 737
Retry mechanism ... 738

AWS Security Lake .. 738
Before you begin ... 738
Create a Custom Source in AWS .. 738
Connect to AWS Security Lake ... 738
Set up applications in Contrast Assess .. 739
Retry mechanism ... 739

Azure Boards .. 739
See also .. 739
Connect .. 739
Auto create tickets ... 740
Two-way integration ... 740
Personal access tokens ... 741

Azure Pipelines ... 742
Install and configure ... 742
Configure a task .. 742
Add a release gate ... 743

Azure Service Fabric .. 744
Bamboo .. 745

Install .. 745
Configure thresholds .. 746

Bugzilla ... 746
Eclipse .. 747
Generic webhooks ... 748

Generic webhooks ... 748
Variables ... 749
Events and variables .. 752

GitHub .. 752
Gradle ... 753

Sample application .. 753
Use the plugin ... 754

IntelliJ plugin ... 754
Install, configure, and use the IntelliJ plugin: .. 755

Contrast Documentation

9

Configure the Java agent for IntelliJ .. 755
Jenkins ... 755

Install and use Jenkins plugin ... 756
See also .. 756
Define a connection ... 756
System security controls .. 757
Job level security controls .. 757
Pipeline security controls .. 758
Jenkins security controls .. 760
Define a job outcome policy .. 760
Run a build .. 764

Jira ... 764
See also .. 764
Connect to Jira .. 764
Configure Jira for Assess ... 765
Configure Jira for Serverless .. 766
Manage credentials ... 768

Integrate Jira Cloud with Contrast Scan ... 769
Steps .. 769

Maven ... 770
See also .. 770

Microsoft Teams .. 770
PagerDuty ... 771
Solutions Business Manager .. 771
ServiceNow ... 772

Connect to ServiceNow .. 772
Slack .. 773
VictorOps .. 773
Visual Studio ... 774
Visual Studio Code .. 775
Visual Studio for Mac ... 776

Administration ... 778
Rules and policy .. 778

Assess rules .. 779
Security controls .. 780
Vulnerability policy ... 783
Protect rules .. 789
CVE shields .. 793
Virtual patches ... 797
Log enhancers ... 799
Application exclusions .. 800
Set compliance policy .. 803
IP management ... 804
Library policy ... 807
Sensitive data masking .. 807
Notifications .. 809

Organization .. 809
Enable Assess ... 809
Enable Protect ... 811
Configure .. 814
Notifications .. 827
Score .. 830
Access control ... 830
Vulnerability approval ... 862
View audit log .. 863

Contrast Documentation

10

Impersonation ... 866
System administration .. 868

Get started .. 868
Contrast installation ... 869

Next steps ... 869
Contrast system requirements .. 869
Sizing recommendations .. 870
Download Contrast with curl ... 871
Download Contrast installer .. 872
Install .. 873
Deploy Contrast with a WAR file ... 876
Distributed MySQL ... 877
Distributed deployment .. 879
Run Contrast ... 882
Credentials .. 883
Restart Contrast .. 883
Uninstall .. 884

Post-installation ... 884
Post-installation tasks .. 884
Configure Tomcat .. 885
JRE .. 885
Configure HTTPS .. 886
Configure HTTP headers .. 889
Customize MySQL ... 889
Set up a proxy configuration ... 890
Configure reporting storage .. 891
Contrast logs ... 892
Use Redis as a shared cache (on-premises) .. 894

System updates and upgrades ... 895
Updates and upgrades ... 895
Upgrade Contrast .. 895
Upgrade agents (on-premises) ... 896
Update your IP address .. 897
Upgrade SCA library data manually .. 897
Upgrade SCA library data automatically .. 898
Update Contrast license ... 899

Manage administration ... 900
Manage multiple organizations ... 900
Add/edit an organization ... 901

Users and permissions ... 903
Add a user .. 903
Add multiple users ... 904
Designate SuperAdmins ... 906
Add access group .. 906
Grant Protect permissions (on-premises) ... 908
Auto-add users .. 909
Credentials .. 911
Impersonate users ... 911

Authentication ... 913
Two-step verification .. 914
Active Directory ... 915
LDAP .. 919
SSO .. 924
HTTPS proxy ... 927
Passwords .. 927

Contrast Documentation

11

Keys ... 929
System settings ... 929

Steps .. 930
Additional system settings .. 930
General ... 931
Diagnostics ... 931
Licenses ... 932
Score .. 934
Library compliance policy ... 935
Mail .. 935

System maintenance ... 936
Encrypted properties editor ... 936
MySQL backups .. 938
Manage SSL ... 940

Reference ... 941
Glossary ... 941
Roles and permissions ... 945

Application roles .. 945
Organization roles .. 947
System roles ... 949

Application scoring guide .. 950
Library scoring guide .. 951
Log levels .. 952
Events and variables .. 952
Variables ... 953
Regular expressions .. 955
Supported browsers ... 956
Beta Terms and Conditions ... 956
Privacy and data collection ... 956

Contrast Documentation

12

Welcome to Contrast

Contrast supports real-time application security through all phases of your software development life
cycle (SDLC).

Take a walk through (page 17) an example of how you can use Contrast in your environment.

If you want to... Contrast offers...

Analyze your applications for security vulnerabilities
during the development and test (QA) phases of your
SDLC:

• In the development phase: Get instant and accurate
vulnerability feedback for applications and the libraries
that they use.
By exercising your application, you can simulate the
routes in your application and, with the data from
Contrast, ensure that you are checking in secure code.

• In the test phase: Get assurance that applications
are evaluated for security vulnerabilities as you apply
manual or automated test cases or in a CI/CD pipeline.

• In production: Get full visibility into attacks and
defend applications from malicious exploitation in the
production phase of your SDLC.

• Agents (page 47) Supports a variety of programming languages,
frameworks, and container technologies that instrument your
applications with sensors.

• Contrast Assess: (page 25) Uses tuneable detection rules to
accurately find vulnerabilities. It provides details on how the issue
was discovered, how to reproduce it, and how to fix it.

• Scan: (page 29) Identifies vulnerabilities in uploaded binary
packages by performing a fast and efficient static scan.

• Protect: (page 27) Automatically identifies attacks and either
monitors them or prevents them from being exploited in
production. Protect discovers and blocks attacks from within the
running application but can also integrate with Web Application
Firewalls (WAF).

Analyze libraries that your applications use. Contrast SCA: (page 26) Offers visibility into security risks and
legal issues introduced by open-source libraries used during
applications at run time. It identifies vulnerabilities in open-source
libraries. It also identifies if a current library is out-of-date and should
be updated.

Find vulnerabilities in your code earlier in the SDLC and
get easy-to-understand guidance on how to fix them.

View vulnerability (page 690) data that includes suggestions on
how to fix (page 699) vulnerabilities that Assess, Scan, and SCA
discover.

View an architecture diagram that provides an interactive
view of where data and resources are shared within your
organization and beyond it.

Flow maps (page 540) provide a detailed diagram of your
application, the layers of technologies within it, and the back-end
systems to which it connects.

Integrate Contrast into your CI/CD pipeline. A wide variety of integrations (page 724) that let you to integrate
Contrast actions and data into developer IDEs, build system,
communication tools, and more.

Customization
Contrast provides a variety of options for customizing data access, data views, and data collection from
applications that you've added to Contrast. Customization helps you to enhance your views of the data
that Contrast provides.

Contrast Documentation

Welcome to Contrast 13

Option Description

Role-based access control Access groups (page 818) let you assign permissions and capabilities for specific users. You can
assign different types of access, based on role, for each application associated with a group.

It is useful to plan a group strategy before you add applications to Contrast.

If you do not specify the group in the Contrast configuration file when you first add the the
application to Contrast, you can only add it to a group from the Contrast web interface. If you
want to add applications using a Contrast configuration file, you will need to delete the application
and add it again to associate it with your access group.

Start by creating or adding a user or application (or both) to an existing group in the Contrast web
interface.

Then, using a Contrast configuration file for each application, you can associate an application
with an access group when you add the application to Contrast.

application:

 # Add the name of the application group with which this
 # application should be associated in the Contrast UI.
 # group: NEEDS_TO_BE_SET

Custom filters Contrast provides tag options that let you create customized filters. The benefit of creating
custom filters is you can view data according to your specific needs, in addition to using the
default filters.

You can create custom filters through the use of application metadata. (page 826)

You can also apply tags to specific application (page 527) data or vulnerability (page 696) data
in Contrast. After you tag an application or a vulnerability, you can use that tag as a filter on the
Applications page or the Vulnerabilities page in the Contrast application.

Example: Application metadata

This example shows how to create free form fields in the Contrast web interface to request
application metadata:

Field: managersInfo Value:"John Doe"

Field: businessUnit Value:"NodeGoat Group"

Field: officeLocation Value:"New York City"

Example: Application tags

• Appname: The name of a specific application.
• Groupname: The name of an access group.
• Environment: The environment in which you are testing the application (development, QA, or

production).
• Server Name: The name of the server hosting the application.

Example: Vulnerability tags

• Build: A specific build number
• Version: A specific release version

Custom data from
applications

Session metadata (page 531) lets you identify the source of vulnerabilities in your application.

When you add the necessary property to your agent configuration file, the agent reports this
information along with the rest of the standard vulnerability data to the Contrast web interface for
filtering.

If you change the values of metadata in the Contrast configuration file for the agent, you can filter
the vulnerability data based on the different values. For example, if you change the values for
Branch name or Version, you can filter data based on the different versions or branches.

Example:

In this example for a Java application, you add an entry in the
line where you add your javaagent flag. In this example, you set the
property contrast.application.session_metadata to a set of key-value pairs that identify
a branch, a committer, and a repository.

-Dcontrast.application.session_metadata="branchName=build22,committer=Ja
ne,repository=Contrast-Java”

Contrast Documentation

Welcome to Contrast 14

Option Description

Custom naming You have the option of providing customized names for applications (page 526) and
servers (page 592) that host the applications.

By default, a Contrast agent creates a name based on data it discovers in your code.

To specify a custom name, you can use an agent configuration file when you add the
application (page 48) to Contrast or set the name in the Contrast web interface after you add an
application.

Next steps
• Get an overview of how Contrast works (page 15)
• Try Contrast for free - Community Edition (CE) (page 33)
• Install and configure a Contrast agent (page 48)
• Install Contrast (on-premises) (page 868)
• Get started with a particular integration (page 724)

How Contrast works
Contrast Security provides accurate, continuous, real-time application security testing and attack
blocking for your application portfolio. Contrast works within each application to secure it across the
entire software development life cycle (SDLC).

Contrast transforms functional tests into security tests, so that you get security feedback every time
you exercise your applications through your quality assurance function. Contrast delivers results
continuously and in real time, so you are integrating security into your entire development pipeline
from source code to running applications, and all points in between.

How Contrast integrates with your development environment

Analysis techniques and data sources
Contrast combines numerous data sources and a variety of analysis techniques including:

• Runtime control flow and dataflow (IAST)
• Application code or APIs (SAST)

Contrast Documentation

Welcome to Contrast 15

• HTTP requests and responses
• All libraries and frameworks in the application and how they are used (SCA)
• Configuration information
• Back-end connections
• Static scans of local files (SAST)

Contrast agents
Contrast Assess and Contrast Protect use agents (page 47) to analyze data flow and identify
vulnerabilities in fully-assembled and running applications. Contrast Assess and Contrast Protect
use the same agent to analyze data flow and identify vulnerabilities in fully-assembled and running
applications. You do not need one agent for Assess and another for Protect.

Adding and configuring an agent (page 48) inserts Contrast code in the application’s existing methods
across custom code and libraries. Sensors in the agents observe the locations where data enters and
leaves the application (routes). This action creates real-time visibility into any data that flows through
the application and allows Contrast to detect security flaws or vulnerabilities in this code path and report
them to Contrast. The agents also allow Contrast to identify and block attacks.

Agent configuration
Configuring an agent consists of editing a YAML configuration file, using environment variables on a
command line, or other methods native to the language and tools you are using.

When you configure an agent for an application, you specify information for the following settings:

• Agent communication with Contrast
• Agent-specific settings
• Settings for Assess and Protect rules
• Application-specific settings

• These settings include session and application metadata that are available to you as additional
information for each vulnerability reported or as a way to filter them.

• The server hosting the application and the agent:
• Developer's local application server running in the integrated development environment (IDE)
• Continuous integration application server that's used during the automated testing process
• Application test server
• Application staging server
• Embedded server in an appliance
• Application server running in a virtual machine
• Remote application server running in the cloud
• Production application server

Static scans
Contrast Scan (page 542) is a static application security testing (SAST) tool that makes it easy for you
to find and remediate vulnerabilities during the development phase of software development lifecycle
(SDLC).

To scan applications, you upload a source code or bytecode file (page 556). Contrast technology
identifies vulnerabilities based on a set of rules that Contrast defines for you.

Protection for cloud-native applications
Contrast Serverless Application Security (page 30) is a next-generation application security testing
solution for serverless-based applications.

Contrast Serverless Application Security uses cloud-native architecture to map all resources within
your environment, while automatically validating and prioritizing the results, eliminating false-positive

Contrast Documentation

Welcome to Contrast 16

results and alert fatigue. It uses a ReadOnly access to your AWS account to continuously monitor the
environment and collect relevant information.

Integrations
Contrast works with several different integrations (page 724) to provide accurate security feedback
with tools you are already using. This approach accelerates the software development process by
encouraging security and development to work together effectively.

Contrast walk through
Let's take a closer look at how you can use Contrast to ensure your code is secure from critical
vulnerabilities and protect your applications from attacks.

In this example, you are using the Contrast Java agent to configure applications for security testing and
blocking attacks, as the application is exercised.

Customize the Contrast environment
Once you have access to the Contrast web interface, you think about customizing your environment so
that you can find important test results easily and control access to Contrast data.

Access groups
You have three teams involved with your financial applications. You create these access groups and
specify them in the Contrast configuration files:

• Team1-Dev is for developers and has these settings:

Contrast Documentation

Welcome to Contrast 17

Developers can remediate findings, add tags, manage vulnerabilities, edit attributes, merge
applications, add or delete applications, and create servers.

• Team2-Test is for your test team and has these settings:

Test staff can see scores, libraries, vulnerabilities and comments, but can't perform edits to traces to
the application.

• Team3-AppSec is for your AppSec team and has these settings:

Contrast Documentation

Welcome to Contrast 18

The AppSec team can edit rules and policies in the application, enable Protect, and manage
notifications and scoring for the application.

Application and server naming
Since all teams are working on the same application, you use the same name in each Contrast
configuration file. You plan to use one configuration file for the development environment and one for
the test environment.

Although you are using two configuration files, since you use the same name for the application in both
files, Contrast displays data as if you only have a single instance of the application.

You decide to let Contrast determine the server name.

Session metadata
You want to be able to view vulnerabilities and route information for a specific branch, committer,
and repository. You define session metadata values in your Contrast configuration file to collect this
information:

-Dcontrast.application.session_metadata="branchName=release24,committer=Jane
,repository=finapp-Java”

Step 1: Configure applications for security testing
During development, you want to make sure developers are checking in code that's secure. During
testing, you want to verify that your applications have no vulnerabilities that will allow attacks when in
production.

You decide to add Contrast to your applications so that you can do the necessary security testing
before releasing your products to the public. Since your applications use Java, you are going to use the
Contrast Java agent.

1. You download the agent (page 88) from the Maven Central repository because you use Maven for
your build processes. You also download a YAML configuration file (page 73) from the Contrast
web interface.

2. For your development environment, you edit the YAML configuration file to include settings similar
to these:

api:
 # ********************** REQUIRED **********************
 # Set the URL for the Contrast UI.
 url:https://mycontrast.mycompany.com:8080/Contrast/

Contrast Documentation

Welcome to Contrast 19

 # ********************** REQUIRED **********************
 # Set the API key needed to communicate with the Contrast UI.
 api_key:A2xxxxxxxxxxxxxxxxxxxxxxxxxxxG9N
 # ********************** REQUIRED **********************
 # Set the service key needed to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 service_key:service_key:88xxxxxxxxxxxx5Z
 # ********************** REQUIRED **********************
 # Set the user name used to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 user_name:agent_xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx@mydevorg
.
.
.

===
=======
server
Use the properties in this section to set
metadata for the server hosting this agent.
===
=======
server:
 # Override the reported server environment.
 environment: development
.
.
.

3. For your test environment, you edit a Contrast YAML configuration file with settings similar to these:

api:
 # ********************** REQUIRED **********************
 # Set the URL for the Contrast UI.
 url:https://mycontrast.mycompany.com:8080/Contrast/
 # ********************** REQUIRED **********************
 # Set the API key needed to communicate with the Contrast UI.
 api_key:A2xxxxxxxxxxxxxxxxxxxxxxxxxxxG9N
 # ********************** REQUIRED **********************
 # Set the service key needed to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 service_key:service_key:88xxxxxxxxxxxx5Z
 # ********************** REQUIRED **********************
 # Set the user name used to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 user_name:agent_xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx@mydevorg
.
.
.

===
=======
server
Use the properties in this section to set
metadata for the server hosting this agent.
===
=======

Contrast Documentation

Welcome to Contrast 20

server:
 # Override the reported server environment.
 environment: QA
.
.
.

4. Next, you start your application and run functional tests to exercise all the routes and data
endpoints that the application and business logic expose.

5. Using the Contrast web interface, you first check the Application page to make sure that Contrast
recognizes your application. Then, you check for vulnerabilities and how to fix guidelines to
determine what actions to take to secure your code.

6. After initial tests, you decide to use the Maven plugin (page 770) to integrate Contrast in to your
CI/CD process. You configure the integration so that builds fail if Contrast discovers vulnerabilities
with a Critical or High status.

Step 2: Configure applications to block attacks
Although you've been using Contrast during your development and test phases, you also want make
sure that your users are not subject to malicious activity when they use your product. You decide to add
Contrast to the applications that are in production to protect your application, users, and data.

First, you make sure that you have a Protect license and that Protect is enabled for your organization.

Similar to how you installed and configured an agent for your application in development and test, you
need to configure a new configuration file for the production environment that enables Contrast Protect.
After you create the new configuration file, you run the application and verify that the Contrast web
interface displays your application for a production environment.

api:
 # ********************** REQUIRED **********************
 # Set the URL for the Contrast UI.

Contrast Documentation

Welcome to Contrast 21

 url:https://mycontrast.mycompany.com:8080/Contrast/
 # ********************** REQUIRED **********************
 # Set the API key needed to communicate with the Contrast UI.
 api_key:A2xxxxxxxxxxxxxxxxxxxxxxxxxxxG9N
 # ********************** REQUIRED **********************
 # Set the service key needed to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 service_key:service_key:88xxxxxxxxxxxx5Z
 # ********************** REQUIRED **********************
 # Set the user name used to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 user_name:agent_xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx@myprodorg
.
.
.
==
====
protect
Use the properties in this section to override Protect features.
==
====
protect:

 # Use the properties in this section to determine if the
 # Protect feature should be enabled. If this property is not
 # present, the decision is delegated to the Contrast UI.
 # enable: true
.
.
.
==
====
server
Use the properties in this section to set
metadata for the server hosting this agent.
==
====
server:
 # Override the reported server environment.
 environment: production
.
.
.

Once the application is in production, you monitor the Attacks page in the Contrast web interface to see
if attacks occur.

Contrast Documentation

Welcome to Contrast 22

Step 3: Fix code and retest applications
After you analyze the results of testing with Contrast and identified attacks, you update the code and
ensure that Contrast displays the latest version of your application. You verify that the new version is
free of the vulnerabilities you blocked in production and re-deploy the application.

Hosted (SaaS) versus on-premises deployment
When you consider deploying Contrast Security solutions, you have two primary options: a hosted
solution (cloud installation) or an on-premises instance. Each approach has its benefits and drawbacks,
influenced by cost, control, customization, security, and scalability.

Benefits and drawbacks of hosted solutions

• Benefits
• Immediate access to updates and advanced new features: Updates are readily available

without delay, promoting the latest security posture. New features are always supported for hosted
solutions.

• Reduced IT overhead: Contrast manages infrastructure and maintenance and thus, streamlines
operations. Also, freedom from system-wide management tasks.

• Scalability: Easier to scale resources as your needs increase.
• Cost: Pricing for SaaS deployments are subscription-based, allowing flexibility and scalability

• Drawbacks
• Data management: Data is stored on Contrast servers, instead of locally.

However, Contrast complies with these data protection policies:
• General Data Protection Regulation (GDPR)
• General Data Protection Regulation-UK (UK-GDPR)
• California Consumer Privacy Act (CCPA)
• Protection of Personal Information (APPI)
• System and Organizational Control Type II Audit (SOC II)

Benefits and drawbacks of on-premises solutions

• Benefits:
• Complete control: More control over system-wide settings.
• Data privacy: Data is stored locally - For deployments that require specific security compliance,

sensitive data never leave your company.

Contrast Documentation

Welcome to Contrast 23

• Drawbacks
• Resource intensive: Requires significant investment in IT, networking, and infrastructure along

with coordination, planning and maintenance.
• Delayed updates: Updates for product enhancements are often delayed after Contrast releases

while for hosted solutions receive them immediately.
• No support for new features: Advanced new features are often not supported for on-premises

solutions. For example, Contrast Scan, static SCA. GitHub App for SCA , and Contrast Serverless
are not supported for on-premises instances.

Contrast feature comparison

Feature Hosted On-premises

Installation and
updates

Contrast installs, configures, and updates the
software.

Hosted customers are responsible for
installing, configuring, and updating the
software.

Management at a
system level

Contrast takes care of all system management
tasks.

With the correct permissions, a user can control a
variety of configuration settings and access control
entities

A SuperAdmin is responsible for all settings
and configuration at a system-wide level.

Single Sign On (SSO) Contrast Support configures authentication;
however, you may be granted permissions to set
up SSO for your organization.

System Administrators can configure SSO at
a system-wide level.

TLS connections and
certificates

For Contrast agents, Contrast uses strong TLSv1.2
connections and certificates signed by industry
standard certificate authorities (CAs).

On-premises customers may need to
configure Contrast agents to use enterprise
CAs. They may want the agents to send client
certificates in the TLS handshake.

Licenses Hosted customers can allocate Assess and Protect
licenses for their organization.

SuperAdmin or ServerAdmin role can allocate
Assess and Protect licenses to a particular
organization.

Impersonation Contrast support manages impersonation when
needed for troubleshooting.

SuperAdmins manage impersonation when
needed for troubleshooting.

Code scanning
(SAST)

Hosted customers can use the Contrast scan
engines from the Contrast web interface or a local
scan engine. The local scan engine does not
require uploading your source files to Contrast.

Not available

Static scanning of
libraries

Hosted customers can automatically scan, in close
to real-time, relevant static code and configuration
assessments to discover new vulnerabilities.

Not available

Organization
management

Users with administrator permissions can manage
their organization.

SuperAdmins and System Administrators can
manage all organizations at a system-wide
level.

Runtime security
testing (IAST)

Available Available

Serverless Hosted customers can use Contrast Serverless
for dynamic scanning, static scanning, graph
visualization, and resource observability for AWS
functions.

Not available

Software bill of
materials (SBOM)

Contrast Support enables this feature for the
organization. Users can generate an SBOM from
the Applications tab.

A SuperAdmin can enable users to generate
an SBOM from the Applications tab.

Software composition
analysis (SCA)

Contrast Support enables this feature for the
organization.

A SuperAdmin can enable SCA.

Attack protection
(RASP)

Contrast Security grants permissions that let users
access Protect data.

SuperAdmins can grant permissions that let
all or some user roles in one or more
organizations access Protect data.

Enhanced role-based
access control
(RBAC')

Available on request. If not enabled, hosted
customers use the legacy access control.

Not available. On-premises customers use the
legacy access control.

On-premises customers can add multiple
users at one time.

Contrast Documentation

Welcome to Contrast 24

Feature Hosted On-premises

Diagnostics Contrast Support enables this option of diagnostic
information is needed for troubleshooting.

A SuperAdmin, ServerAdmin or System
Administrator can enable this option at a
system-wide level.

Email Users with administrator permissions can set
default settings for Contrast notifications at an
organization level.

Individual users can adjust their own settings.

System Administrators can enable, disable,
and configure Contrast to communicate with
an appropriate SMTP system to receive these
notifications.

Assess
Contrast Assess is an application security testing tool that combines Static (SAST), Dynamic (DAST),
and Interactive Application Security Testing (IAST) approaches to provide highly accurate and
continuous information on security vulnerabilities in your applications.

Contrast Assess uses an agent that instruments applications with sensors. The sensors look at data
flow in real time and analyze the application from within to help figure out vulnerabilities in:

• Libraries, frameworks, and custom code
• Configuration information
• Runtime control and data flow
• HTTP requests and responses
• Back-end connections

Assess is appropriate for environments such as a test, QA, or staging servers. It is also applicable to
developer workstations. When coupled with Contrast integrations, such as Visual Studio, developers
can find and fix vulnerabilities without leaving their integrated development environment (IDE).

Features
Once you install and configure an agent (page 48) and enable Assess (page 809), Contrast offers you
these features:

• A list of vulnerabilities (page 690) in the application, along with remediation guidance.
• Application scores (page 950) to gauge the security of an application at a glance.
• Route coverage (page 534) that detects possible routes by associating vulnerabilities with the

originating web request.
• Flow maps (page 540) that provide insight into the architecture of the running application.
• Compliance and policy reporting (page 717).

Contrast Documentation

Welcome to Contrast 25

Customization
To customize Assess for your needs, you have the option of configuring these types of policies:

• Assess rules (page 779) that you can enable or disable to fine tune the detection capabilities of
Assess.

• Security controls (page 780) are methods in your code that make sure data is safe to use.

SCA
Contrast SCA identifies open-source components through run-time analysis, file system scanning, and
dependency analysis. Leveraging these techniques, SCA reports an exact inventory to Contrast.

By default, Contrast Assess includes powerful SCA capabilities. With an SCA license, you have access
to advanced SCA capabilities.

Features
To simplify the process and merge open-source analysis with custom code analysis, SCA is integrated
as part of the Contrast platform. Here's what you can do with SCA (some of these features are free and
other require an SCA license):

• Open-source license management: Contrast SCA provides license data (page 607) tied to open-
source components. This data helps you understand intellectual property compliance and mitigate
operational risk.
This feature requires an SCA license.

• Open-source policy: With SCA, you can set policies to denylist open-source licenses. If a denylisted
license type is deployed in your applications, it triggers an alert. To keep your library usage safe,
set compliance policies (page 803) for your organization. To restrict use of specific open-source
libraries and licenses, as well as set version requirements, you can set library policies (page 807).
This feature requires an SCA license.

• Identification of CVE vulnerabilities Contrast SCA identifies the CVE vulnerabilities for each library
that your applications are using. This data includes a description of each CVE vulnerability for a
selected library as well as the number of applications using that library.
This feature is available without an SCA license.

• CLI and dependency tree: The Contrast CLI performs software composition analysis (SCA) on
your application to show you the dependencies between open source libraries, including where
vulnerabilities were introduced.
The data that the Contrast CLI (page 684) collects is used to display a dependency tree (page 607)
that brings awareness to underlying library dependencies.
This feature is available without an SCA license.

Contrast Documentation

Welcome to Contrast 26

• GitHub action: Use this integration to analyze a project's dependencies for vulnerabilities. The
action will run Contrast SCA Action to detect vulnerable libraries. See Contrast SCA Action for more
information.

Contrast data
Once a library is reported to Contrast, you can access:

• Library usage analysis to identify whether vulnerable components are actually used by the application
• Library version identification and guidance on the latest version
• Comprehensive vulnerabilities coverage
• Portfolio wide, real-time reporting of open-source components

Protect
Protect is a defensive control for production environments that monitors attacks and actively defends
applications based on specific vulnerabilities, for example, command injection.

It offers Runtime Application Self-Protection (RASP) that complies with NIST 800-53, PCI-DSS,
PCI-SSS, and other industry standards. Protect operates directly inside runtimes such as
Java (page 84), .NET (page 173), .NET Core (page 232), Node.js (page 288), Ruby (page 414),
and Python (page 359), to leverage in-app intelligence without any manual tuning.

Contrast Protect blocks both automated and advanced threats attacking web applications and API, and
provides valuable and timely application layer threat intelligence across the entire application portfolio.

How Protect works
Contrast Protect works inside application software to understand complete data flow rather than
network traffic. Instead of only analyzing incoming data, Protect sees the same data and watches
its impact on underlying actions, such as complete SQL queries, command arguments, and more.

This analysis improves detection accuracy, separating the noise of many attacks that might be false
positives to focus on attacks that met their intended target. This insight can be shared with external
systems, such as a SIEM, to focus on key attack events.

Protect limits its impact on application performance by operating with the same shared memory as
the application to avoid additional overhead. Contextual defense improves performance by avoiding
unnecessary actions. For example, NoSQL applications do not need checks against SQL injection if the
SQL APIs are never invoked.

Customization
When Protect is enabled, you can customize these policies and rules:

• Protect Rules: (page 789) Set applications to monitor for attacks.

Contrast Documentation

Welcome to Contrast 27

https://github.com/marketplace/actions/contrast-security-sca

• CVE shields: (page 793) Specify CVE shields that block vulnerabilities.
• Virtual Patches: (page 797) Define custom defenses against specific vulnerabilities.
• Log Enhancers: (page 799) Provide additional instrumentation instructions.
• IP Management: (page 805) Manage a denylist and allowlist (trusted hosts).

See also
Agent performance with Protect (page 511)

Contrast Protect licensing guide
This guide describes the Contrast licensing model for Protect. It explains key terms and provides
real-world examples to illustrate how Contrast applies Protect licensing.

The goal of this guide is to provide clarity about the licensing model for technical and non-technical
audiences.

Assess versus Protect licenses

• Assess licenses: These licenses apply to individual applications, regardless of the number of times
they are running.

• Protect licenses: These licenses are based on the number of servers in the production environment.
The licenses can adjust based on the changing number of servers in use. Contrast allows for burst
flexibility; license use can go beyond the number of licenses purchased. This option allows for
dynamic scaling of applications and ensures Contrast is able to provide continuous service with
minimal interference.

Common scenarios

• One application to one server
If you are running one application on one server, you need one Protect license. This scenario is the
most basic one.

• One application across multiple servers
If a you have one application distributed across several servers, each server requires its own Protect
license. This scenario is typical in high-availability or load-balanced configurations.

• Multiple applications on one server
If you are running several applications on a single server, you need just one Protect license for that
server. This scenario is common in environments that use Java Virtual Machines (JVMs) or Microsoft
Internet Information Services (IIS), where multiple applications coexist on a single server.

Example: StreamFlix, a Video Streaming Platform
This real-world example shows how you could use Protect licensing.

Background

StreamFlix operates a video streaming platform and employs a microservices architecture. They have
several microservices, including User Authentication, Video Playback, and Analytics. StreamFlix uses
ephemeral servers that can scale up or down based on demand.

Event

A highly anticipated series premiere is scheduled. As users start logging in to watch, there's a sudden
surge in traffic.

Microservice behavior

Contrast Documentation

Welcome to Contrast 28

Phase User authentication service Video playback service Analytics service

Normal
operation

5 servers 10 servers 3 servers

Premiere day 20 servers

Due to the influx of users logging in, the
number of servers scale up to handle
demand.

50 servers

More users are streaming.

5 servers

More servers are
required to process the
higher volume of user
data.

Post premiere 5 servers

As traffic normalizes, the number of
servers scales down.

15 servers

Once the rush subsides, the
numbers of servers scales down
to a slightly higher number due to
continued interest.

3 servers

Protect licenses

Phase Protect licenses

Normal operation 18 licenses (5 + 10 + 3 servers)

Premiere day License use surges to 75 (20 + 50 + 5 servers)

Post premiere License use adjusts to 23 (5 + 15 + 3 servers)

Key insights

• Adaptive Licensing: Protect licensing dynamically adjusts to the changing number of servers during
high-demand events, ensuring continuous service.

• Distinct Focus: Asses licensing focuses on unique applications. Protect licensing focuses on the
servers running these applications in a production environment.

Scan
Contrast Scan (page 542) is a static application security testing (SAST) tool that makes it easy for you
to find and remediate vulnerabilities. It is a valuable tool to use during the development phase of an
application. Licensed, hosted customers have access to this feature.

To scan an application, you upload binary packages to a Contrast secure environment. After you
upload the code, you start the scan. The scan observes the data flows in the source code and
identifies vulnerabilities that could allow malicious attacks. Some examples of these malicious attacks
include SQL injections, command injections, and server-side injections.

The scan results identify vulnerabilities in custom code. After fixing these issues, running the scan again
verifies that the code changes removed one or more vulnerabilities.

No open-source code or libraries are included in the scan.

Contrast Documentation

Welcome to Contrast 29

Features

• Ability to create scan groups that enable you to track results of multiple scans
• Scan settings that let you change the name of a scans
• Starting or stopping scans
• Views of identified vulnerability details
• Monitoring of scan progress and history
• Assignment of status to vulnerability records
• Integration of scanning into your CI/CD pipeline
• Information about risk and approaches for fixing each type of vulnerability

See also
Scan supported languages (page 553)

Serverless Application Security
Contrast Serverless Application Security is a next-generation application security testing solution for
serverless-based applications.

Contrast Serverless Application Security uses cloud-native architecture to map all resources within
your environment, while automatically validating and prioritizing the results, eliminating false-positive
results and alert fatigue. It scans for vulnerabilities in your custom code (for example, injection attacks),
dependencies (for example, CVEs), and configuration risks (over-permissive function policies).

Contrast Documentation

Welcome to Contrast 30

Features

• Easy connection to AWS
With two clicks and approximately two minutes, you connect to your AWS account through the
Contrast web application.

• Discovery of your inventory
Once you connect to your AWS account, Contrast creates an inventory of your functions, resources,
policies, and services in your AWS environment.

• Analysis of vulnerabilities
Dynamic and static scans analyze your code, discovering weaknesses, data flows, attack surfaces,
and exposure to vulnerabilities.

• Continuous monitoring
As your code changes, Contrast continues to monitor your Lambda functions, identifying
vulnerabilities that require attention.

• Simulation of attacks
A dynamic scan generates and executes curated attacks on resources and data flows, without
making changes to your code.

• Visual representation of function and service relationships
In addition to viewing relationships between functions and services in your account, you can view
details about each element including applicable risks.

• Reporting
Scan results list CVEs, permission violations, vulnerabilities, and other exposures in your code.

Benefits

• Fast and easy deployment
You do not need a large staff of specialists or consultants or a lot of time to integrate with Contrast.

• Non-intrusive integration
You can add serverless security without significant changes to the development process. It's easy to
find and fix exploitable vulnerabilities early in the development phase, ensuring that your applications
are more secure when you deploy them to production.

How it works
Contrast connects to your AWS account with ReadOnly access. It uses this access to continuously
monitor the environment and collect relevant information.

Contrast Documentation

Welcome to Contrast 31

Contrast deploys one Lambda function (Cloud Agent) within the monitored environment, to perform
activities such as code analysis and sending back to Contrast meta-data about the scanned resources
(Lambda functions).

All the information is used by our contextual engine to build a tailored attack profile for every resource
and change to this environment. The attack simulations will be executed, inside the customer’s account,
by the Cloud Agent.

All finding results will go through an internal validation mechanism to qualify them, providing zero
false-positive and real prioritized results.

Security and privacy

• Contrast does not collect code or code-snippets from your monitored account. Contrast only sends
back meta-data information such as:
• Identified vulnerabilities
• Function names and metadata (for example, policy handlers)
• Used libraries
• AWS API calls (for example, boto3 and asw-sdk)
• Service configurations (for example, bucket notifications, API gateway paths, and methods)

• Contrast makes no changes to your code. However, during the scan time (for example, when a
function is deployed or modified), Contrast temporarily instruments a layer into the scanned function
and makes some configuration changes (for example, timeouts or handlers).
Once the scan completes, Contrast restores the layer and the configurations to their original states.
This process is completely transparent and occurs automatically.
During a scan, you can continue to run your own tests (function calls).

• During dynamic scans, Contrast executes with scanned function using malicious data. This process
has no effect on your code. It does, however, execute code that could potentially trigger any action
that the function makes.
This function is disabled by default. Use the Settings tab to enable it at any time.

• All data that Contrast receives from the monitored AWS account is encrypted in transit and at rest.
Contrast uses Amazon EventBridge with a shared secret to send and receive all data. There are no
web or REST APIs that Contrast uses to communicate with your AWS account.

Requested permissions
When you use Contrast to connect to your AWS account, you consent to these access permissions:

• ReadOnlyAccess from the Contrast AWS account to your monitored AWS account.
This policy is used during beta activities only.

• Lambda Read/Write access from the Contrast AWS account to the Lambda functions deployed in
your AWS account.

• The Lambda function that Contrast installs in your monitored AWS account requires these access
policies:
• Read CloudWatch Logs
• Read Layer versions
• Invoke function
• Change function configuration
• Write EventBus messages
• Read KMS keys
• Read/Write objects to specific S3 buckets (Contrast creates these buckets)

See also

• Get started with Contrast Serverless (page 639)

Contrast Documentation

Welcome to Contrast 32

Contrast performance and resource consumption
Minimize the impact of Contrast on production servers by using the proper configuration:

• Development environments: Contrast Assess should be on and Protect can be off. This provides
the strongest insight into an application’s security posture. This detailed insight favors deep insight
over performance to focus on helping developers locate security flaws.

• Test environments: Contrast Assess or Protect should be enabled based on what the team needs.
Teams should strike a balance to achieve the overall goals of the team:
• If little testing is done in development, teams should leverage Assess to find vulnerabilities as the

application is used.
• When evaluating performance, Contrast Assess should be turned off and only Protect should be

enabled. This provides a corrective control that favors performance but still retrieves code-level
information when corrective action is needed.

• Production environments: Only Contrast Protect should be on. This provides contextual defense
while favoring performance.

See also
Agent performance with Protect (page 511)

System requirements for .NET Framework agent (page 175)

.NET Core system requirements (page 233)

System requirements for the Node.js agent (page 291)

PHP agent system requirements (page 343)

System requirements for the Python agent (page 361)

System requirements for the Ruby agent (page 416)

Community Edition (CE)
Community Edition offers near full access to Contrast products (Assess, SCA, and Protect), with
developers receiving interactive application security testing (IAST), software composition analysis
(SCA), and runtime application self-protection (RASP) solutions—all for free.

Sign up for a Community Edition account and install an agent to get started. Learn more on the
Community Edition blog.

NOTE
Community Edition lets you add one Java, .NET Core, or Node.js application to
Contrast.

Community Edition features
Community Edition offers:

• Contrast Assess, which allows developers to focus only on fixing vulnerabilities derived from custom
code that actually matter.

• Contrast SCA, which delivers unparalleled visibility into and management of security risks from
vulnerabilities introduced through open-source and third-party libraries
Contrast SCA is an open-source security or software composition analysis (SCA) solution.

Contrast Documentation

Welcome to Contrast 33

https://www.contrastsecurity.com/contrast-community-edition
https://www.contrastsecurity.com/security-influencers/contrast-community-edition

• Contrast Protect, which monitors and automatically blocks attacks on applications using
instrumentation from within the application— even if the vulnerability still exists in self-written code or
open-source libraries.

Community Edition portal
Here's an example of the CE portal that you interact with when using Contrast:

Next steps

• Install the .NET Core agent (page 234)
• Install the Java agent (page 86)
• Install the Node.js agent (page 292)

Contrast Documentation

Welcome to Contrast 34

 Contrast for developers

The Contrast platform
Your first step is understanding the technologies in the Contrast platform so you can choose an
appropriate analysis strategy.

Code analysis during development
• Contrast Scan

Contrast Scan is a static application security testing (SAST) tool that lets you quickly scan code to
identify vulnerabilities in early stages of development.
• Why use Contrast Scan?

Contrast Scan provides exceptional speed without sacrificing accuracy. It takes just a few minutes
and clicks to start a scan. In addition, you can use a local scan engine to avoid uploading your
content to the Contrast platform directly. Contrast Scan is a good choice for client-side code such
as Angular, React ,or Vue.js based applications.

• Contrast Serverless
For functions as a service (FaaS)-style serverless, Contrast Serverless protects you in a number of
ways:
• It does some static and dynamic analysis to detect vulnerabilities.
• It does some SCA analysis for open source libraries.
• It also analyzes your functions to determine the least privilege configuration necessary for your

serverless functions to operate but closes off avenues for attackers.
For serverless offerings like AWS Fargate, you can use Contrast Assess. For Azure Functions, you
can use both Contrast Serverless and Contrast Assess. You can use the Contrast CLI to access
a subset of the functionality, which also provides you with a pipeline integration option. However,
the primary mode for Contrast Serverless is identifying and protecting all the functions in your
cloud-provider account with only a few clicks and a few minutes worth of work.
• Why use Contrast Serverless?

• It provides you with a comprehensive list of your functions and enables you to make them secure
from attack

• No additional time or retooling of DevOps pipelines is required to benefit from serverless function
scanning

• No extra overhead is needed to look at invalid data
• Contrast Serverless assists you in making your code more secure by guiding you to select

appropriate policies.

Analysis of open source libraries
Contrast SCA

Contrast has always provided runtime Software Composition Analysis (SCA) capability with Assess, but
now, you can also use Contrast SCA to detect vulnerabilities in your 3rd party dependencies (mostly
open source) statically using a command line interface (CLI) and through our GitHub integrations, that
allows bulk onboarding of projects to Contrast

Why use Contrast for SCA instead of other good (and often free or inexpensive) SCA tools?

Contrast SCA lets you focus only on what matters. Contrast runtime SCA provides a unique ability to
not only tell if your application dependency manifests specify a vulnerable version of a vulnerable library
but it can tell you which libraries are actually invoked, and to what degree, at runtime. This ability lets
you lower the priority on the 70% that aren’t invoked at runtime. Contrast SCA can also detect libraries

Contrast Documentation

 Contrast for developers 35

that are not listed in the manifests but injected at runtime by the environment -- a blindspot for pure
static SCA solutions like most free ones.

Code analysis during runtime
Contrast Assess

Contrast Assess is the interactive application security testing (IAST) part of the Contrast platform. The
core of an IAST tool is sensor modules, software libraries included in the application code. These
sensor modules keep track of application behavior while the interactive tests are running. IAST
analyzes code in runtime to find vulnerabilities, like static application security testing (SAST) tools
do prior to compile and execution. It analyzes runtime behavior, like dynamic application security
testing (DAST) tools. It also serves as the collector for our runtime Software Composition Analysis
(SCA) capability. So, you can think of Contrast Assess as four tools in one.

Why use Contrast Assess?

Assess has a fraction of the false positives while finding up to twice the true positives as other SAST
tools, without adding any additional scan wait times for both SAST and DAST tools. That’s because
with Contrast Assess, each interaction of the application by a user or your automated QA tests raises
valuable telemetry about the security of the code in operation. This information makes IAST the
simplest and least intrusive security process to add earlier in the development cycle, since no changes
to your process are needed and will add no delays to your release schedule

Protection for production builds
Contrast Protect

Contrast Protect, is a runtime application self-protection (RASP) tool. Using the same technology as
Assess, it blocks traffic that would have resulted in a successful attack.

Why should you integrate Protect into builds that you deploy to production?

Contrast Protect provides negative-day protection for zero-day attacks. The three-year-old version
of Protect was able to block the infamous Log4Shell remote code execution attacks. For actively
developed applications, this gives you time to upgrade, avoiding the late-night rush when a new
zero-day emerges.

For maintenance-mode applications, it might serve as a long-term protection allowing you to stay
focused on new applications. It also provides developers with actionable threat intelligence because it
not only tells you attacks are occurring (information you may or may not be getting from your security
team) but it also shows you the code paths used by the blocked attackers so you can easily eliminate
them.

Next step
Review analysis paths (page 36)

 Contrast analysis paths
Contrast provides multiple ways to you integrate secure code analysis into your development workflow.

This topic presents suggested paths for integrating Contrast analysis into your development workflow.
Your environment might require different workflows.

Contrast Documentation

 Contrast for developers 36

Analysis paths during development

Static scanning with
Contrast Scan

Use any of these:

• Contrast
CLI (page 39)

• Contrast GitHub
action (page 41)

• Contrast web
interface
(page 43)

Get results from:

• SARIF
files (page 44)

• Contrast
CLI (page 44)

• Contrast web
interface
(page 45)

Integrate with
your CI/CD
system (page 46)

Static and real-time
function scanning
with Contrast
Serverless

Use any of these:

• Contrast
CLI (page 39)

• Contrast web
interface
(page 43) (scan
set up only)

Get results from:

• Contrast
CLI (page 44)

• Contrast web
interface
(page 45)

Integrate with
your CI/CD
system (page 46)

Analysis paths for open source libraries

Static scanning
with Contrast
SCA

Use any of these:

• Contrast
CLI (page 38)

• GitHub app

Get results from:

• Contrast CLI (page 44)
• Contrast web

interface (page 45)
• Workflow

integrations (page 734)

Integrate with
your CI/CD
system (page 46)

Run-time
scanning with
Contrast SCA

Use this:

Instrumentation
with Contrast
agents (page 42)

Get results from:

• Contrast web
interface (page 45)

• Workflow
integrations (page 734)

Integrate with
your CI/CD
system (page 46)

Analysis path during runtime

Find application
vulnerabilities
with Contrast
Assess

Use any of these::

• Instrumentatiion
with Contrast
agents (page 42)

• Contrast CLI (page 40)

Get results from:

• Contrast CLI (page 44)
• Contrast web

interface (page 45)
• IDE

integrations (page 44)
• Workflow

integrations (page 734)

Integrate with
your CI/CD
system
(page 46)

Protection path for production builds

Protect production
builds with Contrast
Protect

Use this:

Instrumentation with Contrast
agents (page 45)

Contrast GitHub action (page 41)

Get results from:

• Contrast web interface (page 45)
• SIEM tools (page 733)

 GitHub Actions

Contrast provides several GitHub actions that simplify a variety of analysis tasks. For example, you
might find some of these GitHub Actions useful:

Contrast Documentation

 Contrast for developers 37

https://github.com/marketplace/contrast-security-sca

GitHub Action Description

Contrast Verify This GitHub Action verifies an application that uses Contrast by determining whether the
application violates a Job Outcome Policy or threshold of open vulnerabilities

Contrast Security SCA This GitHub Action lets you use Contrast to detect vulnerable dependencies in your code.

Contrast Security EKS Build
Deploy

This GitHub Action builds and deploys a java application to the Amazon Elastic Kubernetes
Service (EKS) with a Contrast Security Java Agent.

Contrast Scan Analyze This GitHub Action lets you use Contrast Scan to find vulnerabilities in your code.

Contrast Security AKS Build
Deploy

This GitHub Action builds and deploys a Java application to the Azure Kubernetes Service (AKS)
with a Contrast Java agent.

Contrast Security Azure
Spring Cloud Deploy

This GitHub Action deploys a Java application with a Contrast Java agentto the Azure Spring
Cloud PaaS environment.

The GitHub Marketplace contains the most current GitHub Actions for Contrast.

 Code analysis
Once you decide on your approach for code analysis, you're ready to start testing your open source and
source code.

To analyze... With... Go to:

Open source libraries CLI Use CLI for open source library analysis (page 38) (static analysis)

GitHub app Use GitHub app for open source library analysis (page 41) (static
analysis)

Application
instrumentation

Instrument applications for open source library analysis (page 42)
(runtime analysis)

Source code CLI • Use CLI for static scanning (page 39)
• Use CLI for serverless function scanning (page 39)

GitHub action Use GitHub action for static scanning (page 41)

Application
instrumentation

Instrument applications to find vulnerabilities (page 42)

Contrast web interface • Use Contrast web interface for static scanning (page 43)
• Use Contrast web interface to set up serverless function

scanning (page 43)

Next steps

• Get results from the CLI (page 44)
• Get results from IDE integration (page 44)
• See results in SARIF files (page 44)
• See results in the Contrast web interface (page 45)

 Use CLI for open source library analysis

The Contrast CLI lets you analyze open source libraries for vulnerabilities and returns the results.

By default, the CLI doesn't store the results locally. To maintain persistent data, use the CLI---track
option to send the results to the Contrast web interface.

Before you begin

• Learn about the Contrast CLI (page 665).
• Install the CLI (page 666).

Steps

1. Store your Contrast credentials locally with this command in a terminal window:

Contrast Documentation

 Contrast for developers 38

https://github.com/marketplace?type=&verification=&query=contrast+

contrast auth
--api-key <ContrastAPIKey>
--authorization <ContrastAuthorizationHeader>
--host <YourHosDomain>
--organization id <ContrastOrganizationID>

Get the Contrast API key, the authorization header, and organization ID by logging into the
Contrast web interface and selecting user menu > User settings.

2. Find vulnerable libraries by using this command in a terminal window:

contrast audit [option]

• Use the --track option to send persistent results to the Libraries (page 599) Static tab in the
Contrast web interface.

• Use the --file option to specify a directory or file to audit.
CLI commands (page 673) describes all the valid options for the audit command.

Next steps

• Get results with the CLI (page 44)
• See results in the Contrast web interface (page 45)

 Use CLI for static scanning

Instead of using the Contrast web interface, you can use the CLI to scan your code.

Before you begin

• Learn about the Contrast CLI (page 665).
• Install the CLI (page 666).

Steps

1. Store your Contrast credentials locally with this command in a terminal window:

contrast auth
--api-key <ContrastAPIKey>
--authorization <ContrastAuthorizationHeader>
--host <YourHosDomain>
--organization id <ContrastOrganizationID>

Get the Contrast API key, the authorization header, and organization ID by logging into the
Contrast web interface and selecting user menu > User settings.

2. Upload and scan a package by using this command in a terminal window:

contrast scan --file <FileName>

CLI commands (page 678) describes all the valid options for the scan command.

Next steps

• Get results with the CLI (page 44)
• See results in the Contrast web interface (page 45)

 Use CLI for serverless function scanning

Instead of using the Contrast web interface, you can use the CLI for scanning your serverless functions.

Contrast Documentation

 Contrast for developers 39

Before you begin

• Learn about the Contrast CLI (page 665).
• Install the CLI (page 666).

Steps

1. Store your Contrast credentials locally with this command in a terminal window:

contrast auth
--api-key <ContrastAPIKey>
--authorization <ContrastAuthorizationHeader>
--host <YourHosDomain>
--organization id <ContrastOrganizationID>

Get the Contrast API key, the authorization header, and organization ID by logging into the
Contrast web interface under user menu > User settings.

2. Find vulnerabilities by using this command in a terminal window:

contrast lambda --function-name <function> [options]

• Use --json to return the response in a JSON format.
• Use --verbose to return extended information to the terminal window.
• CLI commands (page 680) describe all the valid options for the lambda command.

Next steps

• Get results with the CLI. (page 44)
• See results in the Contrast web interface. (page 45)

 Use CLI to find vulnerabilities

The Assess CLI lets you use Contrast Assess to display vulnerabilities in real time.

The following Contrast agents support the Assess CLI:

• Java
• Node.js
• .NET
• Python
• Ruby
• Go

Before you begin

• Learn about the Contrast CLI. (page 665)
• Install the CLI. (page 666)
• Verify you can use the Assess CLI with your application by checking the supported technologies for

your agent.

Steps

1. Install or update an agent.
2. In a terminal window, enter the following command:

conrast assess

Contrast Documentation

 Contrast for developers 40

This command creates the agent configuration file that both the Assess CLI and the agent share.
The default locations for the file are:
• MacOS and Linux: /etc/contrast/contrast_security.yaml
• Windows %ProgramData%\Contrast\contrast_security.yaml
To specify a different file location, use the config-path option. CLI commands (page 673)
describes all the valid options for the assess command.

3. Run your application in your IDE or a second terminal window.
4. Exercise your application.
5. View the results in the terminal window where you entered the Assess CLI command.

Next steps
Get results with the CLI. (page 44)

See also
Use Assess CLI with Java agents (page 668)

Use Assess CLI with Node.js agents (page 670)

Use Assess CLI with .NET agents (page 669)

Use Assess CLI with Python agents (page 671)

Use Assess CLI with Ruby agents (page 671)

Use Assess CLI with Go agents (page 672)

 Use GitHub app for open source library analysis

The Contrast GitHub app lets you connect your GitHub repo with Contrast. Once you establish this
connection, Contrast scans the open source libraries in selected repos to identify vulnerabilities.

Before you begin

• To connect to the GitHub app, you need the subdomain and host for your Contrast account (for
example: app.contrastsecurity.com)

Steps

1. Log in to the Contrast web interface and select Add New in the header.
2. Select the Repostories card tab and then, select Connect GitHub.
3. When prompted to do so, specify where you want to install the app in GitHub.
4. Follow the displayed steps until you complete the final authorization in the Contrast web interface.

The Projects list start populating from your GitHub repositories.
5. Add more repositories at any time by selecting Add repositories.

Next steps
View results in the Contrast web interface. (page 45)

 Use GitHub action for static scanning

The GitHub Contrast Scan Analyze action compares the code scanning analysis of a pull request (PR)
with the last code scan analysis of the destination branch.

Before you begin

Contrast Documentation

 Contrast for developers 41

• You need the following information from the Contrast web interface, under user menu > User
settings:
• Your API key
• User authorization header
• Organization ID

Steps

1. Access the GitHub action in the Contrast repository.
2. Set up the action.

Next steps

• Get results in a SARIF file (page 44).
• See results in the Contrast web interface. (page 45)

 Instrument applications for open source library analysis

Instrumenting an application with a Contrast agent identifies open-source libraries included in an
application. Contrast identifies any vulnerabilities found in your libraries and also confirms if the library
is used at runtime.

Steps

1. Install and configure a Contrast agent (page 48) for the language that corresponds to the
language your application uses.
You can download agents from a package manager or repository.
You can install agents directly or use integrations (page 724) that work with Contrast.

2. Run the application to verify that Contrast is working. For example, click on your application's web
interface or send some API or CLI commands.

Next steps

• See results in the Contrast web interface (page 45).
• See results in an IDE. (page 44)

 Instrument applications to find vulnerabilities

To find application vulnerabilities, you use Contrast agents to instrument your application. You have the
option of using a Contrast extension with your IDE so you can see results and resolve vulnerabilities in
the IDE.

Basic steps

1. Install the agent (page 48) to the local directory where the application is located.
2. Configure the agent (page 70)using a YAML file or set environment variables that include the

Contrast connection data.
The Agent configuration editor (page 74) provides an easy method to configure the agent.

3. Start the application and exercise routes.

Steps for using a Contrast IDE plugin

1. Install the agent to the local directory where the application is located.
2. Configure the agent using a YAML file or set environment variables that include the Contrast

connection data.

Contrast Documentation

 Contrast for developers 42

https://github.com/Contrast-Security-OSS/contrastscan-action
https://github.com/marketplace/actions/contrast-scan-analyze

The Agent configuration editor (page 74) provides an easy method to configure the agent.
3. Start the application.
4. Configure a Contrast IDE plugin (page 724) with the required connection information.

In this case, you need your personal key or API information found in the Contrast web interface,
under user menu > User settings > Profile.

5. Exercise routes in the application.

Next steps
Review vulnerabilities in the IDE. (page 44)

 Use Contrast web interface to set up function scanning

Use the Contrast web interface to set up scanning for serverless functions.

Steps

1. Log in to the Contrast web interface and connect to your account: AWS (page 639) or
Azure (page 646).

2. Set up scanning:
a. Select Serverless in the header.
b. Select the account that contains the functions you want to scan.
c. Select the functions you want to scan (page 647).

Next steps
See results in the Contrast web interface. (page 45)

 Use Contrast web interface for static scanning

The Contrast web interface makes it easy to scan your code.

Before you begin

• Check the supported languages (page 553) for scanning.
• Learn about preparing packages (page 554) for scanning.
• Locate the artifacts you want to scan.
• Create a scan project (page 556).

Steps

1. Log in to the Contrast web interface
2. Select Scans in the header.
3. Select the scan project for the file you want to scan.
4. Start the scan:

a. Select New scan.
b. Upload the file.

Next steps
See results in the Contrast web interface. (page 45)

 Analysis results
You have multiple options for viewing results after analyzing your open source libraries and code:

• Get results when you use the CLI (page 44)

Contrast Documentation

 Contrast for developers 43

• Get results in your IDE (page 44)
• Get results in a SARIF file (page 44)
• See results in the Contrast web interface (page 45)

 Get results from the CLI

The CLI returns results in the terminal window after you run commands. The CLI doesn't store these
results. Depending on the commands you use, you can send results to the Contrast web interface or
download results in a SARIF file.

Steps

1. If you use the audit command, use the --track option to send results to the Static view on
the Libraries page in the Contrast web interface.

2. If you use the scan command, use the --save option to download a SARIF file to the current
working directory.

 Get results from IDE integration

If you use a Contrast IDE plugin, you can view the vulnerability information directly in your IDE
environment.

The IDE plugins that Contrast supports includes:

• Eclipse
• Intellij
• Visual Studio
• Visual Studio Code
• Visual Studio for Mac

Before you begin
Instrument your application by installing and configuring a Contrast agent (page 48).

Steps

1. Find a Contrast IDE plugin (page 731).
2. Follow the plugin set up instructions.

 Get results in SARIF files

You can choose to get results from static scanning in a SARIF file instead of in a terminal window (if
using the CLI). You can also download a SARIF file from the Contrast web interface.

Steps

1. If you are using the CLI for static scanning, use this command option to store results in a SARIF
file:

contrast scan --save

This command downloads the file to the current working directory with a default name
of results.sarif. You can view the file with any text editor.

2. If you are using the Contrast web interface, download the results to a SARIF (or CSV) file:
• Select Scans in the header.
• In the Scan project list, select a project.

Contrast Documentation

 Contrast for developers 44

• At the end of the row for a scan, select the Download icon (. Results are available for
download for up to five days after the scan completes.

3. If you are using the GitHub action for static scanning and want to view results in the Security tab in
the repository, include this GitHub action in your setup:

 - name: Upload SARIF file
 uses: github/codeql-action/upload-sarif@v2
 with:
 sarif_file: results.sarif

The SARIF file name must be results.sarif.

 Get results in the Contrast web interface

In most cases, no matter how you integrate your development workflow with Contrast, you can see
results from code analysis in the Contrast web interface.

Before you begin

• Log in to the Contrast web interface..

Steps

1. To view findings for open source library analysis, select Libraries in the header.
This view shows all libraries across all projects (static) and applications (runtime). You can also
view libraries for a specific application in the Libraries tab of that application.
• In the Libraries list, to view details about specific vulnerabilities, select a name or a section in

the vulnerability bar.
2. To view findings for open source libraries after your use the CLI to analyze manifest file or from a

GitHub connection, select Projects in the header.
• In the Projects list, to view details about specfic vulnerabilties, select a name or a section in

the vulnerability bar.
3. To view application vulnerability information, select Applications in the header.

• In the Applications list, to view details about specific vulnerabilities, select a section in the
vulnerability bar.

4. To view static scan details, select Scans in the header.
a. In the Scans list, select a scan project.
b. To view details about vulnerabilities, select the Vulnerabilities tab .

5. To view serverless function scan details, select Serverless in the header.
a. To view details about vulnerabilities, select the Results tab.
b. To view details about vulnerabilities for a specific function, select the function in the Results

list

 Monitor or block attacks
Contrast Protect lets you configure Contrast agents to identify and manage malicious attacks for
applications in production environments.

As a developer, you can configure an agent (page 45) to use Contrast Protect rules to monitor and
block attacks. The agent reports these results in the Contrast web interface (page 46).

 Instrument applications for Protect

Turning on Protect lets you use Contrast agents to identify, monitor, or block attacks for your
applications in production environments.

Contrast Documentation

 Contrast for developers 45

Before you begin

• Check with a SuperAdmin to verify that Protect is turned on for your organization.
• Check with an Organization administrator to verify that you have permissions to view Protect data.

Steps

1. Install and configure a Contrast agent (page 48) for the language that corresponds to the
language your application uses.
You can download agents from a package manager or repository. You can install agents directly or
use integrations (page 724) that work with Contrast.
In the agent YAML file:
a. Turn on Protect.
b. Configure the modes for the Protect rules (monitor, block, or off)

2. Run the application to verify that Contrast is working. For example, click on your application's web
interface or send some API or CLI commands.

Next step
View attack data in the Contrast web interface (page 46).

 View attack data in the Contrast web interface

The Contrast web interface displays details about attacks that occurred in your production
environments.

Steps

1. In the Contrast web interface, select Attacks in the header.
2. Explore the different tabs to view data about attacks that affected your applications.

 Integration options for continuous integration/continuous
delivery
Contrast provides options for integrating Contrast with your continuous integration/continous delivery
(CI/CD) pipelines. If you are not responsible for CI/CD automation. discuss these options with your
DevOps team.

Option Description

Azure Pipelines
extension
(page 742)

Use the Azure Pipelines extension to configure tasks and release gates that can fail based on vulnerability
information that Contrast reports.

Bamboo
(page 745)

The Contrast Bamboo plugin lets you configure profiles for connecting to Contrast and verify builds against
vulnerability thresholds.

Circle CI The Contrast Circle CI orb lets you query the Contrast API to check if vulnerabilities were found in your
application. If vulnerabilities are found above a set threshold, you can fail the build.

GitLab You can create a stage within a GitLab pipeline which acts as a security gate, based on results that
Contrast reports. You can configure GitLab variables that specify which vulnerabilities trigger the stage to
fail.

Gradle (page 753) The Contrast Gradle plugin lets you integrate the Contrast.jar file with your build. It's capable of
authenticating to Contrast, downloading the latest Java agent, and verifying your builds.

Jenkins
(page 755)

The Contrast plugin for Jenkins lets you add application security gates to this pipeline. These gates
contain criteria that can fail the Jenkins job for a vulnerable application with a build result like Failure or
Unstable.

Maven (page 770) The Contrast Maven plugin can integrate Contrast Assess and Scan into your project's Maven build.

Contrast Documentation

 Contrast for developers 46

https://circleci.com/developer/orbs/orb/contrastsecurity/verify
https://support.contrastsecurity.com/hc/en-us/articles/5129761990548

Agents

Contrast agents are responsible for gathering security relevant data from an application, analyzing that
data, and reporting findings to Contrast when necessary. In specific situations, a Contrast agent can
also take actions within an application to prevent exploitation or enable a security defense.

A Contrast agent gathers security relevant information using a variety of security instrumentation
techniques, including code scanning, library scanning, instrumenting an application (page 48),
configuration file scanning, and other techniques. Any security instrumentation technique that gathers
information is a sensor.

Sensors generate events that snapshot information directly from within an application. For example,
a sensor might capture an incoming HTTP parameter, or the details of a SQL query being made to
the database. Some sensors may also take action if necessary to help strengthen defenses or block
malicious activity, typically by throwing a security exception that causes a vulnerability to be bypassed.

Events generated by sensors are all reported to the tracking and analysis part of the agent. Over time,
the analysis engine receives events (page 699) from all over the code of the application and builds
them into traces. The analysis engine watches these traces for patterns of behavior that represent a
violation of the Contrast rules.

For example, the analysis engine might see a data flow like this:

• An incoming HTTP parameter event
• Then another event shows that parameter being appended to a SQL query
• Finally another event shows that query being sent to a database

If the analysis engine sees that data flow without the proper defenses (escaping or parameterization),
it recognizes that trace to match the Contrast rule for SQL injection reports it to Contrast. The
vast majority of the analysis is done locally in the agent, which enables Contrast's scalability and
performance.

Use the agents that matches the language of the application you want to instrument:

• Java (page 84) instruments Java web applications and web APIs running on your container.
• .NET Framework (page 173) instruments .NET web applications and APIs running on IIS.
• .NET Core (page 232) instruments applications and APIs running in the .NET Core runtime.
• Node.js (page 288) instruments Node.js web applications and APIs.
• PHP (page 343) analyzes PHP web applications at runtime for library usage and vulnerability

detection.
• Python (page 359) instruments Django, Flask and Pyramid web applications.
• Ruby (page 414) instruments Ruby on Rails web applications.
• Go (page 473) instruments Go web applications for library support and vulnerability reporting.

NOTE
Contrast agents are supported for one year after release. Older agents may continue
to function and remain compatible, but they are no longer fully supported.

Contrast applies bug fixes and develops new features on the latest version of the
agent. Code changes are not backported to previous versions. While a workaround
may be provided for a bug, to resolve issues, you should update to the release in
which the issue was addressed.

Contrast Documentation

Agents 47

Install an agent
Contrast uses agents to install sensors that monitor your code for vulnerabilities. Agents analyze for
vulnerabilities in development environments and look for attacks in runtime production environments.

As your application runs, the agent analyzes information (such as HTTP requests, data flow, backend
connections, and library dependencies) and sends vulnerabilities and attacks to Contrast where you
can view, prioritize, and take immediate action on them.

Instrumenting an app with Contrast can be divided into a few phases, so these guides should get
Contrast up and running on your application in just a few minutes so you can see how it works.

Determine the method for
installation from the options
below. (page 48)

Configure the agent
to authenticate
to your Contrast
instance. (page 70)

Make other
configuration changes if
needed. (page 77)
These are recommended
configurations for an optimal
Contrast experience.

Use your application as you
usually would.
Select Applications
(page 523) in Contrast. You
should see the name of your
application.

Installation varies depending on the agent, which Contrast product(s) you are using, and where you
want to install Contrast. For example, this could be:

• On an application server or web server
• In a build pipeline or container
• In a Develop, QA, or Production environment

Once you see how it works there are many ways to modify this to suit your needs. You can explore
Contrast Documentation (page 47) for further information about how to adapt Contrast to your situation.

TIP
For future installations, you may want to consider your organization's build tools and
deployment pipeline, your security goals and the environments where you want to use
Contrast. You can read about other methods to install Contrast (page 724) that may
better adapt to your situation.

Java
View the installation and configuration workflows (page 51).

Contrast Documentation

Agents 48

Install for
executable JAR

Install to an app
server

Install with build
automation tool

integrations

Install in a
container

Install with
cloud orchestration

services

Install with
infrastructure
as code tools

Install the agent in
one application with
a JAR file.

Install with Maven
Central (page 88),
Debian (page 89),
or RPM (page 90)
repositories.

Install the agent
to an app
server to provide
security analysis
for applications
running in a
test/QA or production
environment.

For JBoss/
Wildfly. (page 106)

For Jetty. (page 107)

For
Tomcat. (page 108)

For
Weblogic. (page 108)

For Websphere.
(page 109)

For Axis2.

For Glassfish.

Install the agent
with Contrast plugins
to automate the
installation.

For
Maven. (page 770)

For
Gradle. (page 753)

For
Bamboo. (page 745)

For Azure
pipelines. (page 742)

For VMware
Tanzu. (page 95)

Install the agent in
a container image
or via a Kubernetes
operator.

Add the agent
to the Docker
base or application
image (page 91).

For OpenShift.

Add the agent to
Kubernetes pods
via Contrast k8s
operator. (page 494)

Install the agent for
Google App Engine.

Install agent with
AWS Elastic
Beanstalk
(page 100).

Install the
agent with
infrastructure
as code tools
(page 93)

You can also use the Contrast Java agent with Contrast Assess or Contrast SCA to analyze Scala-
based (page 105) applications or to analyze Kotlin-based (page 105) applications.

.NET Framework
View the installation and configuration workflows (page 54).

Install with an installer Install with Azure Install in a container Install with
infrastructure
as code tools

Install with an agent
installer (page 176) for self-hosted
applications or applications in IIS.

Install the agent with Azure App
Service (page 179).

Install the agent in a container
image (page 182).

Install the
agent with
infrastructure
as code tools
(page 62)

.NET Core
View the installation and configuration workflows (page 55).

Windows

Basic installation Install with an installer Install with Azure Install in a container Install with
infrastructure
as code tools

Install the .NET Core
agent with the basic
install (page 234).

Install with an agent
installer (page 242) for
self-hosted applications or
applications in IIS.

Install the agent
with the Azure App
Service (page 239).

Install the agent with
Terraform (page 62).

Install the agent in a
container image or via a
Kubernetes operator.

Add the agent to the
Docker base or application
image (page 244).

Add the agent
to Kubernetes pods
via Contrast k8s
operator (page 494).

Install the
agent with
infrastructure
as code tools
(page 62)

Linux

Contrast Documentation

Agents 49

https://support.contrastsecurity.com/hc/en-us/articles/4408089566100
https://support.contrastsecurity.com/hc/en-us/articles/4408096890772-Configure-the-Java-agent-for-NetBeans
https://catalog.redhat.com/software/containers/contrastsecurity/java-agent/5c8167d6ecb5240adfab562f
https://support.contrastsecurity.com/hc/en-us/articles/4404566904340

Basic installation Install in a container

Install the .NET Core agent with the basic install (page 234). Install the agent in a container image (page 244).

Node.js
View the installation and configuration workflows (page 57).

Basic installation Install in a container Install with Cloud deployment
integrations

Install with
infrastructure
as code tools

Install the Node agent with the basic
install (page 293).

Install the agent in a container
image (page 293).

Install with IBM Cloud (page 298).

Install with VMware Tanzu.

Install the
agent with
Ansible
playbook for
Contrast
(page 61)

PHP
View the installation and configuration workflows (page 59).

Install by repository

Install the PHP agent with the Debian (page 344) or RPM (page 345) repository.

Python
View the installation and configuration workflows (page 60).

Install with Contrast Runner

Install and instrument the Python agent with the Contrast Runner (page 413).

Install by middleware

Install the Python agent with AIOHTTP, or Bottle, or Django, or Falco, or Fast API, or Flask, or Pyramid, or Quart, or WSGI
middleware (page 361).

Ruby
View the installation and configuration workflow (page 60).

Install by middleware

Install the Ruby agent with Rails, or Sinatra, or Grape middleware (page 416).

Go
View the installation and configuration workflow (page 61).

Install with an installer

Install the Go agent with the Contrast installer (page 474).

Download an agent configuration file

You can download an agent's YAML configuration file that is pre-populated with required settings.

Steps

1. In the Contrast web interface, select Add new.

Contrast Documentation

Agents 50

https://support.contrastsecurity.com/hc/en-us/articles/4401972421396-Configure-the-Node-js-agent-for-Pivotal-Cloud-Foundry-now-VMware-Tanzu-

2. Select the Application tile.
3. Select the application language.
4. Download the pre-populated YAML file.

Java installation and configuration workflows
Follow these workflows to make sure you have covered the steps for installing and configuring the Java
agent.

• Java with JAR files (page 51)
• Java to an app server (page 51)
• Java with build automation tool integrations (page 52)
• Java in a container (page 53)
• Java with infrastructure as code tools (page 93)

Java installation and configuration with JAR files
Use this workflow to ensure you have all the steps covered for installing and configuring the Java agent
with an executable JAR file.

Before you begin
Make sure you have everything you need before you start.

• The agent will need to be able to reach your Contrast instance. It can be a local/on-premise instance
or a hosted instance. A proxy can be configured if the environment has limited network access.

• Your web application is packaged in a JAR file
• It must use supported versions, frameworks, and tools (page 85)
• Understand the order of precedence (page 72)
• You will also need access to a command line interface (with a chosen directory for downloading the

agent) and your organization's instance of Contrast

Steps

1. Download. Download and install based on your repository.
• Maven (page 88)
• Debian (page 89)
• RPM (page 90)

2. Set up variables. Configure agent authentication configuration variables.
• Set the minimum configuration values defined here (page 70)
• Configure additional values (application metadata, session metadata)

3. Verify. To verify that Contrast is working, use your application as you usually would. For example,
click on your application's web interface, or send some API commands.
Then in the Contrast web interface, select Applications in the header. You should see the name of
your application.
You can also select Server in the header and you should see the hostname of your (local) server.

Java installation and configuration to an application server
Use this workflow to ensure you have all the steps covered for installing and configuring the Java agent
to an application server.

Before you begin
Make sure you have everything you need before you start

• The agent will need to be able to reach your Contrast instance. It can be a local/on-premise instance
or a hosted instance. A proxy can be configured if the environment has limited network access.

• Your web application is packaged in a JAR file

Contrast Documentation

Agents 51

• It must use supported versions, frameworks, and tools (page 85)
• Understand the order of precedence (page 72)
• You will also need access to a command line interface (with a chosen directory for downloading the

agent) and your organization's instance of Contrast

Steps

1. Download. Download the JAR file based on your repository.
• Maven (page 88)
• Debian (page 89)
• RPM (page 90)

2. Set up variables. Configure agent authentication configuration variables.
• Set the minimum configuration values defined here (page 70)
• Configure additional values (application metadata, session metadata)

3. Configure application server. Configure the application server for your type.
• JBoss/Wildfly (page 106)
• Jetty (page 107)
• Tomcat (page 108)
• Weblogic (page 108)
• Websphere (page 109)
• Axis2
• Glassfish

4. Verify. To verify that Contrast is working, use your application as you usually would. For example,
click on your application's web interface, or send some API commands.
Then in the Contrast web interface, select Applications in the header. You should see the name of
your application.
You can also select Server in the header and you should see the hostname of your (local) server.

Java installation and configuration with build automation tool integrations
Use this workflow to ensure you have all the steps covered for installing and configuring the Java agent
with build automation tools.

Before you begin
Make sure you have everything you need before you start.

• The agent will need to be able to reach your Contrast instance. It can be a local/on-premise instance
or a hosted instance. A proxy can be configured if the environment has limited network access.

• Your web application is packaged in a JAR file
• It must use supported versions, frameworks, and tools (page 85)
• Understand the order of precedence (page 72)
• You will also need access to a command line interface (with a chosen directory for downloading the

agent) and your organization's instance of Contrast

Steps

1. Set up variables. Configure agent authentication configuration variables.
• Set the minimum configuration values defined here (page 70)
• Configure additional values (application metadata, session metadata)

2. Continue with the plugin type. Install and configure based on your plugin type.
• Maven (page 770). Remember to set the usage goals.
• Gradle (page 753)
• Bamboo (page 745). Remember to configure the vulnerability thresholds (page 746).
• Azure pipelines (page 742). Remember to add a release gate to a pipeline (page 743).

Contrast Documentation

Agents 52

https://support.contrastsecurity.com/hc/en-us/articles/4408089566100
https://support.contrastsecurity.com/hc/en-us/articles/4408096890772-Configure-the-Java-agent-for-NetBeans
https://contrastsecurity.dev/contrast-maven-plugin/plugin-info.html

• VMware Tanzu (page 95)
3. Verify. To verify that Contrast is working, use your application as you usually would. For example,

click on your application's web interface, or send some API commands.
Then in the Contrast web interface, select Applications in the header. You should see the name of
your application.
You can also select Server in the header and you should see the hostname of your (local) server.

Java installation and configuration in a container
Use this workflow to ensure you have all the steps covered for installing and configuring the Java agent
in a container.

Before you begin
Make sure you have everything you need before you start.

• The agent will need to be able to reach your Contrast instance. It can be a local/on-premise instance
or a hosted instance. A proxy can be configured if the environment has limited network access.

• Your web application is packaged in a JAR file
• It must use supported versions, frameworks, and tools (page 85) or supported

technologies (page 495) for the agent operator
• Understand the order of precedence (page 72)
• You will also need access to a command line interface (with a chosen directory for downloading the

agent) and your organization's instance of Contrast

Steps

1. Set up variables. Configure agent authentication configuration variables.
• Set the minimum configuration values defined here (page 70)
• Configure additional values (application metadata, session metadata)

2. Continue by container type. Install and configure based on the container type.
• Java in a container (page 91)
• OpenShift
• With Kubernetes (page 494)

3. Verify. To verify that Contrast is working, use your application as you usually would. For example,
click on your application's web interface, or send some API commands.
Then in the Contrast web interface, select Applications in the header. You should see the name of
your application.
You can also select Server in the header and you should see the hostname of your (local) server.

Chef cookbook for Contrast agents
The Contrast Chef cookbook automatically installs a Contrast agent in a specific directory under the
ownership and permissions of a specified Contrast user.

The Chef documentation describes how to set up a Chef Server.

Requirements

• A Chef Server
• The Contrast Chef cookbook from the Chef Supermarket
• Optional: Knife configured on your workstation

The Chef knife command let you communicate with the Chef Server from your workstation

Integration example
This example shows the steps you might take to add a Contrast recipe to. your run-list.

1. Open the Chef management console.

Contrast Documentation

Agents 53

https://catalog.redhat.com/software/containers/contrastsecurity/java-agent/5c8167d6ecb5240adfab562f
https://docs.chef.io/
https://supermarket.chef.io/cookbooks/contrast_agent

2. Select Nodes.
3. Select a node.
4. Select Edit Run List.
5. In the Edit Node Run List dialog box, drag the role or recipe from the Available Roles or Available

Recipes lists to the current run-list.
6. Select Save Run List.

.NET Framework installation and configuration workflows
Follow these workflows to make sure you have covered the steps for installing and configuring the .NET
Framework agent.

• .NET Framework with an installer (page 54)
• .NET Framework with Azure App Service (page 54)
• .NET Framework in a container (page 55)
• .NET Framework with an infrastructure as code tool (Ansibile playbook) (page 61)

.NET Framework installation and configuration with an installer
Use this workflow to ensure you have all the steps covered for installing and configuring the .NET
Framework with an installer.

Before you begin
Make sure you have everything you need before you start.

• The agent will need to be able to reach your Contrast instance. It can be a local/on-premise instance
or a hosted instance. A proxy can be configured if the environment has limited network access.

• It must use supported technologies (page 174) and system requirements (page 175)
• Understand the order of precedence (page 72)
• You will also need access to a command line interface (with a chosen directory for downloading the

agent) and your organization's instance of Contrast

Steps

1. Set up variables. Configure agent authentication configuration variables.
• Set the minimum configuration values defined here (page 70)
• Configure additional values (application metadata, session metadata)

2. Download. Download the installer (page 176) and install the agent (page 177).
3. Configure.Configure (page 190) the agent.
4. Verify. To verify that Contrast is working, use your application as you usually would. For example,

click on your application's web interface, or send some API commands.
Then in the Contrast web interface, select Applications in the header. You should see the name of
your application.
You can also select Server in the header and you should see the hostname of your (local) server.

.NET Framework installation and configuration with Azure App Service
Use this workflow to ensure you have all the steps covered for installing and configuring the .NET
Framework with Azure App Service.

Before you begin
Make sure you have everything you need before you start.

• The agent will need to be able to reach your Contrast instance. It can be a local/on-premise instance
or a hosted instance. A proxy can be configured if the environment has limited network access.

• It must use supported technologies (page 174) and system requirements (page 175)
• Understand the order of precedence (page 72)

Contrast Documentation

Agents 54

• You will also need access to a command line interface (with a chosen directory for downloading the
agent) and your organization's instance of Contrast

Steps

1. Set up variables. Configure agent authentication configuration variables.
• Set the minimum configuration values defined here (page 70)
• Configure additional values (application metadata, session metadata)

2. Install and configure.Install and configure (page 179) the agent.
3. Verify. To verify that Contrast is working, use your application as you usually would. For example,

click on your application's web interface, or send some API commands.
Then in the Contrast web interface, select Applications in the header. You should see the name of
your application.
You can also select Server in the header and you should see the hostname of your (local) server.

.NET Framework installation and configuration in a container
Use this workflow to ensure you have all the steps covered for installing and configuring the .NET
Framework in a container.

Before you begin
Make sure you have everything you need before you start.

• The agent will need to be able to reach your Contrast instance. It can be a local/on-premise instance
or a hosted instance. A proxy can be configured if the environment has limited network access.

• It must use supported technologies (page 174) and system requirements (page 175)
• Understand the order of precedence (page 72)
• You will also need access to a command line interface (with a chosen directory for downloading the

agent) and your organization's instance of Contrast

Steps

1. Set up variables. Configure agent authentication configuration variables.
• Set the minimum configuration values defined here (page 70)
• Configure additional values (application metadata, session metadata)

2. Install and configure. Install and configure (page 182) the agent.
3. Verify. To verify that Contrast is working, use your application as you usually would. For example,

click on your application's web interface, or send some API commands.
Then in the Contrast web interface, select Applications in the header. You should see the name of
your application.
You can also select Server in the header and you should see the hostname of your (local) server.

.NET Core installation and configuration workflows
Follow these workflows to make sure you have covered the steps for installing and configuring the .NET
Core agent.

• .NET Core basic install (page 55)
• .NET Core with an installer (page 56)
• .NET Core with Azure App Service (page 56)
• .NET Core in a container (page 57)
• .NET Core with an infrastructure as code tool (Ansible playbook) (page 61)

.NET Core basic installation and configuration
Use this workflow to ensure you have all the steps covered for installing and configuring the .NET Core
with basic installation.

Contrast Documentation

Agents 55

Before you begin
Make sure you have everything you need before you start.

• The agent will need to be able to reach your Contrast instance. It can be a local/on-premise instance
or a hosted instance. A proxy can be configured if the environment has limited network access.

• It must use supported technologies (page 232) and system requirements (page 233)
• Understand the order of precedence (page 72)
• You will also need access to a command line interface (with a chosen directory for downloading the

agent) and your organization's instance of Contrast

Steps

1. Set up variables. Configure agent authentication configuration variables.
• Set the minimum configuration values defined here (page 70)
• Configure additional values (application metadata, session metadata)

2. Install and configure.Install and configure (page 234) the agent.
3. Verify. To verify that Contrast is working, use your application as you usually would. For example,

click on your application's web interface, or send some API commands.
Then in the Contrast web interface, select Applications in the header. You should see the name of
your application.
You can also select Server in the header and you should see the hostname of your (local) server.

.NET Core installation and configuration with an installer
Use this workflow to ensure you have all the steps covered for installing and configuring the .NET Core
with an installer.

Before you begin
Make sure you have everything you need before you start.

• The agent will need to be able to reach your Contrast instance. It can be a local/on-premise instance
or a hosted instance. A proxy can be configured if the environment has limited network access.

• It must use supported technologies (page 232) and system requirements (page 233)
• Understand the order of precedence (page 72)
• You will also need access to a command line interface (with a chosen directory for downloading the

agent) and your organization's instance of Contrast

Steps

1. Set up variables. Configure agent authentication configuration variables.
• Set the minimum configuration values defined here (page 70)
• Configure additional values (application metadata, session metadata)

2. Install and configure.Install and configure (page 242) the agent.
3. Verify. To verify that Contrast is working, use your application as you usually would. For example,

click on your application's web interface, or send some API commands.
Then in the Contrast web interface, select Applications in the header. You should see the name of
your application.
You can also select Server in the header and you should see the hostname of your (local) server.

.NET Core installation and configuration with Azure App Service
Use this workflow to ensure you have all the steps covered for installing and configuring the .NET Core
with Azure App Service.

Before you begin
Make sure you have everything you need before you start.

Contrast Documentation

Agents 56

• The agent will need to be able to reach your Contrast instance. It can be a local/on-premise instance
or a hosted instance. A proxy can be configured if the environment has limited network access.

• It must use supported technologies (page 232) and system requirements (page 233)
• Understand the order of precedence (page 72)
• You will also need access to a command line interface (with a chosen directory for downloading the

agent) and your organization's instance of Contrast

Steps

1. Set up variables. Configure agent authentication configuration variables.
• Set the minimum configuration values defined here (page 70)
• Configure additional values (application metadata, session metadata)

2. Install and configure.Install (page 239) and configure (page 251) the agent.
3. Verify. To verify that Contrast is working, use your application as you usually would. For example,

click on your application's web interface, or send some API commands.
Then in the Contrast web interface, select Applications in the header. You should see the name of
your application.
You can also select Server in the header and you should see the hostname of your (local) server.

.NET Core installation and configuration in a container
Use this workflow to ensure you have all the steps covered for installing and configuring the .NET Core
in a container.

Before you begin
Make sure you have everything you need before you start.

• The agent will need to be able to reach your Contrast instance. It can be a local/on-premise instance
or a hosted instance. A proxy can be configured if the environment has limited network access.

• It must use supported technologies (page 232) and system requirements (page 233)
• Understand the order of precedence (page 72)
• You will also need access to a command line interface (with a chosen directory for downloading the

agent) and your organization's instance of Contrast

Steps

1. Set up variables. Configure agent authentication configuration variables.
• Set the minimum configuration values defined here (page 70)
• Configure additional values (application metadata, session metadata)

2. Continue by container type. Install and configure the agent based on the container type.
• Add the agent to the Docker base or application image (page 244)
• With Kubernetes (page 494)

3. Verify. To verify that Contrast is working, use your application as you usually would. For example,
click on your application's web interface, or send some API commands.
Then in the Contrast web interface, select Applications in the header. You should see the name of
your application.
You can also select Server in the header and you should see the hostname of your (local) server.

Node.js installation and configuration workflows
Follow these workflows to make sure you have covered the steps for installing and configuring the
Node.js agent.

• Node.js basic install (page 58)
• Node.js in a container (page 58)
• Node.js with Cloud deployment integrations (page 59)

Contrast Documentation

Agents 57

• Ansibile playbook for Contrast (page 61)

Node.js basic installation and configuration
Use this workflow to ensure you have all the steps covered for installing and configuring Node.js with
basic installation.

Before you begin
Make sure you have everything you need before you start.

• The agent will need to be able to reach your Contrast instance. It can be a local/on-premise instance
or a hosted instance. A proxy can be configured if the environment has limited network access.

• It must use supported technologies (page 290) and system requirements (page 291)
• Understand the order of precedence (page 72)
• You will also need access to a command line interface (with a chosen directory for downloading the

agent) and your organization's instance of Contrast

Steps

1. Set up variables. Configure agent authentication configuration variables.
• Set the minimum configuration values defined here (page 70)
• Configure additional values (application metadata, session metadata)

2. Install and configure.Install (page 293) the agent.
3. Verify. To verify that Contrast is working, use your application as you usually would. For example,

click on your application's web interface, or send some API commands.
Then in the Contrast web interface, select Applications in the header. You should see the name of
your application.
You can also select Server in the header and you should see the hostname of your (local) server.

Node.js installation and configuration in a container
Use this workflow to ensure you have all the steps covered for installing and configuring Node.js in a
container.

Before you begin
Make sure you have everything you need before you start.

• The agent will need to be able to reach your Contrast instance. It can be a local/on-premise instance
or a hosted instance. A proxy can be configured if the environment has limited network access.

• It must use supported technologies (page 290) and system requirements (page 291)
• Understand the order of precedence (page 72)
• You will also need access to a command line interface (with a chosen directory for downloading the

agent) and your organization's instance of Contrast

Steps

1. Set up variables. Configure agent authentication configuration variables.
• Set the minimum configuration values defined here (page 70)
• Configure additional values (application metadata, session metadata)

2. Install and configure.Install and configure (page 293) the agent.
3. Verify. To verify that Contrast is working, use your application as you usually would. For example,

click on your application's web interface, or send some API commands.
Then in the Contrast web interface, select Applications in the header. You should see the name of
your application.
You can also select Server in the header and you should see the hostname of your (local) server.

Contrast Documentation

Agents 58

Node.js installation and configuration with Cloud deployment integrations
Use this workflow to ensure you have all the steps covered for installing and configuring Node.js with
Cloud deployment integrations.

Before you begin
Make sure you have everything you need before you start.

• The agent will need to be able to reach your Contrast instance. It can be a local/on-premise instance
or a hosted instance. A proxy can be configured if the environment has limited network access.

• It must use supported technologies (page 290) and system requirements (page 291)
• Understand the order of precedence (page 72)
• You will also need access to a command line interface (with a chosen directory for downloading the

agent) and your organization's instance of Contrast

Steps

1. Set up variables. Configure agent authentication configuration variables.
• Set the minimum configuration values defined here (page 70)
• Configure additional values (application metadata, session metadata)

2. Continue with deployment type. Install based on the cloud deployment type.
• With IBM Cloud (page 298)
• With VMware Tanzu

3. Verify. To verify that Contrast is working, use your application as you usually would. For example,
click on your application's web interface, or send some API commands.
Then in the Contrast web interface, select Applications in the header. You should see the name of
your application.
You can also select Server in the header and you should see the hostname of your (local) server.

PHP installation and configuration workflow
Follow this workflow to make sure you have covered the steps for installing and configuring the PHP
agent.

• PHP by repository (page 59)

PHP installation and configuration by repository
Use this workflow to ensure you have all the steps covered for installing and configuring PHP by
repository type.

Before you begin
Make sure you have everything you need before you start.

• The agent will need to be able to reach your Contrast instance. It can be a local/on-premise instance
or a hosted instance. A proxy can be configured if the environment has limited network access.

• It must use supported technologies (page 343) and system requirements (page 343)
• Understand the order of precedence (page 72)
• You will also need access to a command line interface (with a chosen directory for downloading the

agent) and your organization's instance of Contrast

Steps

1. Set up variables. Configure agent authentication configuration variables.
• Set the minimum configuration values defined here (page 70)
• Configure additional values (application metadata, session metadata)

2. Continue by repository type. Install and configure the agent by repository type.

Contrast Documentation

Agents 59

https://support.contrastsecurity.com/hc/en-us/articles/4401972421396-Configure-the-Node-js-agent-for-Pivotal-Cloud-Foundry-now-VMware-Tanzu-

• With RPM (page 345)
• With Debian (page 344)

3. Verify. To verify that Contrast is working, use your application as you usually would. For example,
click on your application's web interface, or send some API commands.
Then in the Contrast web interface, select Applications in the header. You should see the name of
your application.
You can also select Server in the header and you should see the hostname of your (local) server.

Python installation and configuration workflows
Follow these workflows to make sure you have covered the steps for installing and configuring the
Python agent.

• Python with Contrast Runner (page 413)
• Python by middleware (page 60)

Python installation and configuration by middleware
Use this workflow to ensure you have all the steps covered for installing and configuring Python by
middleware type.

Before you begin
Make sure you have everything you need before you start.

• The agent will need to be able to reach your Contrast instance. It can be a local/on-premise instance
or a hosted instance. A proxy can be configured if the environment has limited network access.

• It must use supported technologies (page 360) and system requirements (page 361)
• Understand the order of precedence (page 72)
• You will also need access to a command line interface (with a chosen directory for downloading the

agent) and your organization's instance of Contrast

Steps

1. Set up variables. Configure agent authentication configuration variables.
• Set the minimum configuration values defined here (page 70)
• Configure additional values (application metadata, session metadata)

2. Continue by middleware type.Install (page 361) the agent and configure it by
middleware (page 384) type.

3. Verify. To verify that Contrast is working, use your application as you usually would. For example,
click on your application's web interface, or send some API commands.
Then in the Contrast web interface, select Applications in the header. You should see the name of
your application.
You can also select Server in the header and you should see the hostname of your (local) server.

Ruby installation and configuration workflow
Follow this workflow to make sure you have covered the steps for installing and configuring the Ruby
agent.

• Ruby by middleware (page 60)

Ruby installation and configuration by middleware
Use this workflow to ensure you have all the steps covered for installing and configuring Ruby by
middleware type.

Before you begin
Make sure you have everything you need before you start.

Contrast Documentation

Agents 60

• The agent will need to be able to reach your Contrast instance. It can be a local/on-premise instance
or a hosted instance. A proxy can be configured if the environment has limited network access.

• It must use supported technologies (page 414) and system requirements (page 416)
• Understand the order of precedence (page 72)
• You will also need access to a command line interface (with a chosen directory for downloading the

agent) and your organization's instance of Contrast

Steps

1. Set up variables. Configure agent authentication configuration variables.
• Set the minimum configuration values defined here (page 70)
• Configure additional values (application metadata, session metadata)

2. Continue by middleware type.Install (page 416) the agent and configure it by
middleware (page 439) type.

3. Verify. To verify that Contrast is working, use your application as you usually would. For example,
click on your application's web interface, or send some API commands.
Then in the Contrast web interface, select Applications in the header. You should see the name of
your application.
You can also select Server in the header and you should see the hostname of your (local) server.

Go installation and configuration workflow
Follow this workflow to make sure you have covered the steps for installing and configuring the Go
agent.

• Go with an installer (page 61)

Go installation and configuration with an installer
Use this workflow to ensure you have all the steps covered for installing and configuring Go with an
installer.

Before you begin
Make sure you have everything you need before you start.

• The agent will need to be able to reach your Contrast instance. It can be a local/on-premise instance
or a hosted instance. A proxy can be configured if the environment has limited network access.

• It must use supported technologies (page 473)
• You will also need access to a command line interface (with a chosen directory for downloading the

agent) and your organization's instance of Contrast

Steps

1. Set up variables. Configure agent authentication configuration variables.
• Set the minimum configuration values defined here (page 70)
• Configure additional values (application metadata, session metadata)

2. Install and configure.Install and configure (page 474) the agent.
3. Verify. To verify that Contrast is working, use your application as you usually would. For example,

click on your application's web interface, or send some API commands.
Then in the Contrast web interface, select Applications in the header. You should see the name of
your application.
You can also select Server in the header and you should see the hostname of your (local) server.

Ansible playbook for Contrast agents
An Ansible playbook lets you use a repeatable process for deploying Contrast agents in your build
systems. The Ansible playbook for Contrast automatically installs a Contrast agent in a specific
directory under the ownership and permissions of a specified user.

Contrast Documentation

Agents 61

You can use an Ansible playbook for any of the Contrast agents.

Resources
The Contrast Ansible role provides files that you can use to define the Ansible role and tasks for
Contrast. The instance running this role needs Contrast login credentials and network access to
Contrast.

• The vagrantfile lets you configure the use of the Ansible playbook to deploy Contrast agents.
• The defaults/main.yml file lets you define the Contrast role variables for the Ansible playbook:

contrast_api_key: <apikey>
contrast_service_key: <servicekey>
contrast_username: <email@yourcompany.com>
contrast_teamserver_url: <https://app.contrastsecurity.com>
contrast_teamserver_organization: <organizationname>
contrast_agent_type: java?jvm=1_6
contrast_agent_path_group: vagrant
contrast_agent_path_owner: vagrant
contrast_agent_path: "/opt"

• Replace <apikey> with the API key from the Contrast web interface
• Replace <service key> with the service key from the Contrast web interface
• Replace <email@yourcompany.com> with the Contrast username that you received when you

activated your account.
• Replace <organizationmame> with the name of your Contrast organization.

• The tasks/main.yml file lets you define the tasks for the role.

Ansible Playbook example
This example shows how to apply the Contrast role to any server host that uses the playbook.

- hosts: servers
 roles:
 - { role: contrast }

Install .NET agents with infrastructure as code tools
You can use any of these infrastructure tools for .NET Core and .NET Framework agents.

• Ansible playbook (page 61)
• Terraform (page 62)
• Azure Resource Manager (ARM) (page 65)

Install .NET agents with Terraform

Use this procedure to install .NET Framework and .NET Core agents when using Terraform to deploy to
Azure. You might need to customize this procedure for your environment.

Site extensions are the best way to deploy the Contrast agent to an Azure app service. You can only do
this using the Azure Portal, an ARM policy, or the Azure API. The Terraform method described in this
procedure uses the latter two methods directly or indirectly.

Before you begin

• Verify that Contrast supports your preferred OS and runtime stack for the .NET Framework and .NET
Core agents running in an Azure App Service:
• Supported technologies for .NET Core (page 232)
• Supported technologies for .NET Framework (page 174)

Contrast Documentation

Agents 62

https://github.com/Contrast-Security-OSS/ansible-role-contrast/tree/master
https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_reuse_roles.html#playbooks-reuse-roles
https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_variables.html

• Ensure you have met these requirements:
• Login access to Contrast
• Console access to a system where Terraform and the Azure CLI are installed
• Login access to Azure Portal, including az login from the Azure CLI
• Python is installed on the system where these commands are run
• Included the Contrast agent as a part of Azure App Service (page 239)

Step 1: Configure the agent

1. Download a configuration file from Contrast:
a. In the Contrast web interface, select Add New.
b. Select the Application card.
c. Follow the displayed instructions to get the required values and download a YAML

configuration file.
2. In the YAML configuration file, set the following values:

• .NET Core agent

CORECLR_ENABLE_PROFILING:1
CORECLR_PROFILER:{8B2CE134-0948-48CA-A4B2-80DDAD9F5791}
CORECLR_PROFILER_PATH_32:
 D:\\home\\SiteExtensions\\Contrast.NetCore.Azure.SiteExtension\
\ContrastNetCoreAppService\\contrast\\runtimes\\win-x86\\native\
\ContrastProfiler.dllCORECLR_PROFILER_PATH_64: D:\
\home\\SiteExtensions\\Contrast.NetCore.Azure.SiteExtension\
\ContrastNetCoreAppService\\\contrast\\runtimes\\win-x64\\native\
\ContrastProfiler.dll

• .NET Framework agent

COR_ENABLE_PROFILING: 1
COR_PROFILER: {EFEB8EE0-6D39-4347-A5FE-4D0C88BC5BC1}
COR_PROFILER_PATH_32: D:\\home\
\SiteExtensions\\Contrast.NET.Azure.SiteExtension\\ContrastAppService\
\ContrastProfiler-32.dllCOR_PROFILER_PATH_64: D:\\home\
\SiteExtensions\\Contrast.NET.Azure.SiteExtension\\ContrastAppService\
\ContrastProfiler-64.dll

Step 2: Configure site extensions with Terraform
Because site extension deployment is only natively supported usingthe Azure portal, Azure ARM
policies, and Azure API, Terraform is a convenient command line method to add or remove site
extensions. It uses an ARM policy to set up the extension as shown in the examples.

Use this procedure to to instrument your application.

1. Verify that the YAML configuration file you prepared in step 1 is named
contrast_security.yaml.

2. Install Terraform from here: https://www.terraform.io/downloads.html.
3. Install PyYAML using this comand:

pip install PyYAML

4. Install the Azure CLI tools from this location: https://docs.microsoft.com/en-us/cli/azure/install-
azure-cli

5. Log in to Azure to make sure you cache your credentials using az login
6. Use this parsing script parseyaml.py to pull values out of the Contrast YAML file and add them to

the provisioned Azure App Service with this command:

import yaml,
 jsonwith open('./contrast_security.yaml') as f:

Contrast Documentation

Agents 63

https://www.terraform.io/downloads.html.
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli

 config = yaml.load(f)
 print(json.dumps(config['api']))

7. Modify the Terraform document called main.tf as follows:

provider "azurerm" {
 features {}
}
Create a resource group
resource "azurerm_resource_group" "personal" {
 name = <name>
 location = <location>
}
Create an app service plan
resource "azurerm_app_service_plan" "app_service-plan"{
 name = <name>
 resource_group_name = azurerm_resource_group.personal.name
 location = <location>
}
Create an app service
resource "azurerm_app_service" "app_service" {
 name = <name>
 location = <location>
 resource_group_name = azurerm_resource_group.personal.name
 app_service_plan_id =azurerm_app_service_plan.app_service-plan.id
 site_config {
 dotnet_framework_version = "v4.0"
 default_documents = ["Default.aspx"]
 }
CONTRAST .NET FRAMEWORK AGENT SETUP
Contrast env vars will be passed to the app service here.
 app_settings = {
 "COR_ENABLE_PROFILING" = "1"
 "COR_PROFILER" = "{EFEB8EE0-6D39-4347-
A5FE-4D0C88BC5BC1}"
 "COR_PROFILER_PATH_32" = "D:\\home\
\SiteExtensions\\Contrast.NET.Azure.SiteExtension\\ContrastAppService\
\ContrastProfiler-32.dll"
 "COR_PROFILER_PATH_64" = "D:\\home\
\SiteExtensions\\Contrast.NET.Azure.SiteExtension\\ContrastAppService\
\ContrastProfiler-64.dll"
 "CONTRAST_INSTALL_DIRECTORY" = "D:\\home\
\SiteExtensions\\Contrast.NET.Azure.SiteExtension\\ContrastAppService\\"
 "CONTRAST__API__URL" = \
data.external.yaml.result.url
 "CONTRAST__API__USER_NAME" = \
data.external.yaml.result.user_name
 "CONTRAST__API__SERVICE_KEY" = \
data.external.yaml.result.service_key
 "CONTRAST__API__API_KEY" = \
data.external.yaml.result.api_key
 # USE THESE SETTING FOR .NET CORE AGENT
 #”CORECLR_ENABLE_PROFILING” = 1
 #”CORECLR_PROFILER” = {8B2CE134-0948-48CA-A4B2-80DDAD9F5791}
 #”CORECLR_PROFILER_PATH_32” = D:\\home\\SiteExtensions\
\Contrast.NetCore.Azure.SiteExtension\\ContrastNetCoreAppService\
\contrast\\runtimes\\win-x86\\native\\ContrastProfiler.dll

Contrast Documentation

Agents 64

 #”CORECLR_PROFILER_PATH_64” = D:\\home\\SiteExtensions\
\Contrast.NetCore.Azure.SiteExtension\\ContrastNetCoreAppService\\
\contrast\\runtimes\\win-x64\\native\\ContrastProfiler.dll
 }
}
#Extract the connection from the normal yaml file to pass to the app \
container
data "external" "yaml" {
 program = [var.python_binary, "${path.module}/parseyaml.py"]
}
Deploy the extension template
resource "azurerm_template_deployment" "extension" {
 name = <name>
 resource_group_name = <resource_group_name>
 template_body = <<BODY
{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/
deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "siteName": {
 "type": "string",
 "metadata": {
 "description": "The Azure App Service Name"
 }
 },
 "extensionName": {
 "type": "string",
 "metadata": {
 "description": "The Site Extension Name."
 }
 }
 },
 "resources": [
 {
 "type": "Microsoft.Web/sites/siteextensions",
 "name": "[concat(parameters('siteName'),
'/', parameters('extensionName'))]",
 "apiVersion": "2019-08-01",
 "location": "[resourceGroup().location]"
 }
]
}
 BODY parameters = {
 "siteName" = azurerm_app_service.<app_service>.name
 #.NET Framework
 "extensionName" = "Contrast.NET.Azure.SiteExtension"
 #.NET Core
 # "extensionName" = "Contrast.NetCore.Azure.SiteExtension"
 }
 deployment_mode = "Incremental"
}

Install .NET agents with Azure Resource Manager

Contrast Documentation

Agents 65

This topic describes the most popular methods for instrumenting .NET Framework and .NET Core
applications through automation with Azure Resource Manager (ARM) templates and Azure.

You can only configure site extensions either directly through the Azure Portal with an ARM policy or
through Azure’s REST API. All methods described in this topic use one of these methods. Only REST
API and Azure ARM policies allow for automated deployments.

Before you begin

• Verify that Contrast supports your preferred OS and runtime stack for the .NET Framework and .NET
Core agents
• Supported technologies for .NET Core (page 232)
• Supported technologies for .NET Framework (page 174)

• Ensure you have login access to Contrast.
• Only configure a Contrast site extension with backend HTTP services and not WebJobs or UI app

services.
• The methods in this topic do not work if you are deploying an App service using Docker.

Step 1: Download an agent configuration file

1. Download a configuration file from Contrast.
a. In the Contrast web interface, select Add New.
b. Select the Application card.
c. Follow the displayed instructions to get the required values and download a YAML

configuration file.
2. To automate your ARM templates more fully, get your Contrast API credentials, either from the

contrast_security.yml file that you downloaded or from the Contrast web interface (user
menu > Organization Settings > Agent). These credentials are:

Configuration setting Contrast label

CONTRAST__API__API_KEY API Key

CONTRAST__API__URL Contrast Agent URL

CONTRAST__API__USER_NAME Contrast Agent Username

CONTRAST__API__SERVICE_KEY Agent Service Key

Step 2: Edit the ARM template
Add the highlighted Contrast configuration values to the ARM template, as shown in the following
examples.

.NET Core-specific configuration (page 251) and .NET Framework-specific configuration (page 190)
provide additional configuration details.

• .NET Core

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/
deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "sites_name": {
 "defaultValue": "APP_NAME",
 "type": "String"
 }
 },
 "variables": {
 },

Contrast Documentation

Agents 66

 "resources": [
 {
 "type": "Microsoft.Web/sites",
 "apiVersion": "2018-11-01",
 "name": "[parameters('sites_name')]",
 "location": "East US",
 "kind": "app",
 "properties": {
 "siteConfig": {
 "appSettings": [
 {
 "name": "CONTRAST__API__API_KEY",
 "value": "<CONTRAST__API__API_KEY>",
 "slotSetting": false
 },
 {
 "name": "CONTRAST__API__SERVICE_KEY",
 "value": "<CONTRAST__API__SERVICE_KEY>",
 "slotSetting": false
 },
 {
 "name": "CONTRAST__API__URL",
 "value": "<CONTRAST__API__URL>",
 "slotSetting": false
 },
 {
 "name": "CONTRAST__API__USER_NAME",
 "value": "<CONTRAST__API__USER_NAME>",
 "slotSetting": false
 },
 {
 "name": "CORECLR_ENABLE_PROFILING",
 "value": "1",
 "slotSetting": false
 },
 {
 "name": "CORECLR_PROFILER",
 "value": "{8B2CE134-0948-48CA-
A4B2-80DDAD9F5791}",
 "slotSetting": false
 },
 {
 "name": "CORECLR_PROFILER_PATH_32",
 "value": D:\\home\\SiteExtensions\
\Contrast.NetCore.Azure.SiteExtension\\ContrastNetCoreAppService\
\contrast\\runtimes\\win-x86\\native\\ContrastProfiler.dll",
 "slotSetting": false
 },
 {
 "name": "CORECLR_PROFILER_PATH_64",
 "value": D:\\home\\SiteExtensions\
\Contrast.NetCore.Azure.SiteExtension\\ContrastNetCoreAppService\\
\contrast\\runtimes\\win-x64\\native\\ContrastProfiler.dll",
 "slotSetting": false
 }

Contrast Documentation

Agents 67

]
 }
 },
 "resources": [
 {
 "name": "Contrast.NetCore.Azure.SiteExtension",
 "type": "siteextensions",
 "apiVersion": "2018-02-01",
 "dependsOn": [
 "[resourceId('Microsoft.Web/
Sites', parameters('sites_name'))]"
]
 }
]
 }
]
}

• .NET Framework

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/
deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "sites_name": {
 "defaultValue": "APP_NAME",
 "type": "String"
 }
 },
 "variables": {
 },
 "resources": [
 {
 "type": "Microsoft.Web/sites",
 "apiVersion": "2018-11-01",
 "name": "[parameters('sites_name')]",
 "location": "East US",
 "kind": "app",
 "properties": {
 "siteConfig": {
 "appSettings": [
 {
 "name": "CONTRAST__API__API_KEY",
 "value": "<CONTRAST__API__API_KEY>",
 "slotSetting": false
 },
 {
 "name": "CONTRAST__API__SERVICE_KEY",
 "value": "<CONTRAST__API__SERVICE_KEY>",
 "slotSetting": false
 },
 {
 "name": "CONTRAST__API__URL",
 "value": "<CONTRAST__API__URL>",
 "slotSetting": false
 },

Contrast Documentation

Agents 68

 {
 "name": "CONTRAST__API__USER_NAME",
 "value": "<CONTRAST__API__USER_NAME>",
 "slotSetting": false
 },
 {
 "name": "COR_ENABLE_PROFILING",
 "value": "1",
 "slotSetting": false
 },
 {
 "name": "COR_PROFILER",
 "value": "{EFEB8EE0-6D39-4347-
A5FE-4D0C88BC5BC1}",
 "slotSetting": false
 },
 {
 "name": "COR_PROFILER_PATH_32",
 "value": "D:\\home\
\SiteExtensions\\Contrast.NET.Azure.SiteExtension\\ContrastAppService\
\ContrastProfiler-32.dll",
 "slotSetting": false
 },
 {
 "name": "COR_PROFILER_PATH_64",
 "value": "D:\\home\
\SiteExtensions\\Contrast.NET.Azure.SiteExtension\\ContrastAppService\
\ContrastProfiler-64.dll",
 "slotSetting": false
 }
]
 }
 },
 "resources": [
 {
 "name": "Contrast.NET.Azure.SiteExtension",
 "type": "siteextensions",
 "apiVersion": "2018-02-01",
 "dependsOn": [
 "[resourceId('Microsoft.Web/
Sites', parameters('sites_name'))]"
]
 }
]
 }
]
}

Step 3: Deploy the application from the ARM template
Use one of these methods in the Azure documentation:

• Command line or CLI: Use ARM deployment templates with Azure CLI.
• Azure Portal: Edit and deploy ARM templates.

Contrast Documentation

Agents 69

https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/deploy-cli
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/quickstart-create-templates-use-the-portal#edit-and-deploy-the-template

Configure an agent
When you install an agent, you must configure it so that it recognizes your application and can
communicate information back to Contrast.

Configuration follows this order of precedence (page 72).

NOTE
An expired license or exceeding a license quota disables all agent behavior regardless
of configuration.

Steps

1. Configure the required authentication variables (you can find them in Contrast) (page 71).

api:
 url: https://app.contrastsecurity.com
 user_name: contrast_user
 api_key: demo
 service_key: demo

where:
• url: Address of the Contrast installation you would like your agent to report to. Defaults

to: https://app.contrastsecurity.com
• user_name: Contrast user account (in most cases your login ID)
• api_key: Your organization's API key
• service_key: Contrast user account service key
You can set these authentication variables with either:
1. Environment variables.
2. YAML configuration file.

• You can download a YAML configuration file (page 73) that is pre-populated with your
organization keys. Select Add new in the Contrast web interface, select the Application
card, and choose your application language to find a download link.

• You can also configure the file with the Contrast agent configuration editor (page 74) with
the Open YAML Editor link.

3. Other methods native to the language and tools you are using, such as system properties or
command line flags. Refer to the individual documentation pages for more details.

NOTE
See the Contrast agent configuration editor to view a full list of options and their
default values.

2. Configure any additional variables.
• Use session metadata (page 531) to filter vulnerabilities and route information for a specific

branch, build, committer, or repository.
• Use application metadata (page 826) to filter applications by custom values.

Contrast Documentation

Agents 70

https://agent.config.contrastsecurity.com/

When you add the necessary configuration settings to your agent configuration file, the agent
reports this information along with the rest of your standard vulnerability data to Contrast. Look
here (page 77) for the full list of configuration values and what they do beyond the necessary
values described above.

Find the agent keys

IMPORTANT
If you download the YAML configuration file from Contrast (select Add new in the top
right) the file is pre-populated with your agent keys.

If you create your own YAML file, you'll need to add the keys yourself.

Agent keys are common to all agents in an organization. They are values that represent and identify the
agents as well as the organization being accessed.

All these keys are required when installing agents:

• Agent username
• Agent service key
• API key

This API key is for all agents. For the API key to use with custom scripts, use the API key under User
settings.

• Contrast URL

Steps

1. Select User name > Organization settings in the top right corner.
2. Select Agent to see the values for agent keys.

The Contrast URL is https://app.contrastsecurity.com/Contrast, or the URL of your on-premises or
private cloud instance.

Contrast Documentation

Agents 71

NOTE
If you don't see the agent username or service key on this page, it may mean that
a license has not been applied to your organization. Contact Support for help with
this.

3. You can Rotate agent keys to generate new keys if your credentials have been compromised.

IMPORTANT
Rotating agent service keys will take all agents offline. Your applications will still
function, but data will not be sent to Contrast. To begin using the new credentials,
reconfigure the agents and restart your applications. You can use a credential
management system to coordinate this change among your systems.

Order of precedence
Active configuration values are determined using the following order of precedence:

1. An expired license or exceeding a license quota disables all agent behavior regardless of
configuration.

2. Command line or system property value (if appropriate for the language you are using).
For example: -Dcontrast.enable

3. Environment variables (page 76).
For example: CONTRAST__ENABLE

4. An application-specific configuration file (.NET Framework only).
For example: web.config (page 191)

5. Configuration values in a YAML file (page 73) are pulled from all files, taking the value from the
highest precedence file.
For instance, if contrast_security.yaml in the current working directory has the application-
specific value for application.tags and the file in /etc/contrast_security.yaml has
the organization-level connection details, the agent would have access to both. If /etc/
contrast_security.yaml also had an application.tags default value, only the value in
the current working directory’s configuration, as a higher precedence, would be read; the two
values of application.tags are not combined.
a. A YAML file indicated by the user

For example:

Contrast Documentation

Agents 72

https://support.contrastsecurity.com/hc/requests/new?ticket_form_id=360000011243

• Java: the contrast.config.pathsystem property (page 113)
• Any agent: the CONTRAST_CONFIG_PATH environment variable.

b. A contrast_security.yaml file in the current working directory (all agents except Java)
For example: ./contrast_security.yaml

c. A contrast_security.yaml file in the application’s configuration directory (Ruby and Python only)
For example:
• Ruby on Rails: ./config/contrast_security.yaml
• Django: ./settings/contrast_security.yaml

d. A contrast_security.yaml file in an agent-specific configuration directory. For agents that use a
service, use this directory if you need to use separate YAML files for agent and service.
For example:
• /etc/contrast/agentname/contrast_security.yaml (where agentname is one of: dotnet, go,

java, node, python, ruby, or webserver)
• %ProgramData%\Contrast\agentname\contrast_security.yaml (where agentname is one of:

dotnet, dotnet-core, java, node, python, ruby, or webserver)
e. A contrast_security.yaml file within the server's /etc/contrast directory (all agents except .NET

Framework, and .NET Core). For agents that use a service, use this directory if you need to
share YAML files between agent and service.
For example:
• /etc/contrast/contrast_security.yaml
• %ProgramData%\Contrast\contrast_security.yaml

6. Values set in the Contrast web interface.
For example: Server mode toggles for Assess and Protect, which map to assess.enable and
protect.enable

7. The default value set by Contrast Security.

See also
Additional configuration (page 77)

YAML configuration
You can use a YAML configuration file to set configuration properties for your agent. These values can
be overridden with environment variables or command line arguments.

While all Contrast agents share the same property formatting in YAML configuration files, each agent
must use its own specified file as there are unique properties that apply to each agent.

The configuration file must be called contrast_security.yaml and placed properly in the load
path (page 72).

When you download the agent configuration file from Contrast, it will contain all the basic properties
required for your instance of Contrast. If you create your own configuration file, you will need to add
these keys (page 71) yourself.

The minimum required contrast_security.yaml content for all agents should look like this:

api:
 url: https://app.contrastsecurity.com
 user_name: contrast_user
 api_key: demo
 service_key: demo

Contrast Documentation

Agents 73

TIP

• Use the Contrast agent configuration editor (page 74) to create or upload a YAML
configuration file, validate YAML and get setting recommendations.

• Since YAML is a natural superset of JSON, you can also configure your agent using
JSON in your YAML file.

You can use these YAML templates to create a contrast_security.yaml for each agent:

• Java (page 113)
• .NET Framework (page 192)
• .NET Core (page 252)
• Node.js (page 308)
• PHP (page 346)
• Python (page 363)
• Ruby (page 419)
• Go (page 478)

CAUTION
Take care when editing the YAML template as it relies on whitespace, and uses spaces
but not tabs. Configuration guidance is provided in the template as comments. (A
space followed by the pound sign "#" starts a comment.)

Use the Contrast agent configuration editor
The Contrast agent configuration editor is a web application that can be used to validate and generate
the configuration for Contrast agents.

Before you begin

• Use this editor to help edit, validate, and generate configurations for Contrast agents.
• If you already have a YAML file, you can open it in the editor by selecting Import.
• The editor executes entirely in the browser and any sensitive information such as your API key won't

leave the local machine.

Steps

1. Open the Contrast YAML configuration editor in your browser.

Contrast Documentation

Agents 74

https://agent.config.contrastsecurity.com/
https://agent.config.contrastsecurity.com/

2. Either import an existing YAML file by selecting Import, or paste your YAML content in the main
window.

3. As you edit text, an error warning will appear if you enter invalid YAML. Select an option from the
Validate using the list for agent-specific YAML validation.
These types of validation are performed:
• YAML syntax validation verifies that the text can be parsed as YAML. Invalid YAML will result in

an error that prevents further validation.
• Setting key validation verifies that the YAML nodes represent setting keys supported by the

selected agent. An unrecognized setting key will result in a warning.
• Setting value validation verifies that the YAML values match type expectations including

boolean, numeric, and enum (e.g., log level). Invalid values will result in a warning.
• Setting compatibility validation verifies that specific incompatible settings are

not both present. This is currently limited to application.session_id and
application.session_metadata settings. Incompatible settings will result in a warning.

• Placeholder value validation notifies the user when a setting has the placeholder value TODO.
Placeholder value will result in a note.

Select the error, warning, or note in the list of issues to move the text editor’s cursor to the start of
text causing the issue.

4. Use the panel on the right to search for available settings with descriptions. Select the plus sign
() to add that setting to your YAML file.
Adding new settings using this feature will format the YAML which may re-order nodes and will
remove any extra whitespace in the YAML.
Click Reset to go back to the original file settings.

NOTE
YAML generation is disabled when the YAML in the text editor has a syntax error
or is not valid YAML.

5. When you are finished, export your configuration file either as a YAML or environment variables.
You can also share the file with other collaborators.

Contrast Documentation

Agents 75

NOTE
At this time, the Contrast configuration editor executes completely offline (meaning
after first visit, the page is accessible without an internet connection). Updates are
downloaded in the background automatically. Upgrading to newer versions requires
closing all agent configuration app tabs; refreshing is not enough to activate the new
version.

Environment variables
You can configure the agent with any of the supported properties through environment variables.

The environment variables need to be set before the agent starts up, and in a location where the agent
has access to it. Environment variables can be set within the same process or system-wide.

IMPORTANT
If you set system-wide environment variables, this may impact other Contrast agents
running on the same server.

You can convert any Contrast property between command line, YAML and an environment variable.

To convert a command line formatted variable to an environment variable, replace the path segment
delimiters (.) with double underscores (__).

To convert a YAML formatted variable to an environment variable, start with the top-level property and
separate every nested property with a double underscore (__).

Then, prepend the "contrast" namespace (either contrast. or CONTRAST__).

Environment variables should be in all caps and have no spaces.

For example:

Command line YAML property Environment variable

contrast.server.name server:
 name:

CONTRAST__SERVER__NAME

contrast.api.api_key api:
 api_key:

CONTRAST__API__API_KEY

You can see a list of all supported properties for each agent in their respective YAML templates:

• Java (page 113)
• .NET Framework (page 192)
• .NET Core (page 252)
• Node.js (page 308)
• PHP (page 346)
• Python (page 363)
• Ruby (page 419)
• Go (page 478)

Contrast Documentation

Agents 76

See also
Additional configuration (page 77) for more details about the environment variables used for
configuration.

Additional configuration
You can set these common variables with either system properties, environment variables, a YAML file,
or default values.

Additional configuration values set with environment variables
Use these common variables to configure your system.

See the Contrast YAML Configuration Editor for a complete list as this can be updated with language-
specific and advanced settings.

Environment variable Description Language

CONTRAST__API__URL Set the URL for Contrast. Java, .NET Framework, .NET Core,
Node.js, Python, Ruby, PHP, and Go

CONTRAST__API__API_KEY Set the API key needed to communicate
with Contrast.

Java, .NET Framework, .NET Core,
Node.js, Python, Ruby, PHP, and Go

CONTRAST__API__SERVICE_KEY Set the service key needed to
communicate with Contrast. It is used to
calculate the Authorization header.

Java, .NET Framework, .NET Core,
Node.js, Python, Ruby, PHP, and Go

CONTRAST__API__USER_NAME Set the user name used to communicate
with Contrast. It is used to calculate the
Authorization header.

Java, .NET Framework, .NET Core,
Node.js, Python, Ruby, PHP, and Go

CONTRAST__INVENTORY__TAGS Apply a list of labels to libraries.
Labels must be formatted as a
comma-delimited list. Example: label1,
label2, label3.

Java, .NET Framework, .NET Core,
Node.js, Python, Ruby, and PHP

CONTRAST__ASSESS__TAGS Apply a list of labels to vulnerabilities
and preflight messages. Labels must
be formatted as a comma-delimited list.
Example: label1, label2, label3.

Java, .NET Framework, .NET Core,
Node.js, Python, Ruby, PHP, and Go

CONTRAST__APPLICATION__NAME Override the reported application name.
Note: On Java systems where multiple,
distinct applications may be served
by a single process, this configuration
causes the agent to report all discovered
applications as one application with the
given name.

Java, .NET Framework, .NET Core,
Node.js, Python, Ruby, PHP, and Go

CONTRAST__APPLICATION__GROU
P

Add the name of the application group
with which this application should be
associated in Contrast.

Java, .NET Framework, .NET Core,
Node.js, Python, Ruby, PHP, and Go

CONTRAST__APPLICATION__CODE Add the application code this application
should use in Contrast.

Java, .NET Framework, .NET Core,
Node.js, Python, Ruby, PHP, and Go

CONTRAST__APPLICATION__VERSI
ON

Override the reported application
version.

Java, .NET Framework, .NET Core,
Node.js, Python, Ruby, PHP, and Go

CONTRAST__APPLICATION__TAGS Apply labels to an application. Labels
must be formatted as a comma-delimited
list. Example: label1, label2,
label3.

Java, .NET Framework, .NET Core,
Node.js, Python, Ruby, PHP, and Go

CONTRAST__SERVER__NAME Override the reported server name. Java, .NET Framework, .NET Core,
Node.js, Python, Ruby, PHP, and Go

CONTRAST__SERVER__ENVIRONM
ENT

Override the reported server
environment. Valid values
include QA, PRODUCTION and DEVELOP
MENT.

Java, .NET Framework, .NET Core,
Node.js, Python, Ruby, PHP, and Go

CONTRAST__SERVER__TAGS Apply a list of labels to the server.
Labels must be formatted as a
comma-delimited list. Example: label1,
label2, label3.

Java, .NET Framework, .NET Core,
Node.js, Python, Ruby, PHP, and Go

Contrast Documentation

Agents 77

https://agent.config.contrastsecurity.com/

Additional configuration values set by web.config
If you use .NET Framework or .NET Core with any of the following, you will also need to configure these
variables.

Platform Variable set

Web.config

(.NET Core IIS Module)

<environmentVariable name="CONTRAST__API__URL" value="https://
app.contrastsecurity.com/Contrast/ " />
<environmentVariable name="CONTRAST__API__API_KEY" value="" />
<environmentVariable name="CONTRAST__API__SERVICE_KEY" value="" />
<environmentVariable name="CONTRAST__API__USER_NAME" value="" />
<environmentVariable name="CONTRAST__INVENTORY__TAGS" value="" />
<environmentVariable name="CONTRAST__ASSESS__TAGS" value="" />
<environmentVariable name="CONTRAST__APPLICATION__NAME" value="" />
<environmentVariable name="CONTRAST__APPLICATION__GROUP" value="" />
<environmentVariable name="CONTRAST__APPLICATION__CODE" value="" />
<environmentVariable name="CONTRAST__APPLICATION__VERSION" value="" />
<environmentVariable name="CONTRAST__APPLICATION__TAGS" value="" />
<environmentVariable name="CONTRAST__APPLICATION__METADATA" value="" />
<environmentVariable name="CONTRAST__APPLICATION__SESSION_ID" value="" /
>
<environmentVariable name="CONTRAST__APPLICATION__SESSION_METADATA" \
value="" />
<environmentVariable name="CONTRAST__SERVER__NAME" value="localhost" />
<environmentVariable name="CONTRAST__SERVER__ENVIRONMENT" \
value="development" />
<environmentVariable name="CONTRAST__SERVER__TAGS" value="" />

Contrast Documentation

Agents 78

Platform Variable set

Azure App Service [
 {
 "name": "CONTRAST__API__URL",
 "value": "https://app.contrastsecurity.com/Contrast/ "
 },
 {
 "name": "CONTRAST__API__API_KEY",
 "value": ""
},
{
 "name": "CONTRAST__API__SERVICE_KEY",
 "value": ""
},
{
 "name": "CONTRAST__API__USER_NAME",
 "value": ""
},
{
 "name": "CONTRAST__INVENTORY__TAGS",
 "value": ""
},
{
 "name": "CONTRAST__ASSESS__TAGS",
 "value": ""
},
{
 "name": "CONTRAST__APPLICATION__NAME",
 "value": ""
},
{
 "name": "CONTRAST__APPLICATION__GROUP",
 "value": ""
},
{
 "name": "CONTRAST__APPLICATION__CODE",
 "value": ""
},
{
 "name": "CONTRAST__APPLICATION__VERSION",
 "value": ""
},
{
 "name": "CONTRAST__APPLICATION__TAGS",
 "value": ""
},
{
 "name": "CONTRAST__APPLICATION__METADATA",
 "value": ""
},
{
 "name": "CONTRAST__APPLICATION__SESSION_ID",
 "value": ""
},
{
 "name": "CONTRAST__APPLICATION__SESSION_METADATA",
 "value": ""
},
{
 "name": "CONTRAST__SERVER__NAME",
 "value": "localhost"
},
{
 "name": "CONTRAST__SERVER__ENVIRONMENT",
 "value": "development"
},
{
 "name": "CONTRAST__SERVER__TAGS",
 "value": ""
 }
]

Contrast Documentation

Agents 79

Additional configuration values set by system properties

Configuration value Languages

-Dcontrast.api.url Java, .NET Framework, .NET Core, Node.js, PHP, Python, Ruby, and Go

-Dcontrast.api.api_key Java, .NET Framework, .NET Core, Node.js, PHP, Python, Ruby, and Go

-Dcontrast.api.service_key Java, .NET Framework, .NET Core, Node.js, PHP, Python, Ruby, and Go

-Dcontrast.api.user_name Java, .NET Framework, .NET Core, Node.js, PHP, Python, Ruby, and Go

-Dcontrast.inventory.tags Java, .NET Framework, .NET Core, Node.js, PHP, Python, and Ruby

-Dcontrast.assess.tags Java, .NET Framework, .NET Core, Node.js, PHP, Python, Ruby, and Go

-Dcontrast.application.name Java, .NET Framework, .NET Core, Node.js, PHP, Python, Ruby, and Go

-Dcontrast.application.group Java, .NET Framework, .NET Core, Node.js, PHP, Python, Ruby, and Go

-Dcontrast.application.code Java, .NET Framework, .NET Core, Node.js, PHP, Python, Ruby, and Go

-Dcontrast.application.version Java, .NET Framework, .NET Core, Node.js, PHP, Python, Ruby, and Go

-Dcontrast.application.tags Java, .NET Framework, .NET Core, Node.js, PHP, Python, Ruby, and Go

-Dcontrast.server.name Java, .NET Framework, .NET Core, Node.js, PHP, Python, Ruby, and Go

-Dcontrast.server.environment Java, .NET Framework, .NET Core, Node.js, PHP, Python, Ruby, and Go

-Dcontrast.server.tags Java, .NET Framework, .NET Core, Node.js, PHP, Python, Ruby, and Go

Additional configuration values set in the YAML
Use the YAML to set these additional configuration values.

Property Description Languages

contrast.api.url Set the URL for Contrast. Java, .NET
Framework, .NET
Core, Node.js,
Python, Ruby, PHP,
and Go

contrast.api.api_key Set the API key needed to communicate with Contrast. Java, .NET
Framework, .NET
Core, Node.js,
Python, Ruby, PHP,
and Go

contrast.api.service_key Set the service key needed to communicate with Contrast.
It is used to calculate the Authorization header.

Java, .NET
Framework, .NET
Core, Node.js,
Python, Ruby, PHP,
and Go

contrast.api.user_name Set the user name used to communicate with Contrast. It is
used to calculate the Authorization header.

Java, .NET
Framework, .NET
Core, Node.js,
Python, Ruby, PHP,
and Go

contrast.inventory.tags Apply a list of labels to libraries. Labels must be formatted
as a comma-delimited list. Example: label1, label2, label3.

Java, .NET
Framework, .NET
Core, Node.js,
Python, Ruby, and
PHP

contrast.assess.tags Apply a list of labels to vulnerabilities and preflight
messages. Labels must be formatted as a comma-
delimited list. Example: label1, label2, label3.

Java, .NET
Framework, .NET
Core, Node.js,
Python, Ruby, PHP,
and Go

contrast.application.name Override the reported application name. Note: On Java
systems where multiple, distinct applications may be
served by a single process, this configuration causes
the agent to report all discovered applications as one
application with the given name.

Java, .NET
Framework, .NET
Core, Node.js,
Python, Ruby, PHP,
and Go

Contrast Documentation

Agents 80

Property Description Languages

contrast.application.group Add the name of the application group with which this
application should be associated in Contrast.

Java, .NET
Framework, .NET
Core, Node.js,
Python, Ruby, PHP,
and Go

contrast.application.code Add the application code this application should use in
Contrast.

Java, .NET
Framework, .NET
Core, Node.js,
Python, Ruby, PHP,
and Go

contrast.application.metadata Define a set of key=value pairs (which conforms to RFC
2253) for specifying user-defined metadata associated with
the application. The set must be formatted as a comma-
delimited list of key=value pairs. Example: business-
unit=accounting, office=Baltimore

Java, .NET
Framework, .NET
Core, Node.js,
Python, Ruby, PHP,
and Go

contrast.application.session_id Provide the ID of a session that already exists
in Contrast. Vulnerabilities discovered by the agent
are associated with this session. If an invalid ID
is supplied, the agent will be disabled. This option
and application.session_metadata are mutually
exclusive; if both are set, the agent will be disabled.

Java, .NET
Framework, .NET
Core, Node.js,
Python, Ruby, PHP,
and Go

contrast.application.session_metadata Provide metadata that is used to create a new session
ID in Contrast. Vulnerabilities discovered by the agent are
associated with this new session. This value should be
formatted as key=value pairs (conforming to RFC 2253).

Java, .NET
Framework, .NET
Core, Node.js,
Python, Ruby, PHP,
and Go

contrast.application.version Override the reported application version. Java, .NET
Framework, .NET
Core, Node.js,
Python, Ruby, PHP,
and Go

contrast.application.tags Apply labels to an application. Labels must be formatted as
a comma-delimited list. Example: label1, label2, label3.

Java, .NET
Framework, .NET
Core, Node.js,
Python, Ruby, PHP,
and Go

contrast.server.name Override the reported server name. Java, .NET
Framework, .NET
Core, Node.js,
Python, Ruby, PHP,
and Go

contrast.server.environment Override the reported server environment. Valid values
include QA, PRODUCTION and DEVELOPMENT.

Java, .NET
Framework, .NET
Core, Node.js,
Python, Ruby, PHP,
and Go

contrast.server.tags Apply a list of labels to the server. Labels
must be formatted as a comma-delimited list.
Example: label1, label2, label3.

Java, .NET
Framework, .NET
Core, Node.js,
Python, Ruby, PHP,
and Go

Tags and data

Tags
You may want or need to filter either Applications or Servers based on user-defined criteria. In this
case, tags may be desired instead of or in addition to metadata. Tags can be applied to either an
application (page 527), server (page 589), libraries (page 602), and/or vulnerabilities (page 696). These
tags can help better organize items and improve search in Contrast.

Metadata
Application metadata can be created during agent configuration to help collect data from applications.
You can set up fields to identify specific application owners, business units, locations, or other important
pieces of information associated with an application.

Contrast Documentation

Agents 81

Session metadata
You may want or need to filter vulnerability data for specific fields of information. When supplied
in the agent configuration, the session metadata can be used as a filter in the Application
Vulnerability (page 692) details (not the Vulnerability Tab).

Commonly-used fields include:

Name Value

Commit Hash commitHash

Committer committer

Branch Name branchName

Git Tag gitTag

Repository repository

Test Run testRun

Version version

Build Number buildNumber

For more information see session metadata (page 531).

Methods for exercising applications

After you install and configure a Contrast agent, thoroughly exercising your applications ensures that
Contrast can provide the most accurate information about vulnerabilities.

These application deployment methods can help to exercise as many routes in your application as
possible, depending on your tools and environment.

For best results: Test requirements

Deploy to a server that receives requests from integration and smoke tests in a
CI/CD pipeline. (page 82)

Existing automation tests

Deploy to a server receiving requests from manual testing (page 83) Users who do manual testing

Deploy to server that receives requests from web application test automation
tools (page 83)

Automated tests

Deploy to a server that receives requests from API testing tools (page 83) API testing tools like Postman

Deploy to server with DAST testing tools (page 83) DAST tools like Rapid7

Run an open-source crawler (page 83) Free tools like Zap

Deploy to server that you use in a manual penetration testing
environment (page 84)

Either first or third party pen testers
exercising applications

Deploy to server that you use for BurpSuite-based penetration tests. (page 84) Burp (for BurpTrast integration)

Use curl commands with Assess data. (page 84) Any user who can authenticate an API

Deployment to CI/CD pipeline
This method of exercising applications involves deployment to a server that receives requests from
integration and smoke tests in a CI/CD pipeline.

Details

Requirements Users Best for...

• Automation tests (regression, integration,
smoke, performance tests),

• A CI tool to manage and orchestrate the
automation,

• A server for CICD.

Users responsible for writing tests, maintaining CI, and
instrumenting the CI server.

These users are usually a mix of QA, development,
and DevOps staff.

All environments

Contrast Documentation

Agents 82

Deployment with manual testing
This method of exercising applications involves deployment to a server that receives requests from
manual testing.

Details

Requirements Users Best for...

A server you can use for manual testing. QA testers who run manual
tests

Environments that have manual resources available
instead of automated testing environments.

Deployment with web application test tools
This method of exercising applications involves deployment to a server that receives requests from web
application test automation tools (for example, Cypress or Selenium)

Details

Requirements Users Best for...

• Automation tests (regression, integration, smoke, or performance tests)
• A tool like Cypress or Selenium to orchestrate the tests.
• A server to instrument applications

QA, automation engineers
and DevOps developers

All environments

Deployment with API test tools
This method of exercising applications involves deployment to a server that receives requests from API
tests tools (for example, Postman).

Details

Requirements Users Best for...

A developer with access to Postman in a development
environment, or a server and Postman automation in a
QA environment.

A developer who instruments a local machine,
or a QA engineer who's written a Postman
script for QA.

All environments

Deployment with DAST tools
This method of exercising applications involves deploying a server alongside an existing dynamic
analysis security testing tools (DAST) such as Rapid7, Veracode, or Netsparker.

Details

Requirements Users Best for...

DAST tool needs to be in place.

Most likely, this is a tool you
need to purchase.

Security and DevOps
staff who deploy a built-in
application to a server for
DAST.

A test environment that uses a DAST tool.

NOTE
Consider this method supplementary
to other types of testing.

Deployment with open-source crawlers
This method of exercising applications involves using an open-source crawler (for example, Zap).

Contrast Documentation

Agents 83

Details

Requirements Users Environment

• Free crawling tool
• Implementation in a QA

environment or local usage in
a development environment.

• DevOps users who
integrate open-source
crawlers into a CI/CD
pipeline.

• Developers who run the
tool manually

Any automated deployment and test environment

NOTE
Open-source crawlers tools may not
fully exercise the application due to
the nature of the payload.

Deployment with manual penetration testing
This method of exercising applications involves deployment to a server that is used for manual
penetration testing environment (in house or third parties like NetSPI).

Details

Requirements Users Best for...

• Purchase of pen testing
services

• Scheduling tests.

In-house or third-
party testers

Environments that have in-house penetration testers.

If you are using third-party penetration testers, consider using
Contrast Assess as a way to reduce costs of pen tests.

Deployment with Burp Suite-based penetration testing
This method of exercising applications involves deployment to a server that is used for Burp Suite
based penetration tests.

Details

Requirements Users Best for...

Burp Suite to enable BurpTrast integration.

The free version is useful because it is easy for
security staff to use it.

Use the paid version if you previously
purchased it.

In-house
penetration testers
or security staff.

Environments that use the free or paid version of
Burp Suite.

In most cases, the free version of Burp Suite is
sufficient because security staff can use it directly.

If you already purchased , use that version.

User curl commands with Assess data
This method of exercising applications involves the use of curl ommands with Assess data.

Details

Requirements Users Best for...

• Use of a command line interface
• Ability to authenticate an API call

Anyone with access to a server and
an authorization token to call specific
API

Users who have server and token information.

Consider this method supplementary to other
types of testing.

Java agent
The Contrast Java agent adds either Contrast Assess or Contrast Protect analysis to Java based
applications. The agent analyzes Java web applications built on traditional application servers, and

Contrast Documentation

Agents 84

newer Java web applications such as those built with Netty, Play or Spring Boot. If there's a JVM, the
Java agent can provide security insights.

As your application runs, the Java agent's sensors gather information about the application's security,
architecture and libraries. You can see the results of the agent's analysis in Contrast.

To start analyzing an application, install the Java agent (page 86).

Supported technologies for Java (Kotlin, Scala) agent

Java

Technology Supported versions Notes

Java runtime • IBM 8
• Oracle 8. *Versions 11+ follow our OpenJDK

support.
• OpenJDK 8, 11, 12, 13, 14, 15, 16, 17, 18, 19,

20, 21

OpenJDK support is designed to work with all publicly
available builds within the current version support
shown here. Popular varieties like Azul and Amazon
Corretto fall into this category of supported JDKs.

Not supported:

JDK preview features

Java runtime
for Legacy
Java agent
(page 172)

Use with Java
agent 3.x only

• IBM 6, 7
• Oracle 6, 7
• OpenJDK 6, 7

See also

• Support-Bulletin-End-of-Support-of-Java-6-and-7
• FAQ: End of Support for Java 6 and 7

Application
servers

• GlassFish 4
• Grizzly 2.3.20 and later
• JBoss EAP 6.X and 7.X
• Jetty 7, 8, 9, 10, 11
• Karaf 3.0.X
• Netty 4.X
• Play 2.4
• Resin 4
• Tomcat 5, 6, 7, 8, 9,10
• Vert.X 3.1.0, 4.X
• WebLogic 10, 11g, 12c, 14
• WebSphere* 8.5, 9.0
• WebSphere Liberty 22
• WildFly 10, 11, 14, 18, 23-27

* Contrast offers limited support for zSeries and AIX
environments. Customers using WebSphere on SPARC
Solaris require version 8.5.5.11.

Route coverage support:

• GlassFish 4
• Jetty 11.0, 10.0. 9.4, 8.1, and 7.6
• Resin 4.0
• Tomcat 5, 6,7, 8, 9, and 10
• WebLogic 12, 14
• WebSphere 8.5 and 9.0
• Wildfly 10, 11, 14, 18, 23-27

Optimizers Proguard Proguard includes Java bytecode optimization features
which break basic assumptions that runtime agents
like Contrast rely on. Proguard users that want
to protect their applications with Contrast need
to avoid these optimizations by using Proguard's -
dontoptimize configuration option.

Databases • DB2
• DynamoDB
• MySQL
• Oracle
• PostgreSQL
• SQL Server
• SQLite JDBC drivers

Message
services

• Message services: JMS 2.0
• IBM MQ 9.x
• Spring JMS 2.x

• Agent version: Java 4.7.0 and later
• Contrast version: 3.9.9 and later

• Kafka Queues and Streaming • Agent version: Java 5.0.0 and later

Contrast Documentation

Agents 85

https://rafael.codes/openjdk/
https://rafael.codes/openjdk/
https://support.contrastsecurity.com/hc/en-us/articles/4432830692116-Support-Bulletin-End-of-Support-of-Java-6-and-7
http:// https://support.contrastsecurity.com/hc/en-us/articles/4621198247956-FAQ-End-of-Support-for-Java-6-and-7
https://sourceforge.net/projects/proguard/files/
https://www.guardsquare.com/en/products/proguard/manual/usage#dontoptimize

Technology Supported versions Notes

Other Java
technologies

• ADF JSF
• Apache POI, fileupload, HttpComponents
• Axis (RPC), XMLRPC, RMI, Apache CXF, JMS

(javax.jms)
• Direct Web Remoting (DWR)
• DropWizard
• Freemarker
• Glowroot*
• GSON, Kryo, minidev, org.json
• Google Web Toolkit (GWT)
• Hibernate
• http4k (4.6.0.0 and 4.17 for Contrast Assess)
• J2SE
• JDBC, JDBI, MongoDB
• JSF (MyFaces, RichFaces, Sun)
• java.nio, java.beans
• Java EE/J2EE, Servlet/JSP
• Jersey
• MyBatis
• OWASP ESAPI, AntiSamy, Coverity
• Quarkus RESTeasy
• Seam
• Spring, Spring Boot, Spring AOP
• Spring WebFlux 5 and 6
• Struts, Struts 2
• Wicket
• XStream, Jackson (JSON/XML)
• Xerces, JAXB, nu.xom

*If you are using Glowroot, the Contrast Java Agent jar
should be included and loaded prior to the Glowroot jar.

Route coverage support:

• http4k-core 4.17
• http4k-core 4.6
• Jersey server 2.25, 2.28, 2.36, 2.6
• Quarkus RESTeasy 2.15
• Spring Web MVC 4.2. 5.3, and 6.0
• Spring WebFlux 5 and 6
• Struts 2

Kotlin

Technology Supported versions

Contrast agent 3.9.1.25108 and later

Java Run Time JDK 8 and up

Kotlin version 1.5.X

Scala

Technology Supported versions

Contrast agent 3.8.11.23624 and later

Java Run Time JDK 8 and up

Scala version 2.12, 2.13

Play version 2.6, 2.7, 2.8

Akka HTTP 10.2.4

WebSphere configuration
If you are using WebSphere as an application server, refer to the information in Configure the Java
agent for Websphere (page 109) before you deploy the agent.

Install the Java agent
There are several ways to install the Java agent depending on your situation. You might want to
consider where you want to use Contrast (for example, Assess in your development environment or
Protect in your production environment), your existing build tools, and how your application is deployed.

Contrast Documentation

Agents 86

TIP
If you are using multiple agent-based technologies in parallel with the Contrast Java
agent, ensure that you specify the Contrast Java agent as the first agent that loads at
startup. For example:

java -javaagent:contrast.jar -javaagent:newrelic.jar

Loading the Contrast Java agent first helps to limit performance impacts.

Contrast and hot deployments
A hot deployment is the process of adding new components (such as WAR files, servlets, and JSP files)
to a running server without having to stop and restart the application server process.

The Contrast agent continues to work during hot deployments and hot reloads with these
considerations:

• Contrast might not detect libraries that are added or removed dynamically during hot deployments.
• Contrast cannot update session metadata during a hot deployment.
• Some WebSphere users might experience issues.

If you encounter hot deployment issues, restart the application server.

Contrast and OpenTelemetry agents
If you plan to use an OpenTelemetry agent in the same environment as the Contrast agent, consider
suppressing OpenTelemetry instrumentation of Contrast classes. Doing so prevents possible conflicts
with Contrast agents.

To suppress OpenTelemetry instrumentation, add this exclusion as an environment variable:

OTEL_JAVAAGENT_EXCLUDE_CLASSES="com.contrast*"

Or a JVM option:

-Dotel.javaagent.exclude-classes=com.contrast*

Quick start
Just want to try out the Java agent and see how it works? Check out this Java Quick Start
Guide (page 111).

Basic installation
To install the Java agent in most situations (like in an application server like Tomcat, or a container like
Docker), choose a repository and follow these instructions to download and install the agent:

• Maven Central (page 88)
• Debian (page 89)
• RPM (page 90)

Build-integrated installation
If you are using Assess in a development environment, and you want to set the build outcome in an
existing software project if vulnerabilities are found, install the agent with:

• Maven plugin (page 770)
• Gradle plugin (page 753)

Contrast Documentation

Agents 87

• Jenkins plugin (page 755)

Install the Java agent using Maven Central
The Contrast Java agent is available from Maven Central using group ID com.contrastsecurity
and artifact ID contrast-agent. To install the Java agent:

1. Get the contrast-agent.jar from Maven Central. (See examples of how to download from the Maven
repository.)
The latest Contrast Java agent is available for download directly from https://
download.java.contrastsecurity.com/latest.

2. Configure the agent (page 112). You can create or download a YAML configuration file (page 73).
You must provide Contrast connection parameters using these agent keys (page 71).

3. Tell the agent where to find the yaml configuration file (contrast.yaml). In the
example below, substitute <YourContrastJarPath> with the path to your Contrast JAR
(this may vary depending on your internal file structure and how you downloaded the
file) and <ApplicationJar> with the name of your application JAR.

java -javaagent:<YourContrastJarPath> -
Dcontrast.config.path=contrast.yaml -jar <ApplicationJar>.jar

NOTE
If you are using system properties, environment variables to configure instead of
YAML, or you have placed the YAML in a standard location (page 72) where the
agent can find it automatically, set the JVM parameter to include the Java agent.

java -javaagent:<YourContrastJarPath> -jar <AppName>.jar

4. Use the application as you normally would (for example, click on the web interface, send API
commands). Verify that Contrast sees your application (for example, view your application in the
Contrast web interface, view logs).

Contrast artifacts deployed to Maven Central are signed with our GPG
key hosted on https://keyserver.ubuntu.com. Contrast's public signing key has ID
1AAD9AFB3FC5CCA6940D021534D84B137E8F1053 and can be installed to a local keyring with the
following command:

gpg --keyserver keyserver.ubuntu.com --recv-
keys 1AAD9AFB3FC5CCA6940D021534D84B137E8F1053

You can also provide security analysis for applications running in a test/QA or production environment,
by installing the agent with an application server like:

• Jetty (page 107)
• JBoss/Wildfly (page 106)
• Tomcat (page 108)
• WebLogic (page 108)
• WebSphere (page 109)

You can also install using a container (page 91), like Docker.

Contrast Documentation

Agents 88

https://search.maven.org/search?q=g:com.contrastsecurity%20AND%20a:contrast-agent&core=gav
https://central.sonatype.com/artifact/com.contrastsecurity/contrast-agent/
https://download.java.contrastsecurity.com/latest
https://download.java.contrastsecurity.com/latest
https://keyserver.ubuntu.com

TIP
Check the Contrast Support Portal for more information about other compatible ways
to install the agent. If you are using VMware Tanzu, see the details in Java installation
with VMware Tanzu (page 95).

Install the Java agent using the Debian repository
You can configure your system to retrieve and install the Java agent from the Contrast Debian
repository. To do this:

1. Use the following commands to configure your system to receive packages from the repository:

curl https://pkg.contrastsecurity.com/api/gpg/key/public | sudo apt-
key add -
echo "deb https://pkg.contrastsecurity.com/debian-public/ all contrast" |
 sudo tee /etc/apt/sources.list.d/contrast-all.list

2. Install the Contrast Java agent:

sudo apt-get update && sudo apt-get install contrast-java-agent

3. You will now see the Contrast Java agent JAR file at /opt/contrast/contrast-agent.jar.
4. Configure the agent (page 112). You can create or download a YAML configuration file (page 73).

You must provide Contrast connection parameters using these agent keys (page 71).
5. Tell the agent where to find the yaml configuration file (contrast.yaml). In the

example below, substitute <YourContrastJarPath> with the path to your Contrast JAR
(this may vary depending on your internal file structure and how you downloaded the
file) and <ApplicationJar> with the name of your application JAR.

java -javaagent:<YourContrastJarPath> -
Dcontrast.config.path=contrast.yaml -jar <ApplicationJar>.jar

NOTE
If you are using system properties, environment variables to configure instead of
YAML, or you have placed the YAML in a standard location (page 72) where the
agent can find it automatically, set the JVM parameter to include the Java agent.

java -javaagent:<YourContrastJarPath> -jar <AppName>.jar

6. Use the application as you normally would (for example, click on the web interface, send API
commands). Verify that Contrast sees your application (for example, view your application in the
Contrast web interface, view logs).

You can also provide security analysis for applications running in a test/QA or production environment,
by installing the agent with an application server like:

• Glassfish
• Jetty (page 107)
• JBoss/Wildfly (page 106)
• Tomcat (page 108)
• WebLogic (page 108)
• WebSphere (page 109)

You can also install using a container (page 91), like Docker.

Contrast Documentation

Agents 89

https://support.contrastsecurity.com/hc/en-us
https://support.contrastsecurity.com/hc/en-us/articles/4408096890772-Configure-the-Java-agent-for-NetBeans

TIP
Check the Contrast Support Portal for more information about other compatible ways
to install the agent. If you are using VMware Tanzu, see the details in Java installation
with VMware Tanzu (page 95).

Install the Java agent with the RPM repository
To install the Java agent with the RPM repository:

1. Use the following commands to configure your system to retrieve packages from the Contrast RPM
repository:

OSREL=$(rpm -E "%{rhel}")
sudo -E tee /etc/yum.repos.d/contrast.repo << EOF
[contrast]
name=contrast repo
baseurl=https://pkg.contrastsecurity.com/rpm-public/centos-$OSREL/
gpgcheck=0
enabled=1
EOF

2. Once you've finished configuration, install the Contrast Java agent:

sudo yum install contrast-java-agent

3. The Contrast Java agent JAR is now installed at /opt/contrast/contrast-agent.jar.
4. Configure the agent (page 112). You can create or download a YAML configuration file (page 73).

You must provide Contrast connection parameters using these agent keys (page 71).
5. Tell the agent where to find the yaml configuration file (contrast.yaml). In the

example below, substitute <YourContrastJarPath> with the path to your Contrast JAR
(this may vary depending on your internal file structure and how you downloaded the
file) and <ApplicationJar> with the name of your application JAR.

java -javaagent:<YourContrastJarPath> -
Dcontrast.config.path=contrast.yaml -jar <ApplicationJar>.jar

NOTE
If you are using system properties, environment variables to configure instead of
YAML, or you have placed the YAML in a standard location (page 72) where the
agent can find it automatically, set the JVM parameter to include the Java agent.

java -javaagent:<YourContrastJarPath> -jar <AppName>.jar

6. Use the application as you normally would (for example, click on the web interface, send API
commands). Verify that Contrast sees your application (for example, view your application in the
Contrast web interface, view logs).

You can also provide security analysis for applications running in a test/QA or production environment,
by installing the agent with an application server like:

• Glassfish
• Jetty (page 107)
• JBoss/Wildfly (page 106)

Contrast Documentation

Agents 90

https://support.contrastsecurity.com/hc/en-us
https://support.contrastsecurity.com/hc/en-us/articles/4408096890772-Configure-the-Java-agent-for-NetBeans

• Tomcat (page 108)
• WebLogic (page 108)
• WebSphere (page 109)

You can also install using a container (page 91), like Docker.

TIP
Check the Contrast Support Portal for more information about other compatible ways
to install the agent. If you are using VMware Tanzu, see the details in Java installation
with VMware Tanzu (page 95).

Install the Java agent using a container
This topic provides general guidance for installing the Contrast Java agent in a containerized
application, with Docker as an example.

NOTE
If the agent takes a long time to start, Java Agent Effects on Startup Performance and
Java agent with Docker provide details to help you resolve this issue.

Before you begin
You should have a basic understanding of how containers and related software work. You may need to
adjust the instructions to meet your specific circumstances.

ECS support

Using this procedure, you can install the Contrast Java agent using a Docker container in an Amazon
Elastic Container Service (ECS) environment.

Step 1: Install the agent
Contrast can be added either before or after the application is added to the container image. The
recommended approach is with the use of named multi-stage builds. For example:

FROM eclipse-temurin:17

Hidden for brevity...

Copy the required agent files from the official Contrast agent image.
COPY --from=contrast/agent-java:latest /contrast/contrast-agent.jar /opt/
contrast/contrast.jar

In this example, the latest Java agent is used. Check DockerHub for available tags.

Step 2: Configure the agent
When installing the Java agent into a container:

Contrast Documentation

Agents 91

https://support.contrastsecurity.com/hc/en-us
https://support.contrastsecurity.com/hc/en-us/articles/360000460066-Java-Agent-Effects-on-Startup-Performance
https://support.contrastsecurity.com/hc/en-us/articles/360056810771-Java-agent-with-Docker
https://docs.docker.com/build/building/multi-stage/
https://hub.docker.com/r/contrast/agent-java/tags

• Use a YAML configuration file for common configuration settings so it can be placed in the base
image. For example, a common configuration might include redirecting logging to console output,
proxy configuration, or performance tuning.
The Contrast agent configuration editor (page 74) can help with configuring the agent correctly.
Create and copy the YAML file into the base image, then copy the file into the base image Dockerfile
using:

COPY WORKSPACE/contrast_security.yaml /opt/contrast/contrast_security.yaml

• Use Java system properties or environment variables for application-specific configuration values
so you can uniquely configure options for each application.

Contrast
configuration

Function Java system property Environment variable

Application
metadata

Specify application-
specific metadata

Create application
metadata (page 826)
before you specify
them in the
configuration.

-Dcontrast.application.metadata CONTRAST__APPLICATION__METADATA

Application session
metadata

Send application
details like build
number, version,
GIT hash, and other
session metadata
(page 531).

-Dcontrast.application.session_metadata CONTRAST__APPLICATION__SESSION_METADATA

Application group Specify the
application access
group for
this application
during onboarding.
Create these
groups (page 818) in
Contrast first.

-Dcontrast.application.group CONTRAST__APPLICATION__GROUP

Server environment Specify in
which environments
the application
is running:
Development, QA
and Production.

-Dcontrast.server.environment CONTRAST__SERVER__ENVIRONMENT

Step 3: Update JVM parameters
To attach any profiler to a Java application, you need to pass a -javaagent flag to the application by
setting JAVA_TOOL_OPTIONS environment variables.

Pre-populate the Contrast common JVM parameters in a separate environment variable in the base
image, so the application team can use it in JAVA_TOOL_OPTIONS. For example:

• For the base image Dockerfile:

ENV CONTRAST_OPTS "-javaagent:/opt/contrast/contrast.jar \
-Dcontrast.config.path=/opt/contrast/contrast_security.yaml"

• For the application image Dockerfile:

ENV JAVA_TOOL_OPTIONS $CONTRAST_OPTS \
-Dcontrast.application.metadata=bU=<value>,contactEmail=<value>,contactNam
e=<value> \
-Dcontrast.application.group=APP_GROUP

Step 4: Run the application image
After you add (page 91) and configure (page 91) the agent in a base image, run the image.

Contrast Documentation

Agents 92

For the agent to send data to Contrast, it needs agent authentication keys (page 71). To protect the
agent credentials, you can use the Docker secret and pass them as environment variables during
deployment time. Here is an example of the Docker run command:

docker run -e CONTRAST__API__URL=https://app.contrastsecurity.com -
e CONTRAST__API__API_KEY=<value> -e CONTRAST__API__SERVICE_KEY=<value> -
e CONTRAST__API__USER_NAME=<value> -e CONTRAST__SERVER__NAME=<value> -
e CONTRAST__SERVER__ENVIRONMENT=<value> image_with_contrast

You can verify that Contrast is running by checking the container log. You should see messages like
these:

2020-05-28 22:36:29,910 [main STDOUT] INFO - Copyright: 2019 Contrast \
Security, Inc
2020-05-28 22:36:29,910 [main STDOUT] INFO - Contact: \
support@contrastsecurity.com
2020-05-28 22:36:29,910 [main STDOUT] INFO - License: Commercial
2020-05-28 22:36:29,910 [main STDOUT] INFO - NOTICE: This Software and the \
patented inventions embodied within may only be used as part of
2020-05-28 22:36:29,910 [main STDOUT] INFO - Contrast Security's \
commercial offerings. Even though it is made available through public
2020-05-28 22:36:29,910 [main STDOUT] INFO - repositories, use of this \
Software is subject to the applicable End User Licensing Agreement
2020-05-28 22:36:29,910 [main STDOUT] INFO - found at https://
www.contrastsecurity.com/enduser-terms-0317a or as otherwise agreed between
2020-05-28 22:36:29,910 [main STDOUT] INFO - Contrast Security and the End \
User. The Software may not be reverse engineered, modified,
2020-05-28 22:36:29,910 [main STDOUT] INFO - repackaged, sold, \
redistributed or otherwise used in a way not consistent with the End User
2020-05-28 22:36:29,910 [main STDOUT] INFO - License Agreement.
[Contrast] Thu May 28 22:36:30 EDT 2020 Effective instructions: \
Assess=false, Protect=true
[Contrast] Thu May 28 22:36:30 EDT 2020 String Supporter has been disabled
[Contrast] Thu May 28 22:36:30 EDT 2020 Logging security messages to /Users/
usernamehere/.contrast/security.log
[Contrast] Thu May 28 22:36:31 EDT 2020 Starting JVM [1862ms]

See also
Agent Operator (Kubernetes operator) (page 494)

Contrast Support Portal AWS Fargate and Contrast agents and Java agent with Docker

Install Java with infrastructure as code tools
If you are using Ansible or Chef in your deployment environments, you can use either of them to deploy
the Java agent.

Ansible playbook (page 61)

Chef cookbook (page 53)

Install the Java agent in an existing Gradle project with Docker
This example uses a sample Gradle project, which includes the Application Plugin and the Docker
Plugin to build a Java web application. It also runs JUnit 5 integration tests that verify the web
application's behavior. As part of the process, you will include Contrast in the Docker image used
for testing so that Contrast Assess analyzes your code during integration testing. See an example of a
Gradle project in our Github repo.

Contrast Documentation

Agents 93

https://support.contrastsecurity.com/hc/en-us/articles/360056537312-AWS-Fargate-and-Contrast-agents
https://support.contrastsecurity.com/hc/en-us/articles/360056810771-Java-agent-with-Docker
https://docs.gradle.org/current/userguide/application_plugin.html
https://github.com/bmuschko/gradle-docker-plugin
https://github.com/bmuschko/gradle-docker-plugin
https://github.com/Contrast-Security-OSS/contrast-java-examples/tree/gradle-docker-complete/gradle-docker
https://github.com/Contrast-Security-OSS/contrast-java-examples/tree/gradle-docker-complete/gradle-docker

NOTE
Any part of the following procedures that refer to any form of packaging or distribution
are meant for your organization's internal use. Do not distribute Contrast with your
application or Docker container outside of your organization. See Contrast's Terms of
Service agreement for more information.

To add the Contrast Java agent to an existing Gradle project with Docker:

1. Open a command prompt, and run the following command to clone Contrast's examples
repository:

$ git clone https://github.com/Contrast-Security-OSS/contrast-java-
examples.git

2. Enter the gradle-docker directory:

$ cd contrast-java-examples/gradle-docker

3. Run a test build to make sure everything is working:

$./gradlew build

BUILD SUCCESSFUL in 3s
4 actionable tasks: 3 executed, 1 up-to-date

NOTE
On Windows, run gradlew.bat build instead.

4. If the test build doesn't work, check to make sure you have Java 11 correctly installed (Java 11 or
later is required to build the sample application. Java supported technologies (page 85) lists the
versions of Java supported that the Contrast Java agent supports):

$ java -version
openjdk version "11.0.18" 2023-01-17
OpenJDK Runtime Environment Temurin-11.0.18+10 (build 11.0.18+10)
OpenJDK 64-
Bit Server VM Temurin-11.0.18+10 (build 11.0.18+10, mixed mode)

5. If you've made changes, run the build again. If it still doesn't work, open an issue that explains the
problem.

6. Use the agent keys (page 71) to configure the agent's communication with Contrast. You'll need
these keys:
• Contrast URL: This URL, https://app.contrastsecurity.com/Contrast or the URL of

your on-premises or private cloud instance.
• Organization API key
• Agent username
• Agent service key

7. Add the keys as Gradle properties to the gradle.properties file in your Gradle user home
directory. If this file does not exist, create it.
Be sure to replace <contrast_url>, <your_api_key>, <agent_user_name> and
<agent_user_service_key> with the Contrast URL, API key, username and service key values
you obtained from the Contrast:

contrastUrl=<contrast_url>
contrastAgentUserName=<agent_user_name>

Contrast Documentation

Agents 94

https://www.contrastsecurity.com/enduser-terms-0317a
https://www.contrastsecurity.com/enduser-terms-0317a
https://github.com/Contrast-Security-OSS/contrast-java-examples/issues/new
https://docs.gradle.org/current/userguide/directory_layout.html#dir:gradle_user_home
https://docs.gradle.org/current/userguide/directory_layout.html#dir:gradle_user_home

contrastAgentServiceKey=<agent_user_service_key>
contrastApiKey=<your_api_key>

8. Add the Contrast agent and configure the application to use it by modifying the
createDockerfile task in build.gradle:

task createDockerfile(type: Dockerfile) {
 // ... rest of block omitted

 copyFile(new Dockerfile.CopyFile("/contrast/contrast-agent.jar", "/
contrast.jar").withStage("contrast/agent-java:latest"))
 environmentVariable("JAVA_TOOL_OPTIONS", "-javaagent:/contrast.jar")
}

9. Pass the configuration variables into the container by adding the following commands to the
createContainer task in build.gradle:

task createContainer(type: DockerCreateContainer) {
 // ... rest of the config omitted

 envVars = [
 CONTRAST__API__URL: project.property("contrastUrl"),
 CONTRAST__API__USER_NAME: \
project.property("contrastAgentUserName"),
 CONTRAST__API__SERVICE_KEY: \
project.property("contrastAgentServiceKey"),
 CONTRAST__API__API_KEY: project.property("contrastApiKey"),
 CONTRAST__APPLICATION__NAME: "${project.name}-how-to"
]
}

10. Run the build again:

./gradlew clean build

NOTE
On Windows, run gradlew.bat clean build instead.

The Docker container now runs the application with Contrast enabled. When the integration test
runs, it detects the vulnerable endpoint and reports it to Contrast. To see the vulnerability report,
log in to the Contrast web interface, navigate to the Vulnerabilities list (page 691) and filter your
view by the application name gradle-application-how-to.

Java agent installation with VMware Tanzu Application Service
VMware Tanzu (Application Service formerly Pivotal Cloud Foundry) is a proprietary containerized
Software as a Service (SaaS) environment. A Java buildpack that VMware releases makes the Contrast
Java agent accessible. You install the buildpack in the container where you run your Java application.

Contrast service
The existence of a single, bound Contrast service activates and downloads the Java agent. The
VCAP_SERVICES payload, containing a service name, label or tag with contrast-security as a substring,
defines the Contrast service. You can use either of these methods to create the Contrast service:

• User-provided service: A user-provided service is a simple way to bind a single application to the
Java agent and configure authentication.

• A service broker (Contrast tile): Use the service broker to bind multiple applications, providing
access to the Java agent and authentication.

Contrast Documentation

Agents 95

When the Contrast service is bound to your application, it provides the strings needed to activate
Contrast (puts the javaagent flag in the JVM) and provides authentication to the Contrast web
interface.

Java buildpacks
Java buildpacks contain the instructions and configuration information that the container needs to
download and configure the Java agent. You can use an offline or online buildpack:

• An offline buildpack is typically forked from the GitHub repo where you have made customizations.
These repos might contain older agent versions.

• An online buildpack is usually the latest version and pulled from GitHub when needed.

Requirements

• Buildpacks
To instrument an application in a VMware Tanzu Network environment, your application must use one
of these buildpacks:
• Cloud Foundry Java Buildpack, version 3.19 and later or version 4.2 and later
• IBM Liberty Buildpack, version 2.7.0.2 and later

• Name or tag with contrast-security specified when you create the service
• The credential payload must contain the standard YAML properties.

For general information on configuring the buildpack, including how to specify configuration values
through environment variables, refer to the Configuration and Extension section of the Cloud Foundry
Java Buildpack documentation.

Configuration options
You can configure the framework by modifying the config/contrast_security_agent.yml file
in the buildpack fork. The framework uses the Repository utility support and supports the version
syntax defined there.

Name Description
repository_root The URL of the Contrast Security repository index

version The version of the Contrast agent to use

To specify a version of the Java agent to use, set
the JBP_CONFIG_CONTRASTSECURITYAGENT environment variable and specify a version listed in
the index. For example:

JBP_CONFIG_CONTRASTSECURITYAGENT='version: 4.13.1'

Example
This example shows how to create a user-provided service and bind it to an application called spring-
petclinic:

1. This command pushes an application to Cloud Foundry, providing the buildpack to be used:
(otherwise the default buildpack is used in the environment)

cf push myApp -p target/spring-petclinic-2.4.2.jar \
 -b 'https://github.com/cloudfoundry/java-buildpack.git'

2. This command creates a user-provided service:

cf create-user-provided-service contrast-security-service -
p "teamserver_url, username, api_key, service_key"

The value for teamserver_url should include only the protocol and hostname. Do not include /
contrast/ or /contrast/api.

Contrast Documentation

Agents 96

https://github.com/cloudfoundry/java-buildpack/
https://github.com/cloudfoundry/ibm-websphere-liberty-buildpack
https://github.com/cloudfoundry/java-buildpack/blob/master/README.md#configuration-and-extension
https://github.com/cloudfoundry/java-buildpack/blob/master/docs/extending-repositories.md
https://github.com/cloudfoundry/java-buildpack/blob/master/docs/extending-repositories.md#version-syntax-and-ordering
https://github.com/cloudfoundry/java-buildpack/blob/master/docs/extending-repositories.md#version-syntax-and-ordering
https://github.com/cloudfoundry/java-buildpack/blob/master/docs/extending-repositories.md
https://download.run.pivotal.io/contrast-security/index.yml

3. This command binds the service to the application (this tåsk is essential):

cf bind-service myApp contrast-security-service

4. This command restages the application so it can connect to Contrast (essentially, restarts the
container):

cf restage myApp

See also
Add Contrast service broker tile for VMware Tanzu (page 99)

Add Contrast service broker for VMware Tanzu (page 97)

Configure a proxy for Contrast service broker (page 100)

Add Contrast service broker for VMware Tanzu

Steps

1. Deploy the service broker application with a command similar to this example:

cf push contrast-security-service-broker

You should see the service broker in PCF.
2. Configure plans with the CONTRAST_SERVICE_PLANS environment variable (the service broker

doesn't offer any plans by default).
You can also use the Pivotal Ops Manager to set the environment variables. If you are using IBM
Cloud, you can select the application, select Runtime and then Environment Variables to set the
value.
Example: This example shows how to set the value in the command line:

cf set-env contrast-security-service-broker CONTRAST_SERVICE_PLANS
 " {
 "ServicePlan1": {
 "name":"ServicePlan1",
 "teamserver_url":"https://yourteamserverurl.com",
 "username":"your_username",
 "org_uuid":"00000000-1111-2222-3333-000000000000",
 "api_key":"your_api_key",
 "service_key":"your_service_key"
 },
 "AnotherServicePlan":{
 "name":"AnotherServicePlan",
 "teamserver_url":"https://yourteamserverurl.com",
 "username":"your_username",
 "org_uuid":"00000000-1111-2222-3333-000000000001",
 "api_key":"your_api_key",
 "service_key":"some_other_service_key"
 }
 } "

To run the agent on IBM Cloud, you must use single quotes to set
the CONTRAST_SERVICE_PLANS environment variable, as shown in this example:

 cf set-env contrast-security-service-broker CONTRAST_SERVICE_PLANS
 " {
 'ServicePlan1': {

Contrast Documentation

Agents 97

 'name':'ServicePlan1',
 'teamserver_url':'https://yourteamserverurl.com',
 'username':'your_username',
 'org_uuid':'00000000-1111-2222-3333-000000000000',
 'api_key':'your_api_key',
 'service_key':'your_service_key'
 },
 'AnotherServicePlan':{
 'name':'AnotherServicePlan',
 'teamserver_url':'https://yourteamserverurl.com',
 'username':'your_username',
 'org_uuid':'00000000-1111-2222-3333-000000000000',
 'api_key':'your_api_key',
 'service_key':'some_other_service_key'
 }
 } "

3. Restage your application using a command similar to this example:

cf restage contrast-security-service-broker

4. Set an environment variable for a username and a password:

cf set-env contrast-security-service-
broker SECURITY_USER_NAME aSecureUsername
cf set-env contrast-security-service-
broker SECURITY_USER_PASSWORD aSecurePassword

5. Create a service broker instance. Define at least one service plan for this. You must use the same
username and password that you set in the previous step.

cf create-service-broker contrast-security-service-
broker USER_NAME PASSWORD
<URL of your application>

For IBM Cloud, add --space-scoped at the end of the command, as shown in this example:

cf create-service-broker contrast-security-service-
broker USER_NAME PASSWORD
<URL of your application> --space-scoped

6. All service brokers start as private. Make it public with a command similar to the following example:

cf enable-service-access contrast-security-service-broker

7. Once the service broker is working, create a service instance and bind it to the application. To
create a service instance, run the following command:

cf create-service contrast-security-service-
broker ServicePlan1 <name_of_service>

8. Bind the service broker it to your application using the following command:

cf bind-service <app_name> <name_of_service>

You should see the agent start up with your application. You also see your application in the
Contrast web interface.

See also
Add Contrast service broker tile (page 99)

Configure a proxy for Contrast service broker (page 100)

Contrast Documentation

Agents 98

Add the Contrast service broker tile for VMware Tanzu

To integrate Contrast with VMware Tanzu Network (formerly Pivotal Cloud Foundry), install the Contrast
service broker tile.

Steps

1. Download the Contrast service broker tile from VMware Tanzu Network.
2. Store the file locally and navigate to your Pivotal Ops Manager instance.
3. Select Import a Product and then, select the contrast-security-service-broker-

#.#.#.pivotal tile that you downloaded.
If the file you downloaded has a ZIP extension, rename it to contrast-security-service-
broker-#.#.#.pivotal.

4. The tile requires some configuration before you can deploy it. The service broker does not include
service plans by default. Add at least one plan before you deploy the Contrast service broker tile.
To add a service plan, select Service Plans in the Contrast service broker tile and select Add.

5. Set these configuration parameters in the service plan:
• TeamServer: The URL for your Contrast application instance
• TeamServer Service Key: Organization service key (page 71)
• TeamServer API Key: Organization API key (page 71)
• Organization UUID: Organization ID (page 71) to which the application will belong
• Username: Your Contrast username
• Plan Name: Name of the plan as it will appear in Apps Manager
• Proxy Host: The hostname of a proxy for the service broker to communicate with Contrast
• Proxy Port: The proxy port
• Proxy Username: The proxy username, if it requires authentication
• Proxy Password: The proxy password, if it required authentication

NOTE
In addition to the proxy settings for the tile, you also need to set up the agent
communication with the proxy. (page 100)

6. Select Save.
If you want some applications to belong to different organizations, define the other plans you will
need.

7. In the dashboard, select Apply Changes .
This process can take some time to finish.

8. After you successfully deploy the service broker, you can bind the credentials to an application. Go
to the Marketplace to find the Contrast service broker option.

9. In the Pivotal Ops Manager, select the Contrast service broker option to see the available plans
that you created .

10. To choose the plan you want to bind to an application, use Select this Plan.
11. Specify an instance name for the plan.

This selection doesn't affect the service broker. You can use any name you want for the instance.
12. In the Bind to App drop-down, select the application to bind to this service. Then, restage the

application.
This action retrieves the latest agent from Contrast to instrument your application.

13. Optional: If you want to override agent properties, such as the application name, set environment
variables in PCF using a command similar to the following example:

cf set-env APP-NAME JAVA_OPTS " -
Dcontrast.agent.java.standalone_app_name=PivotalSpringApp"

Contrast Documentation

Agents 99

https://network.pivotal.io/products/contrast-security-service-broker/

See also
Add Contrast service broker (page 97)

Configure a proxy for Contrast service broker (page 100)

Set up agent proxy communication for Contrast service broker

If you are deploying a Java agent in VMWare Tanzu, you can choose to configure a proxy when
you add the Contrast service broker tile (page 99). The Contrast service broker can use a proxy
configuration set within the service plan to complete the binding with Contrast..

If you configure a proxy when you add the Contrast servce broker tile, you also need to set up agent
communication with the proxy, as described in this topic. You can do this for each application or set it at
an organization level for all deployed applications to consume.

Steps

1. To set up proxy communication for each application, use this command:

cf set-env $APP_NAME CONTRAST__API__PROXY__ENABLE "true"
cf set-env $APP_NAME CONTRAST__API__PROXY__URL "scheme://host:port"

Alternatively, you can use this command:

cf set-env $APP_NAME JAVA_OPTS "-Dcontrast.api.proxy.enable=true -
Dcontrast.api.proxy.url=scheme://host:port"

2. To set up proxy communication at an organizataion level, use this command:

cf ssevg '{"CONTRAST__API__PROXY__ENABLE": "true"}'
cf ssevg '{"CONTRAST__API__PROXY__URL": "scheme://host:port"}'

See also
Add Contrast service broker tile (page 99)

Add Contrast service broker (page 97)

Install the Java agent with AWS Elastic Beanstalk

Use this procedure as a guide to configuring the Java agent to work with AWS Elastic Beanstalk.
It describes how to create an .ebextensions file that downloads the Contrast Java agent and
instruments your application.

Depending on your environment, you might need to customize the steps in this procedure.

This procedure is designed for users who are familiar with DevOps practices and how Beanstalk
deployment works.

Before you begin

• Verify that Contrast supports your preferred tools and environments for Java. (page 85)
• Get the information needed to connect the Java agent to Contrast (page 86).
• Download and start the Contrast Java agent before running your applications.
• Verify that you have access to the Beanstalk environment to install

customized .ebextensions configuration files.

Step1: Specify settings to download the Contrast Java agent

Contrast Documentation

Agents 100

The .ebextensions configuration file has a files section that downloads the agent from a remote
URL. This example shows how to specify downloading the agent from a Maven repository.

files:
 "/opt/contrast/contrast.jar":
 mode: "000755"
 owner: rootCorporate rule
 group: root
 source: "https://repository.sonatype.org/service/local/artifact/maven/
redirect?r=central-proxy&g=com.contrastsecurity&a=contrast-agent&v=LATEST"

For Contrast agents, the recommended location is /opt/contrast, but you can use another location,
if necessary. You can also change the URL to download agents from an internal repository. At build
time, you can specify the agent version of your choice and download it from the Maven repository.

Step 2: Create an agent configuration file
There are different values you can use to configure Contrast agents, based on an order of
precedence (page 72). Active configuration values are determined in this order:

1. Corporate rule (for example, expired licenses)
2. System property
3. Environment variable
4. YAML configuration file
5. Contrast web interface value
6. Contrast Security default value

The recommended approach to creating the configuration file is to use a common configuration and an
application-specific configuration:

• Common configuration: Specifies core set of configurations in the YAML. For example:
• Redirect logging to console output
• Proxy configuration, if any
• Performance tuning options to limit agent activity
This example shows how to create and configure the agent’s YAML file at deployment time in
an .ebextensions configuration file.

files:
 "/var/contrast/contrast_security.yaml" :
 mode: "000755"
 owner: root
 group: root
 content: |
 api:
 proxy:
 url: https://host:port
 agent:
 java:
 scan_all_classes: false
 scan_all_code_sources: false
 logger:
 stdout: true

• Application-specific configuration: This configuration lets you specify additional options, for each
application. Use these environment variables:
• Application metadata: Specifies application-specific metadata

CONTRAST__APPLICATION__METADATA

Contrast Documentation

Agents 101

https://central.sonatype.com/artifact/com.contrastsecurity/contrast-agent/5.0.0/versions

• Application name: Specifies the application name reported to Contrast

CONTRAST__APPLICATION_NAME

• Application session metadata: Send application details such as, build number, version, and GIT
hash,

CONTRAST__APPLICATION__SESSION_METADATA

NOTE
Learn about additional session metadata options. (page 533)

• Application group: Specifies the application access group for this application when you add it to
Contrast. You must create application access groups before you use this variable.

CONTRAST__APPLICATION__GROUP

• Server environment: specify in which environments the application is running. Valid values for this
configuration are: Development, QA and Production.

CONTRAST__SERVER__ENVIRONMENT

Example 1: This example shows how to set environment variables when you create the environment:

eb create <environment name> --envvars CONTRAST__API__URL=https://
app.contrastsecurity.com/
Contrast,CONTRAST__API__API_KEY=<value>,CONTRAST__API__SERVICE_KEY=<value>
,CONTRAST__API__USER_NAME=<value>,CONTRAST__SERVER__NAME=<value>,CONTRAST_
_SERVER__ENVIRONMENT=<value>

Example 2: This example shows how to set the environment variables after you create the
environment:

eb setenv CONTRAST__API__URL=https://app.contrastsecurity.com/Contrast \
CONTRAST__API__API_KEY=<value> CONTRAST__API__SERVICE_KEY=<value> \
CONTRAST__API__USER_NAME=<value> CONTRAST__SERVER__NAME=<value> \
CONTRAST__SERVER__ENVIRONMENT=<value>

Step 3: Update JVM parameters
To attach any profiler to a Java application, you must pass a -javaagent flag to the application. To do
this, set the JAVA_TOOL_OPTIONS environment variable.

Set these variables in the same way as you set application-specific environment variables. Use the
paths for the agent’s JAR and YAML configuration files, as shown in this example.

eb setenv JAVA_TOOL_OPTIONS="-javaagent:/opt/contrast/contrast.jar -
Dcontrast.config.path=/var/contrast/contrast_security.yaml"

Step 4: Deploy the agent using the .ebextensions configuration
AWS expects the Beanstalk customization configuration to be in the .ebextensions folder
in the deployment folder root. This example shows a directory structure that includes
the .ebextensions folder. It shows the location of the contrast.config file that includes the agent
download and YAML configuration sections.

��� .ebextensions
� ��� contrast.config
��� application.jar

Contrast Documentation

Agents 102

Install the Java agent with automatic updates on Linux
Some users like to automatically update their Contrast Java agent software to the latest version. Linux
users can schedule Java agent updates from Maven Central using common Linux tools cron and
curl.

Here's how to configure a scheduled Java agent update job on an Ubuntu 18.04 Linux host:

NOTE
Use your preferred editor to create a file with the following contents. The examples
provided use tee to create the file.

1. If you want to perform each step as you follow along with this guide, you can use Vagrant and
VirtualBox to create a new Ubuntu 18.04 virtual machine:

vagrant init ubuntu/bionic64

vagrant up

vagrant ssh

2. Create a shared directory for Contrast software:

sudo mkdir -p /opt/contrast

3. Create a script for installing the latest Java agent in the /etc/cron.daily directory. Scripts in this
directory execute once daily; as a result, the host updates the latest Java agent each day.

4. Use tee to create this script. Press CTRL+D when you've finished typing all the lines:

$ sudo tee -a /etc/cron.daily/install-latest-contrast-agent > /dev/null
#!/bin/bash -u

CONTRAST_DIRECTORY=/opt/contrast
CONTRAST_FILE_NAME=contrast-agent.jar

CONTRAST_VERSION=$(curl --fail --silent 'https://search.maven.org/
solrsearch/select?q=g:com.contrastsecurity+a:contrast-agent' | sed -
e 's/[{}]/''/g' | sed s/\"//g | awk -v RS=',' -
F: '$1=="latestVersion"{print $2}' | grep -v -e '^$')
curl --fail --silent --
location "https://repo1.maven.org/maven2/com/contrastsecurity/contrast-
agent/${CONTRAST_VERSION}/contrast-agent-${CONTRAST_VERSION}.jar" -
o "contrast-agent-${CONTRAST_VERSION}.jar"
if [$? -ne 0]; then
 echo "Failed to download Contrast Java agent" >&2
 exit 1
fi
mv /tmp/$CONTRAST_FILE_NAME $CONTRAST_DIRECTORY/$CONTRAST_FILE_NAME

5. Set the execute bit on the new script file:

sudo chmod +x /etc/cron.daily/install-latest-contrast-agent

6. To test the script, execute it and then verify that the file exists using stat:

$ sudo /etc/cron.daily/install-latest-contrast-agent
$ stat /opt/contrast/contrast-agent.jar

Contrast Documentation

Agents 103

https://www.vagrantup.com/
https://www.virtualbox.org/wiki/Downloads

stat /opt/contrast/contrast-agent.jar
 File: /opt/contrast/contrast-agent.jar
 Size: 10568283 Blocks: 20648 IO Block: 4096 regular file
Device: 801h/2049d Inode: 256034 Links: 1
Access: (0644/-rw-r--r--) Uid: (0/ root) Gid: (0/ root)
Access: 2019-04-11 02:02:01.265775928 +0000
Modify: 2019-04-11 02:24:47.849796936 +0000
Change: 2019-04-11 02:24:47.849796936 +0000
 Birth: -

7. The Contrast agent requires some configuration to communicate with Contrast. You can find agent
key information here (page 71).

8. When Contrast is installed on a Linux host, users typically want Contrast-enabled web applications
on the host to share basic configuration parameters, such as the ones required to connect to
Contrast. By convention, Contrast look for configuration in a YAML file at path /etc/contrast/java/
contrast_security.yaml on Linux hosts.

9. Create the /etc/contrast/java directory:

sudo mkdir -p /etc/contrast/java

10. Use tee to create the configuration file. Replace <contrast_url>, <your_api_key>,
<agent_user_name> and <agent_user_service_key> with the values you obtained from
Contrast in the previous step:

$ sudo tee -a /etc/contrast/java/contrast_security.yaml > /dev/null
api:
 url: <contrast_url>
 api_key: <your_api_key>
 user_name: <agent_user_name>
 service_key: <agent_user_service_key>

11. Press CTRL+D when you've finished typing all the lines.
12. Run a diagnostic test to verify that Contrast is installed and properly configured. The host must

have Java installed to execute the diagnostic test:

sudo apt install --yes openjdk-11-jre-headless

13. Finally, execute the Java agent's diagnostic test to verify that the agent is installed correctly
and can communicate with Contrast using the configuration parameters from /etc/contrast/java/
contrast_security.yaml:

$ java -jar /opt/contrast/contrast-agent.jar diagnostic
*** Contrast Agent (version 3.6.3-SNAPSHOT)
[!] Attempting to connect to the Contrast TeamServer at https://
apptwo.contrastsecurity.com/Contrast (No proxy).
[!] Attempting to resolve domain: apptwo.contrastsecurity.com
 Resolved domain apptwo.contrastsecurity.com to IP \
Address 52.200.215.12
[+] Client successfully resolved the DNS of the Contrast TeamServer. No \
proxy needed.
[!] Issuing HTTP request to Contrast...
 Executing request...
 Reading response [200]
 Response size = 4209
 Snippet: <!doctype html> <!--[if gt IE 8]><!--> <html class="no-
js" i
[+] Client can connect directly to the Contrast TeamServer. No proxy \
needed.

Contrast Documentation

Agents 104

Scala
You can use the Contrast Java agent with Contrast Assess or Contrast SCA to analyze Scala-based
applications.

The Java agent analyzes Scala web applications built on traditional application servers, and newer
Scala web applications such as those built with Play. If there's a JVM, the Scala agent can provide
security insights.

As your application runs, the Java agent's sensors gather information about the application's security,
architecture and libraries. You can see the results of the agent's analysis in Contrast.

The Scala agent supports these Contrast features:

• Route coverage
• Flow maps
• SCA library discovery

Kotlin
You can use the Contrast Java agent with Contrast Assess or Contrast SCA to analyze Kotlin-based
applications.

The Java agent analyzes Kotlin web applications built on traditional application servers, and newer
Kotlin server-side applications, such as SpringBoot.

If there's a JVM, the Kotlin agent can provide security insights. As your application runs, the Java
agent's sensors gather information about the application's security, architecture and libraries. You can
see the results of the agent's analysis in Contrast.

Run your application as you would with the Contrast Java agent. Kotlin support is automatic.

Java application servers

NOTE
This documentation provides content for supported content. Links indicated by
the icon take you to other documentation that may be helpful.

The following application servers are available:

• Axis2
• Glassfish
• JBoss / Wildfly (page 106)
• Jetty (page 107)
• Tomcat (page 108)
• Weblogic (page 108)
• WebSphere (page 109)

See also

• Install the Java agent (page 86)
• Supported technologies (page 85)
• Configure the Java agent (page 112)

Contrast Documentation

Agents 105

https://support.contrastsecurity.com/hc/en-us/articles/4408089566100
https://support.contrastsecurity.com/hc/en-us/articles/4408096890772-Configure-the-Java-agent-for-NetBeans

Configure the Java agent for JBoss EAP, JBoss AS or WildFly

CAUTION
Be careful not to confuse version numbers. JBoss EAP prior to version 7 is based on
JBoss AS. JBoss EAP 7.X is based on WildFly.

Run JBoss with the Java agent

1. Download the Java agent JAR from one of these repositories:
• Maven Central (page 88)
• Debian (page 89)
• RPM (page 90)

2. You can either run JBoss from a BAT file, or in domain mode.
• BAT file: If you run JBoss from domain.bat, standalone.bat, or run.bat with a .conf file, modify

the configuration file. It should enable the Contrast JVM parameters and return to the start-up
script.
To do this, replace <YourContrastJarPath> with the path to your Contrast JAR (page 84)
file, and use the JBoss server directory for your environment. Then add this line to the end of
your .conf file:
• Windows:

set "JAVA_OPTS=-javaagent:<YourContrastJarPath> %JAVA_OPTS%"

• Unix:

JAVA_OPTS="-javaagent:<YourContrastJarPath> $JAVA_OPTS"

• Domain mode: If you run JBoss 6 EAP or JBoss AS 7.X in Domain mode using domain.bat
or domain.sh, you must add the -javaagent switch to the JVM options in $JBOSS_HOME/
domain/configuration/domain.xml.
In this example, replace <YourContrastJarPath> with the path to your Contrast
JAR (page 84) file:

<server-group ...>
 <jvm name="default">
 <jvm-options>
 <option value="-javaagent:<YourContrastJarPath>"/>
 </jvm-options>
 </jvm>
...
</server-group>

Use WildFly with Java 2 security manager
You can configure the Java agent when using WildFly with Java 2 security (page 172). WildFly versions
9 through 20 are supported. WildFly 8 is not supported.

To enable the Java 2 security manager in Wildfly:

1. Either pass a command-line argument -secmgr, or set an environment variable SECMGR to true:

SECMGR="true"

2. To enable permissions for the Java agent, append this Contrast policy to $JAVA_HOME/jre/lib/
security/java.policy (for JDK 6-8), or $JAVA_HOME/lib/security/default.policy (for JDK 9 and later).
Replace <YourContrastJarPath> with the path to your Contrast JAR (page 84) and use:

Contrast Documentation

Agents 106

grant codeBase "file:<YourContrastJarPath>" {
 permission java.security.AllPermission;
};

3. To allow the agent to function with Wildfly’s classloader system, modify the value of the
environment variable JBOSS_MODULES_SYSTEM_PKGS (originally org.jboss.byteman), to also
include the Java agent base package: com.contrastsecurity.agent,org.jboss.byteman

TIP
Learn more about using Java EE 7 security manager with WildFly, or read the default
policy implementation and policy file syntax.

Configure the Java agent for Jetty
To configure the Java agent with a Jetty distribution:

1. Download the Java agent JAR from one of these repositories:
• Maven Central (page 88)
• Debian (page 89)
• RPM (page 90)

2. On your Jetty environment, replace <YourContrastJarPath> with the path to your Contrast
JAR (page 84) file. Then add the following line to your <JettyDirectory>/start.ini file:

-javaagent:<YourContrastJarPath>

3. If you are using Java 2 security manager, create a contrast.policy file that contains this code.
(Replace <YourContrastJarPath> with the path to your Contrast JAR (page 84) file.)

grant codeBase "file:<YourContrastJarPath>" {
 permission java.security.AllPermission;
};

Then complete these configurations:
• Jetty 7-8: Copy the file to the JETTY_HOME/lib/policy folder. Add --secure to the
JETTY_ARGS environment variable.

• Jetty 9: Add the policy you created to your own configured policy. Replace <YourPolicy> with
the name of your policy and enable the security manager with the standard environment variable
settings:

-Djava.security.manager -Djava.security.policy=<YourPolicy>

IMPORTANT
Jetty 9 and later do not officially support security management policies.

TIP
See the Jetty Policy for more information about using Jetty with Java 2 security
manager.

Contrast Documentation

Agents 107

http://www.mastertheboss.com/jboss-server/jboss-security/using-java-ee-7-security-manager-with-wildfly
https://docs.oracle.com/javase/7/docs/technotes/guides/security/PolicyFiles.html#DefaultLocs
https://docs.oracle.com/javase/7/docs/technotes/guides/security/PolicyFiles.html#DefaultLocs
https://wiki.eclipse.org/Jetty/Tutorial/Jetty-Policy

Configure the Java agent for Tomcat
First, download the Java agent JAR from one of these repositories:

• Maven Central (page 88)
• Debian (page 89)
• RPM (page 90)

Use the guidelines below to configure the Java agent depending on how you run Contrast with Tomcat.

Run from Windows or Unix
The CATALINA_OPTS environment variable is used to pass configuration flags and system properties
to the JVM that runs the Tomcat server.

Tomcat recommends using a setenv script to specify environment variables. You can learn more about
the setenv script, including how to find or create it as needed, by consulting RUNNING.txt, which is
included with every distribution of Tomcat.

To enable Contrast add the -javaagent configuration to CATALINA_OPTS in either setenv.sh, if
running on a Unix-like operating system, or setenv.bat if running on Windows. For example:

• Windows:

set "CATALINA_OPTS=%CATALINA_OPTS% -javaagent:<YourContrastJarPath>"

• Unix:

export CATALINA_OPTS="$CATALINA_OPTS -javaagent:<YourContrastJarPath>"

Run on the Tomcat service in Windows

1. If you run Tomcat as a service, open the Tomcat service manager and change the JVM options to
add the agent.

2. Double-click the Tomcat icon in the system tray (or right-click and select Configure). (If the icon
isn't there, you might have to start it manually by running tomcat9w.exe in the Tomcat bin directory.)

3. Switch to the Java tab to see where you need to add the -javaagent flag.

Run Tomcat with Java 2 security

1. Create a contrast.policy file that contains this code (or append it to the catalina.policy file). Replace
<YourContrastJarPath> with the path to your Contrast JAR (page 84) file. For example:

grant codeBase "file:<YourContrastJarPath>" {
 permission java.security.AllPermission;
};

2. Append the contrast.policy file to the $CATALINA_HOME/conf/catalina.policy file. No additional
configuration is needed. Run your Tomcat installation with command-line parameter -security.

Configure the Java agent for WebLogic
First, download the Java agent JAR from one of these repositories:

• Maven Central (page 88)
• Debian (page 89)
• RPM (page 90)

Use the guidelines below to configure the Java agent depending on how you run Contrast with
WebLogic.

Contrast Documentation

Agents 108

Unix

1. If you launch WebLogic yourself, you must add Contrast's JVM parameter to the startWebLogic file
in your installation's bin directory. For UNIX-based operating systems, the path to this file looks like:

/path/to/appserver/userprojects/domains/base_domain/bin/startWebLogic.sh

2. In this file, add the Contrast engine as a -javaagent to the JAVA_OPTIONS environment
variable before the Java execution step. Replace <YourContrastJarPath> with the path to
your Contrast JAR (page 84) file. For example:

export JAVA_OPTIONS="$JAVA_OPTIONS -javaagent:<YourContrastJarPath>"

Windows

1. For Windows systems, the path looks like:

C:\Oracle\Middleware\userprojects\domains\base_domain\bin\startWebLogic.b
at

2. At the beginning of the file, add the Contrast engine as a -javaagent to the JAVA_OPTIONS
environment variable. Replace <YourContrastJarPath> with the path to your Contrast
JAR (page 84) file. Substitute the WebLogic server for your environment. For example:

set "JAVA_OPTIONS=%JAVA_OPTIONS% -javaagent:<YourContrastJarPath>"

Use Java 2 with WebLogic

1. Create a contrast.policy file that contains this code (or append it to the catalina.policy file). Replace
<YourContrastJarPath> with the path to your Contrast JAR (page 84) file. For example:

grant codeBase "file:<YourContrastJarPath>" {
 permission java.security.AllPermission;
};

2. WebLogic includes a template file under @WL_HOME/server/lib/weblogic.policy which contains the
suggested starting point for booting a WebLogic server with the security manager enabled. Older
versions of WebLogic (10 and prior) will require @WL_HOME in the template file replaced with the
actual path to the root directory of the WebLogic install.

3. When the security manager is enabled, the policy @WL_HOME/server/lib/weblogic.policy
file acts as the default. Otherwise, a custom policy file may be specified with
-Djava.security.policy==<YourPath> where <YourPath> is the path to your custom file.
The == is important as it overrides the default path setting that WebLogic boots with.

TIP
For more information read about using Java Security to protect WebLogic
resources.

Configure the Java agent for WebSphere
First, download the Java agent JAR from one of these repositories:

• Maven Central (page 88)
• Debian (page 89)
• RPM (page 90)

Use the guidelines below to configure the Java agent, depending on how you run Contrast with
WebSphere.

Contrast Documentation

Agents 109

https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/scprg/server_prot.html
https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/scprg/server_prot.html

NOTE
IBM J9 doesn't allow the Java Instrumentation API to alter core Java classes when
using the Shared Classes feature. You must disable this feature by specifying
-Xshareclasses:none in your JVM parameters, as shown above.

Similarly, if -Dcom.ibm.oti.shared.enabled=true is set, you may also run into
problems in older J9 JREs.

Websphere trust and key store
WebSphere maintains its own trust and key store, separate from the trust store included as part of
the Java JRE. The agent starts before WebSphere is initialized and so the WebSphere specific trust
store is not configured. Therefore, the agent uses the default trust store located in the Java JRE/lib/
security/cacerts file, unless extra configuration is provided to the JVM.

However, in some scenarios, (like requiring a proxy server that uses internal only or self-signed
certificates) specific extra steps are necessary. You can either:

1. Install the required certs into both the JRE cacerts trust store and also the WebSphere specific
trust store. This means the certificate chain can be validated by both the agent and also your web
application.

2. Provide Java with the standard trust store system properties to change the trust store to be the
same as the WebSphere trust store. This has the advantage of only requiring the certificate to be
installed in one location: the WebSphere trust store. For example:

-Djavax.net.ssl.trustStore=opt/IBM/WebSphere/AppServer/profiles/AppSrv01/
config/cells/DefaultCell01/nodes/DefaultNode01/trust.p12
-Djavax.net.ssl.trustStoreType=PKCS12
-Djavax.net.ssl.trustStorePassword=secret

WebSphere itself supports methods of encoding the password but these are not available when setting
the trust store password for the agent, as it is executing before WebSphere starts.

Add Contrast with Websphere
If you launch WebSphere yourself, add Contrast's JVM parameter to the server.xml file in your cell
directory. Replace <CellName> and <NodeName> with the name of the cell and node. Replace
<YourContrastJarPath> with the path to your Contrast JAR (page 84) file. For example:

<WebsphereDirectory>\AppServer\profiles\AppSrv01\config\cells\<CellName>\nod
es\<NodeName>\servers\server1\server.xml

<jvmEntries genericJvmArguments="-javaagent:<YourContrastJarPath> -
Xshareclasses:none">
 ...
</jvmEntries>

Add Contrast with the WebSphere Administration Console
You can also add Contrast through the WebSphere administration console by following instructions from
the Websphere support site.

Use Java 2 with WebSphere

1. Create a contrast.policy file that contains this code (or append it to the server.policy file). Replace
<YourContrastJarPath> with the path to your Contrast JAR (page 84) file. For example:

Contrast Documentation

Agents 110

http://www.ibm.com/developerworks/library/j-ibmjava4/index.html
http://www-01.ibm.com/support/docview.wss?uid=swg21417365

grant codeBase "file:<YourContrastJarPath>" {
 permission java.security.AllPermission;
};

2. Append the contrast.policy file to the $WEBSPHERE_HOME/AppServer/profiles/
AppSrv01/properties/server.policy .

3. Enable the security manager with the wsadmin tool:
• Jacl:$AdminTask setAdminActiveSecuritySettings {-enforceJava2Security
true}

• Jython:AdminTask.setAdminActiveSecuritySettings('-enforceJava2Security
true')

TIP
Learn more about Java security manager and enabling and disabling Java 2
security manager using scripting.

Java Quick Start Guide
Contrast uses agents to install sensors that monitor your code for vulnerabilities. Agents analyze for
vulnerabilities in development environments and look for attacks in runtime production environments.

As your application runs, the agent analyzes information (such as HTTP requests, data flow, backend
connections, and library dependencies) and sends vulnerabilities and attacks to Contrast where you
can view, prioritize, and take immediate action on them.

This guide should get Contrast up and running on your application in just a few minutes, so you can see
how it works.

TIP
For future installations, you may want to consider your organization's build tools and
deployment pipeline, your security goals and the environments where you want to use
Contrast. You can read about other methods to install Contrast (page 724) that may
better adapt to your situation.

Prerequisites
This guide assumes you use an application that meets these prerequisites:

• The application must have access to the internet without using a proxy.
• Your web application is packaged in a JAR file.
• It must use supported versions, frameworks, and tools (page 85).

You will also need access to a command line interface (with a chosen directory for downloading the
agent) and your organization's instance of Contrast. If you don't already have Contrast, you can sign up
for the Community Edition (page 33) for free.

Install

1. Download the agent JAR file from Maven Central. (page 88)
2. Download the YAML configuration file from the agent wizard (if you haven't already done so). To do

this, in the Contrast application, select Add new.

Contrast Documentation

Agents 111

https://www.ibm.com/support/knowledgecenter/SSEQTP_9.0.5/com.ibm.websphere.base.doc/ae/csec_rsecmgr2.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/txml_javasecurity.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/txml_javasecurity.html

Select the Application card, select Java as your language, and then select Download YAML
configuration file. The file will download locally and will contain the specific agent keys for your
organization that will connect your application to Contrast.

3. To configure the agent, open the YAML configuration file in an editor.

api:
 url: https://xxx.contrastsecurity.com/Contrast
 api_key: A2xxxxxxxxxxxxxxxxxxxxxxxxxxxG9N
 service_key: 88xxxxxxxxxxxx5Z
 user_name: agent_xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx@OrgName

4. Tell the agent where to find your YAML configuration file by entering this command in your
command line interface.

java -javaagent:./contrast.jar -
Dcontrast.config.path=contrast_security.yaml -jar <ApplicationJarPath>

Be sure to replace <ApplicationJarPath> with the path to your application. For example: ./
MyApplication.jar

5. To verify that Contrast is working, use your application as you normally would. For example, click
on your application's web interface, or send some API commands.
Then in the Contrast web interface, select Applications in the header. You should see the name of
your application.
You can also select Server in the header and you should see the hostname of your (local) server
listed here.

Configure the Java agent
The standard installation (page 70) for all agents uses this order of precedence (page 72).

You can configure the Java agent using:

• Java system properties
• Environment variables (page 76)
• Java YAML template

TIP
Use the Contrast agent configuration editor (page 74) to create or upload a YAML
configuration file, validate YAML and get setting recommendations.

You may need to configure your application’s Java environment to work effectively with the agent if your
system uses:

• Multi-tenant application configuration: If your JVM application server hosts multiple applications
during a deployment, you can distinguish applications from each other and then apply individual
configuration options.
Multi-tenant application configuration: If your JVM application server hosts multiple applications
during a deployment, you can distinguish applications from each other and then apply individual
configuration options.

Contrast Documentation

Agents 112

https://support.contrastsecurity.com/hc/en-us/articles/360052187171
https://support.contrastsecurity.com/hc/ja/articles/360052187171

• TLS certificates (page 171)
• Java 9 Modules (page 171)
• Java 2 Security (page 172)
• Integrations: (page 724) The Contrast Java agent, can also be configured and run in conjunction

with several third-party tools, plugins and integrations. Consult the remote product documentation for
information about how other products work.

Java system properties
Substitute <YourContrastJarPath> with the path to your Contrast JAR (page 84), and use these
commands to learn more about system properties:

• To generate a list of general properties using the Contrast agent JAR, use:

 java -jar <YourContrastJarPath> properties

• Use command line with tools to search for commands. For example, these commands display a list of
proxy-related properties:
Using the built-in filter:

java -jar <YourContrastJarPath> properties --filter=proxy

Java YAML configuration template
Use this template to configure the Java agent using a YAML configuration file. (Learn more about YAML
configuration (page 73).)

Place your YAML file in the default location:

• Unix: /etc/contrast/java/contrast_security.yaml
• Windows: C:/ProgramData/contrast/java/contrast_security.yaml

==
====
Use the properties in this YAML file to configure a Contrast agent.
Go to https://docs.contrastsecurity.com/en/order-of-precedence.html
to determine the order of precedence for configuration values.
==
====

Use this setting if you want to temporarily disable a Contrast agent.
Set to `true` to enable the agent; set to `false` to disable the agent.
enable: true

==
====
api
Use the properties in this section to connect the agent to the Contrast \
UI.
==
====
api:

 # ********************** REQUIRED **********************
 # Set the URL for the Contrast UI.
 url: https://app.contrastsecurity.com/Contrast

 # ********************** REQUIRED **********************

Contrast Documentation

Agents 113

 # Set the API key needed to communicate with the Contrast UI.
 api_key: NEEDS_TO_BE_SET

 # ********************** REQUIRED **********************
 # Set the service key needed to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 service_key: NEEDS_TO_BE_SET

 # ********************** REQUIRED **********************
 # Set the user name used to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 user_name: NEEDS_TO_BE_SET

 # Set the timeout for communicating with TeamServer. This property will be
 # respected over the deprecated legacy configuration *contrast.timeout*.
 # timeout_ms: NEEDS_TO_BE_SET

 # ==
====
 # api.proxy
 # Use the following properties for communication
 # with the Contrast UI over a proxy.
 # ==
====
 # proxy:

 # Set value to `true` for the agent to communicate with
 # the Contrast web interface over a proxy. Set value to
 # `false` if you don't want to use the proxy. If no value is
 # indicated, the presence of a valid **contrast.proxy.host**
 # and **contrast.proxy.port** will enable the proxy.
 # enable: NEEDS_TO_BE_SET

 # Set the proxy host. It must be set with port and scheme.
 # host: localhost

 # Set the proxy port. It must be set with host and scheme.
 # port: 1234

 # Set the proxy scheme (e.g., `http` or
 # `https`). It must be set with host and port.
 # scheme: http

 # Set this property as an alternate for `scheme://host:port`. It takes
 # precedence over the other settings, if specified; however, an error
 # will be thrown if both the URL and individual properties are set.
 # url: NEEDS_TO_BE_SET

 # Set the proxy user.
 # user: NEEDS_TO_BE_SET

 # Set the proxy password.
 # pass: NEEDS_TO_BE_SET

 # Set the proxy authentication type. Value

Contrast Documentation

Agents 114

 # options are `NTLM`, `Digest`, and `Basic`.
 # auth_type: NEEDS_TO_BE_SET

==
====
agent
Use the properties in this section to control the way and frequency
with which the agent communicates to logs and the Contrast UI.
==
====
agent:

 # ==
====
 # agent.diagnostics
 # Use the properties in this section to specify the information the agent
 # should collect and report in order to diagnose problems in the agent.
 #
 # ==
====
 # diagnostics:

 # Set to `false` to disable agent diagnostics
 # enable: true

 # ==
====
 # agent.diagnostics.logger
 # The agent diagnostics logger that will
 # stream agent logs to a remote collector
 #
 # ==
====
 # logger:

 # Enables the agent diagnostics logger that
 # will stream agent logs to a remote collector.
 #
 # enable: false

 # The expiration time for diagnostics (in milliseconds since the
 # Unix Epoch, 1970-01-01). Defaults to 1 hour from when diagnostics
 # start. Maximum is 24 hours from when diagnostics start.
 #
 # expires_ms: NEEDS_TO_BE_SET

 # The log level of agent log messages to send to the diagnostics
 # collector. Levels with lower severity will not be sent.
 #
 # level: DEBUG

 # The unique identifier for the current diagnostics logger
 # collection. Defaults to a new UUID if none is provided.
 #
 # uuid: NEEDS_TO_BE_SET

Contrast Documentation

Agents 115

 # ==
====
 # agent.reporting
 # Use the following settings to configure reporting to the Contrast UI.
 # ==
====
 # reporting:

 # Set the grace period (in milliseconds) after
 # agent shutdown to allow draining pending reports.
 # shutdown_grace_period_ms: 120000

 # ==
====
 # agent.effective_config
 # None
 # ==
====
 # effective_config:

 # ==
====
 # agent.effective_config.reporting
 # None
 # ==
====
 # reporting:

 # Defaults to `true`. Controls whether configuration
 # setting reports are sent to the Contrast web interface.
 # enable: true

 # ==
====
 # agent.logger
 # Define the following properties to set logging values.
 # If the following properties are not defined, the
 # agent uses the logging values from the Contrast UI.
 # ==
====
 # logger:

 # Enable diagnostic logging by setting a path to a log file.
 # While diagnostic logging hurts performance, it generates
 # useful information for debugging Contrast. The value set here
 # is the location to which the agent saves log output. If no
 # log file exists at this location, the agent creates a file.
 #
 # Example - `/opt/Contrast/contrast.log` creates a log in the
 # `/opt/Contrast` directory, and rotates it automatically as needed.
 #
 # path: ./contrast_agent.log

 # Set the the log output level. Valid options are

Contrast Documentation

Agents 116

 # `ERROR`, `WARN`, `INFO`, `DEBUG`, and `TRACE`.
 # level: INFO

 # Set to `true` to redirect all logs to
 # `stdout` instead of the file system.
 # stdout: false

 # Set to `true` to redirect all logs to `stderr` instead of
 # the file system. May be combined with the corresponding
 # `stdout` configuration to write to both streams.
 # stderr: false

 # Change the Contrast logger from a file-sized based rolling scheme
 # to a date-based rolling scheme. At midnight server time, the
 # previous day log is renamed to *file_name.yyyy-MM-dd*. Note -
 # this scheme does not have a size limit; manual log pruning is
 # required. You must set this flag to use the backups and size flags.
 # roll_daily: false

 # Set the roll size for log files in megabytes. The agent will
 # attempt to prevent the log file from being larger than this size.
 # roll_size: 100

 # Set the number of backup files to keep. Set to `0` to disable.
 # backups: 10

 # ==
====
 # agent.security_logger
 # Define the following properties to set security
 # logging values. If not defined, the agent uses the
 # security logging (CEF) values from the Contrast UI.
 # ==
====
 # security_logger:

 # Set the file to which the agent logs security events.
 # path: ./contrast/security.log

 # Set the log level for security logging. Valid options
 # are `ERROR`, `WARN`, `INFO`, `DEBUG`, and `TRACE`.
 # level: ERROR

 # Change the Contrast security logger from a file-sized based rolling
 # scheme to a date-based rolling scheme. At midnight server time,
 # the log from the previous day is renamed to *file_name.yyyy-MM-dd*.
 # Note - this scheme does not have a size limit; manual log
 # pruning will be required. This flag must be set to use the
 # backups and size flags. Value options are `true` or `false`.
 # roll_daily: NEEDS_TO_BE_SET

 # Specify the file size cap (in MB) of each log file.
 # roll_size: NEEDS_TO_BE_SET

 # Specify the number of backup logs that the agent will create before

Contrast Documentation

Agents 117

 # Contrast cleans up the oldest file. A value of `0` means that no \
backups
 # are created, and the log is truncated when it reaches its size cap.
 #
 # Note - this property must be used with
 # `agent.security_logger.roll_daily=false`; otherwise,
 # Contrast continues to log daily and disregard this limit.
 #
 # backups: NEEDS_TO_BE_SET

 # ==
====
 # agent.security_logger.syslog
 # Define the following properties to set Syslog values. If the \
properties
 # are not defined, the agent uses the Syslog values from the Contrast \
UI.
 # ==
====
 # syslog:

 # Set to `true` to enable Syslog logging.
 # enable: NEEDS_TO_BE_SET

 # Set the IP address of the Syslog server
 # to which the agent should send messages.
 # ip: NEEDS_TO_BE_SET

 # Set the port of the Syslog server to
 # which the agent should send messages.
 # port: NEEDS_TO_BE_SET

 # Set the facility code of the messages the agent sends to Syslog.
 # facility: 19

 # Set the log level of Exploited attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_exploited: ALERT

 # Set the log level of Blocked attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_blocked: NOTICE

 # Set the log level of Blocked At Perimeter
 # attacks. Value options are `ALERT`, `CRITICAL`,
 # `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_blocked_perimeter: NOTICE

 # Set the log level of Probed attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_probed: WARNING

 # Set the log level of Suspicious attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_suspicious: WARNING

Contrast Documentation

Agents 118

 # ==
====
 # agent.security_logger.syslog.heartbeat
 # Define the following properties to
 # set the Syslog heartbeat properties.
 # ==
====
 # heartbeat:

 # Set to `true` to enable the Syslog heartbeat.
 # The heartbeat will issue a Syslog message at
 # the INFO level after every interval passes.
 # enable: false

 # Set the interval for sending heartbeat messages
 # to the Syslog server (in milliseconds).
 # interval_ms: 60000

 # ==
====
 # agent.java
 # The following properties apply to any Java agent-wide configurations.
 # ==
====
 # java:

 # Configure the Java agent to skip its application discovery
 # algorithm, and instead associate all libraries, vulnerabilities,
 # and web traffic to a single application with the name specified
 # by this property. This configuration is preferred when deploying
 # Java SE applications with embedded web servers (e.g., applications
 # built with Spring Boot, Dropwizard, and embedded Jetty). When used
 # with an application server, this configuration associates all
 # web traffic with the single, standalone application, including
 # web traffic handled by application server-hosted endpoints that
 # would not be associated with a discovered application otherwise.
 #
 # Note - This settings takes preferences
 # over the `application.name` setting.
 #
 # standalone_app_name: NEEDS_TO_BE_SET

 # By default, the Java agent visits all classes at startup to look
 # for vulnerabilities, which the agent may detect by scanning a
 # class (e.g., hardcoded passwords). Set this property to `false`
 # to disable the default behavior. If disabled, the agent will
 # only visit classes which are likely to require sensors; this
 # can improve application startup time, but may produce fewer
 # findings (most likely findings that require static analysis).
 #
 # scan_all_classes: true

 # By default, the Java agent deeply inspects all JAR and WAR files \
loaded

Contrast Documentation

Agents 119

 # by the JVM to build a comprehensive understanding of the type \
hierarchy.
 # This understanding allows Contrast to instrument sensors into types
 # that it might have overlooked. In most cases, this produces a slight
 # increase in accuracy at the cost of increased application startup
 # time. Set this property to `false` to disable this level of \
inspection.
 #
 # scan_all_code_sources: true

==
====
inventory
Use the properties in this section to override the inventory features.
==
====
inventory:

 # Set to `false` to disable inventory features in the agent.
 # enable: true

 # Define a list of directories where libraries are stored.
 # Directories must be formatted as a semicolon-delimited list.
 # Example - `path1;path2;path3`
 #
 # library_dirs: NEEDS_TO_BE_SET

 # Set the maximum archive unpacking depth when analyzing libraries.
 # library_depth: 10

 # Set the boolean to more aggressively limit the
 # manifest information reported for libraries. If true,
 # the limit is 1,000 characters, otherwise it's 3,000.
 # prune_package_details: true

 # Apply a list of labels to libraries. Labels
 # must be formatted as a comma-delimited list.
 # Example - `label1, label2, label3`
 #
 # tags: NEEDS_TO_BE_SET

==
====
assess
Use the properties in this section to control Assess.
==
====
assess:

 # Include this property to determine if the Assess
 # feature should be enabled. If this property is not
 # present, the decision is delegated to the Contrast UI.
 # enable: false

 # Control the values captured by Assess vulnerability events. `Full`

Contrast Documentation

Agents 120

 # captures most values by calling ToString on objects, which can
 # provide more info but causes increased memory usage. `Minimal`
 # has better performance as it only captures String type objects
 # as strings and uses type name for other object type values.
 # event_detail: minimal

 # Apply a list of labels to vulnerabilities and preflight
 # messages. Labels must be formatted as a comma-delimited list.
 # Example - `label1, label2, label3`
 #
 # tags: NEEDS_TO_BE_SET

 # ==
====
 # assess.sampling
 # Use the following properties to control sampling in the agent.
 # ==
====
 # sampling:

 # Set to `true` to enable sampling.
 # enable: false

 # This property indicates the number of requests
 # to analyze in each window before sampling begins.
 # baseline: 5

 # This property indicates that every *nth*
 # request after the baseline is analyzed.
 # request_frequency: 10

 # This property indicates the duration for which a sample set is valid.
 # window_ms: 180_000

 # ==
====
 # assess.rules
 # Use the following properties to control simple rule configurations.
 # ==
====
 # rules:

 # Define a list of Assess rules to disable in the agent. To view a
 # list of rule names, in Contrast go to user menu > Policy Management >
 # Assess rules. The rules must be formatted as a comma-delimited list.
 #
 # Example - Set `reflected-xss,sql-injection` to disable
 # the reflected-xss rule and the sql-injection rule.
 #
 # disabled_rules: NEEDS_TO_BE_SET

==
====
profile
Set configuration values under a profile name to enable

Contrast Documentation

Agents 121

multi-tenant application configuration on web servers. See
https://support.contrastsecurity.com/hc/en-us/articles/360052187171-Multi-
Application-configuration-with-Contrast-Profiles
for more details.
==
====
profile: {}

==
====
protect
Use the properties in this section to override Protect features.
==
====
protect:

 # Include this property to determine if the Protect
 # feature should be enabled. If this property is not
 # present, the decision is delegated to the Contrast UI.
 # enable: false

 # ==
====
 # protect.rules
 # Use the following properties to set simple rule configurations.
 # ==
====
 # rules:

 # Define a list of Protect rules to disable in the agent. To view a
 # list of rule names, in Contrast go to user menu > Policy Management >
 # Protect rules. The rules must be formatted as a comma-delimited list.
 # disabled_rules: NEEDS_TO_BE_SET

 # ==
====
 # protect.rules.bot-blocker
 # Use the following selection to configure if the
 # agent blocks bots. Set to `true` to enable blocking.
 # ==
====
 # bot-blocker:

 # Set to `true` for the agent to block known bots.
 # enable: false

 # ==
====
 # protect.rules.sql-injection
 # Use the following settings to configure the sql-injection rule.
 # ==
====
 # sql-injection:

 # Set the mode of the rule. Value options are

Contrast Documentation

Agents 122

 # `monitor`, `block`, `block_at_perimeter`, or off.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # Tell the agent to detect when semantic analysis of the query
 # reveals tautologies used in exfiltration attacks (e.g., "or
 # 1=1" or "or 2<>3"). The agent blocks if blocking is enabled.
 # detect_tautologies: false

 # Tell the agent to detect when semantic analysis of the query
 # reveals the invocation of dangerous functions typically used in
 # weaponized exploits. The agent blocks if blocking is enabled.
 # detect_dangerous_functions: false

 # Tell the agent to detect when semantic analysis of the query
 # reveals chained queries, which is uncommon in normal usage but
 # common in exploit. The agent blocks if blocking is enabled.
 # detect_chained_queries: false

 # Tell the agent to detect when semantic analysis of the query
 # reveals database queries are being made for system tables and
 # sensitive information. The agent blocks if blocking is enabled.
 # detect_suspicious_unions: false

 # Tell the agent to be more aggressive in detecting user
 # inputs as SQL comments. This enables the agent to better
 # detect SQL Injection input vectors that use comments to
 # terminate queries. The agent blocks if blocking is enabled.
 # aggressive_comment: false

 # ==
====
 # protect.rules.cmd-injection
 # Use the following properties to configure
 # how the command injection rule works.
 # ==
====
 # cmd-injection:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # Detect when the agent sees user parameters being executed as
 # system commands. The agent blocks if blocking is enabled.
 # detect_parameter_command_backdoors: true

 # Detect when a system command is issued which contains

Contrast Documentation

Agents 123

 # chained commands. The agent blocks if blocking is enabled.
 # detect_chained_commands: true

 # Detect when a system command is issued with an argument matching a
 # known dangerous file path. The agent blocks if blocking is enabled.
 # detect_dangerous_path_args: true

 # Tell the agent to detect when commands come directly
 # from input. The agent blocks if blocking is enabled.
 # detect_phased_commands: true

 # ==
====
 # protect.rules.cmd-injection-process-hardening
 # Use the following settings to configure whether
 # the agent blocks all attempts to start an external
 # process. To enable blocking, set to 'true'.
 # ==
====
 # cmd-injection-process-hardening:

 # Set to `true` to enable the agent to block
 # all attempts to start external processes.
 # enable: false

 # ==
====
 # protect.rules.path-traversal
 # Use the following properties to configure
 # how the path traversal rule works.
 # ==
====
 # path-traversal:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # Detect when custom code attempts to access sensitive
 # system files. The agent blocks if blocking is enabled.
 # detect_custom_code_accessing_system_files: true

 # Detect when users attempt to bypass filters by
 # using "::$DATA" channels or null bytes in file
 # names. The agent blocks if blocking is enabled.
 # detect_common_file_exploits: true

 # ==
====
 # protect.rules.method-tampering
 # Use the following properties to configure

Contrast Documentation

Agents 124

 # how the method tampering rule works.
 # ==
====
 # method-tampering:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.reflected-xss
 # Use the following properties to configure how
 # the reflected cross-site scripting rule works.
 # ==
====
 # reflected-xss:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.xxe
 # Use the following properties to configure
 # how the XML external entity works.
 # ==
====
 # xxe:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.padding-oracle
 # Use the following properties to configure
 # how the padding-oracle rule works.
 # ==
====
 # padding-oracle: {}

Contrast Documentation

Agents 125

==
====
application
Use the properties in this section for
the application(s) hosting this agent.
==
====
application:

 # Override the reported application name.
 #
 # Note - On Java systems where multiple, distinct applications may be
 # served by a single process, this configuration causes the agent to \
report
 # all discovered applications as one application with the given name.
 #
 # name: NEEDS_TO_BE_SET

 # Override the reported application path.
 # path: NEEDS_TO_BE_SET

 # Add the name of the application group with which this
 # application should be associated in the Contrast UI.
 # group: NEEDS_TO_BE_SET

 # Add the application code this application should use in the Contrast UI.
 # code: NEEDS_TO_BE_SET

 # Override the reported application version.
 # version: NEEDS_TO_BE_SET

 # Apply labels to an application. Labels must
 # be formatted as a comma-delimited list.
 # Example - `label1,label2,label3`
 #
 # tags: NEEDS_TO_BE_SET

 # Define a set of `key=value` pairs (which conforms to RFC 2253) for
 # specifying user-defined metadata associated with the application. The
 # set must be formatted as a comma-delimited list of `key=value` pairs.
 # Example - `business-unit=accounting, office=Baltimore`
 #
 # metadata: NEEDS_TO_BE_SET

 # Provide the ID of a session which already exists in the Contrast
 # UI. Vulnerabilities discovered by the agent are associated with
 # this session. If an invalid ID is supplied, the agent will be
 # disabled. This option and `application.session_metadata` are
 # mutually exclusive; if both are set, the agent will be disabled.
 # session_id: NEEDS_TO_BE_SET

 # Provide metadata which is used to create a new session ID in the
 # Contrast UI. Vulnerabilities discovered by the agent are associated with
 # this new session. This value should be formatted as `key=value` pairs

Contrast Documentation

Agents 126

 # (conforming to RFC 2253). Available key names for this configuration
 # are branchName, buildNumber, commitHash, committer, gitTag, repository,
 # testRun, and version. This option and `application.session_id` are
 # mutually exclusive; if both are set the agent will be disabled.
 # session_metadata: NEEDS_TO_BE_SET

==
====
server
Use the settings in this section to set metadata for the server
hosting this agent. Contrast recognizes common, supported server
names, paths, types and environments. Doing this may require a new
server or license, and it may affect functionality of some features.
==
====
server:

 # Override the reported server name.
 # name: localhost

 # Override the reported server path.
 # path: NEEDS_TO_BE_SET

 # Override the reported server type.
 # type: NEEDS_TO_BE_SET

 # Set the environment directly to override the default set
 # by the Contrast UI. This allows the user to configure the
 # environment dynamically at startup rather than manually
 # updating the Server in the Contrast UI themselves afterwards.
 #
 # Valid values include `QA`, `PRODUCTION` and `DEVELOPMENT`.
 # For example, `PRODUCTION` registers this Server as
 # running in a `PRODUCTION` environment, regardless of the
 # organization's default environment in the Contrast UI.
 #
 # environment: NEEDS_TO_BE_SET

 # Apply a list of labels to the server. Labels
 # must be formatted as a comma-delimited list.
 # Example - `label1,label2,label3`
 #
 # tags: NEEDS_TO_BE_SET

==
====
Use the properties in this YAML file to configure a Contrast agent.
Go to https://docs.contrastsecurity.com/en/order-of-precedence.html
to determine the order of precedence for configuration values.
==
====

Use this setting if you want to temporarily disable a Contrast agent.
Set to `true` to enable the agent; set to `false` to disable the agent.

Contrast Documentation

Agents 127

enable: true

==
====
api
Use the properties in this section to connect the agent to the Contrast \
UI.
==
====
api:

 # ********************** REQUIRED **********************
 # Set the URL for the Contrast UI.
 url: https://app.contrastsecurity.com/Contrast

 # ********************** REQUIRED **********************
 # Set the API key needed to communicate with the Contrast UI.
 api_key: NEEDS_TO_BE_SET

 # ********************** REQUIRED **********************
 # Set the service key needed to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 service_key: NEEDS_TO_BE_SET

 # ********************** REQUIRED **********************
 # Set the user name used to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 user_name: NEEDS_TO_BE_SET

 # Set the timeout for communicating with TeamServer. This property will be
 # respected over the deprecated legacy configuration *contrast.timeout*.
 # timeout_ms: NEEDS_TO_BE_SET

 # ==
====
 # api.proxy
 # Use the following properties for communication
 # with the Contrast UI over a proxy.
 # ==
====
 # proxy:

 # Set value to `true` for the agent to communicate with
 # the Contrast web interface over a proxy. Set value to
 # `false` if you don't want to use the proxy. If no value is
 # indicated, the presence of a valid **contrast.proxy.host**
 # and **contrast.proxy.port** will enable the proxy.
 # enable: NEEDS_TO_BE_SET

 # Set the proxy host. It must be set with port and scheme.
 # host: localhost

 # Set the proxy port. It must be set with host and scheme.
 # port: 1234

Contrast Documentation

Agents 128

 # Set the proxy scheme (e.g., `http` or
 # `https`). It must be set with host and port.
 # scheme: http

 # Set this property as an alternate for `scheme://host:port`. It takes
 # precedence over the other settings, if specified; however, an error
 # will be thrown if both the URL and individual properties are set.
 # url: NEEDS_TO_BE_SET

 # Set the proxy user.
 # user: NEEDS_TO_BE_SET

 # Set the proxy password.
 # pass: NEEDS_TO_BE_SET

 # Set the proxy authentication type. Value
 # options are `NTLM`, `Digest`, and `Basic`.
 # auth_type: NEEDS_TO_BE_SET

==
====
agent
Use the properties in this section to control the way and frequency
with which the agent communicates to logs and the Contrast UI.
==
====
agent:

 # ==
====
 # agent.diagnostics
 # Use the properties in this section to specify the information the agent
 # should collect and report in order to diagnose problems in the agent.
 #
 # ==
====
 # diagnostics:

 # Set to `false` to disable agent diagnostics
 # enable: true

 # ==
====
 # agent.diagnostics.logger
 # The agent diagnostics logger that will
 # stream agent logs to a remote collector
 #
 # ==
====
 # logger:

 # Enables the agent diagnostics logger that
 # will stream agent logs to a remote collector.
 #
 # enable: false

Contrast Documentation

Agents 129

 # The expiration time for diagnostics (in milliseconds since the
 # Unix Epoch, 1970-01-01). Defaults to 1 hour from when diagnostics
 # start. Maximum is 24 hours from when diagnostics start.
 #
 # expires_ms: NEEDS_TO_BE_SET

 # The log level of agent log messages to send to the diagnostics
 # collector. Levels with lower severity will not be sent.
 #
 # level: DEBUG

 # The unique identifier for the current diagnostics logger
 # collection. Defaults to a new UUID if none is provided.
 #
 # uuid: NEEDS_TO_BE_SET

 # ==
====
 # agent.reporting
 # Use the following settings to configure reporting to the Contrast UI.
 # ==
====
 # reporting:

 # Set the grace period (in milliseconds) after
 # agent shutdown to allow draining pending reports.
 # shutdown_grace_period_ms: 120000

 # ==
====
 # agent.effective_config
 # None
 # ==
====
 # effective_config:

 # ==
====
 # agent.effective_config.reporting
 # None
 # ==
====
 # reporting:

 # Defaults to `true`. Controls whether configuration
 # setting reports are sent to the Contrast web interface.
 # enable: true

 # ==
====
 # agent.logger
 # Define the following properties to set logging values.
 # If the following properties are not defined, the
 # agent uses the logging values from the Contrast UI.

Contrast Documentation

Agents 130

 # ==
====
 # logger:

 # Enable diagnostic logging by setting a path to a log file.
 # While diagnostic logging hurts performance, it generates
 # useful information for debugging Contrast. The value set here
 # is the location to which the agent saves log output. If no
 # log file exists at this location, the agent creates a file.
 #
 # Example - `/opt/Contrast/contrast.log` creates a log in the
 # `/opt/Contrast` directory, and rotates it automatically as needed.
 #
 # path: ./contrast_agent.log

 # Set the the log output level. Valid options are
 # `ERROR`, `WARN`, `INFO`, `DEBUG`, and `TRACE`.
 # level: INFO

 # Set to `true` to redirect all logs to
 # `stdout` instead of the file system.
 # stdout: false

 # Set to `true` to redirect all logs to `stderr` instead of
 # the file system. May be combined with the corresponding
 # `stdout` configuration to write to both streams.
 # stderr: false

 # Change the Contrast logger from a file-sized based rolling scheme
 # to a date-based rolling scheme. At midnight server time, the
 # previous day log is renamed to *file_name.yyyy-MM-dd*. Note -
 # this scheme does not have a size limit; manual log pruning is
 # required. You must set this flag to use the backups and size flags.
 # roll_daily: false

 # Set the roll size for log files in megabytes. The agent will
 # attempt to prevent the log file from being larger than this size.
 # roll_size: 100

 # Set the number of backup files to keep. Set to `0` to disable.
 # backups: 10

 # ==
====
 # agent.security_logger
 # Define the following properties to set security
 # logging values. If not defined, the agent uses the
 # security logging (CEF) values from the Contrast UI.
 # ==
====
 # security_logger:

 # Set the file to which the agent logs security events.
 # path: ./contrast/security.log

Contrast Documentation

Agents 131

 # Set the log level for security logging. Valid options
 # are `ERROR`, `WARN`, `INFO`, `DEBUG`, and `TRACE`.
 # level: ERROR

 # Change the Contrast security logger from a file-sized based rolling
 # scheme to a date-based rolling scheme. At midnight server time,
 # the log from the previous day is renamed to *file_name.yyyy-MM-dd*.
 # Note - this scheme does not have a size limit; manual log
 # pruning will be required. This flag must be set to use the
 # backups and size flags. Value options are `true` or `false`.
 # roll_daily: NEEDS_TO_BE_SET

 # Specify the file size cap (in MB) of each log file.
 # roll_size: NEEDS_TO_BE_SET

 # Specify the number of backup logs that the agent will create before
 # Contrast cleans up the oldest file. A value of `0` means that no \
backups
 # are created, and the log is truncated when it reaches its size cap.
 #
 # Note - this property must be used with
 # `agent.security_logger.roll_daily=false`; otherwise,
 # Contrast continues to log daily and disregard this limit.
 #
 # backups: NEEDS_TO_BE_SET

 # ==
====
 # agent.security_logger.syslog
 # Define the following properties to set Syslog values. If the \
properties
 # are not defined, the agent uses the Syslog values from the Contrast \
UI.
 # ==
====
 # syslog:

 # Set to `true` to enable Syslog logging.
 # enable: NEEDS_TO_BE_SET

 # Set the IP address of the Syslog server
 # to which the agent should send messages.
 # ip: NEEDS_TO_BE_SET

 # Set the port of the Syslog server to
 # which the agent should send messages.
 # port: NEEDS_TO_BE_SET

 # Set the facility code of the messages the agent sends to Syslog.
 # facility: 19

 # Set the log level of Exploited attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_exploited: ALERT

Contrast Documentation

Agents 132

 # Set the log level of Blocked attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_blocked: NOTICE

 # Set the log level of Blocked At Perimeter
 # attacks. Value options are `ALERT`, `CRITICAL`,
 # `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_blocked_perimeter: NOTICE

 # Set the log level of Probed attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_probed: WARNING

 # Set the log level of Suspicious attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_suspicious: WARNING

 # ==
====
 # agent.security_logger.syslog.heartbeat
 # Define the following properties to
 # set the Syslog heartbeat properties.
 # ==
====
 # heartbeat:

 # Set to `true` to enable the Syslog heartbeat.
 # The heartbeat will issue a Syslog message at
 # the INFO level after every interval passes.
 # enable: false

 # Set the interval for sending heartbeat messages
 # to the Syslog server (in milliseconds).
 # interval_ms: 60000

 # ==
====
 # agent.java
 # The following properties apply to any Java agent-wide configurations.
 # ==
====
 # java:

 # Configure the Java agent to skip its application discovery
 # algorithm, and instead associate all libraries, vulnerabilities,
 # and web traffic to a single application with the name specified
 # by this property. This configuration is preferred when deploying
 # Java SE applications with embedded web servers (e.g., applications
 # built with Spring Boot, Dropwizard, and embedded Jetty). When used
 # with an application server, this configuration associates all
 # web traffic with the single, standalone application, including
 # web traffic handled by application server-hosted endpoints that
 # would not be associated with a discovered application otherwise.
 #
 # Note - This settings takes preferences

Contrast Documentation

Agents 133

 # over the `application.name` setting.
 #
 # standalone_app_name: NEEDS_TO_BE_SET

 # By default, the Java agent visits all classes at startup to look
 # for vulnerabilities, which the agent may detect by scanning a
 # class (e.g., hardcoded passwords). Set this property to `false`
 # to disable the default behavior. If disabled, the agent will
 # only visit classes which are likely to require sensors; this
 # can improve application startup time, but may produce fewer
 # findings (most likely findings that require static analysis).
 #
 # scan_all_classes: true

 # By default, the Java agent deeply inspects all JAR and WAR files \
loaded
 # by the JVM to build a comprehensive understanding of the type \
hierarchy.
 # This understanding allows Contrast to instrument sensors into types
 # that it might have overlooked. In most cases, this produces a slight
 # increase in accuracy at the cost of increased application startup
 # time. Set this property to `false` to disable this level of \
inspection.
 #
 # scan_all_code_sources: true

==
====
inventory
Use the properties in this section to override the inventory features.
==
====
inventory:

 # Set to `false` to disable inventory features in the agent.
 # enable: true

 # Define a list of directories where libraries are stored.
 # Directories must be formatted as a semicolon-delimited list.
 # Example - `path1;path2;path3`
 #
 # library_dirs: NEEDS_TO_BE_SET

 # Set the maximum archive unpacking depth when analyzing libraries.
 # library_depth: 10

 # Set the boolean to more aggressively limit the
 # manifest information reported for libraries. If true,
 # the limit is 1,000 characters, otherwise it's 3,000.
 # prune_package_details: true

 # Apply a list of labels to libraries. Labels
 # must be formatted as a comma-delimited list.
 # Example - `label1, label2, label3`
 #

Contrast Documentation

Agents 134

 # tags: NEEDS_TO_BE_SET

==
====
assess
Use the properties in this section to control Assess.
==
====
assess:

 # Include this property to determine if the Assess
 # feature should be enabled. If this property is not
 # present, the decision is delegated to the Contrast UI.
 # enable: false

 # Control the values captured by Assess vulnerability events. `Full`
 # captures most values by calling ToString on objects, which can
 # provide more info but causes increased memory usage. `Minimal`
 # has better performance as it only captures String type objects
 # as strings and uses type name for other object type values.
 # event_detail: minimal

 # Apply a list of labels to vulnerabilities and preflight
 # messages. Labels must be formatted as a comma-delimited list.
 # Example - `label1, label2, label3`
 #
 # tags: NEEDS_TO_BE_SET

 # ==
====
 # assess.sampling
 # Use the following properties to control sampling in the agent.
 # ==
====
 # sampling:

 # Set to `true` to enable sampling.
 # enable: false

 # This property indicates the number of requests
 # to analyze in each window before sampling begins.
 # baseline: 5

 # This property indicates that every *nth*
 # request after the baseline is analyzed.
 # request_frequency: 10

 # This property indicates the duration for which a sample set is valid.
 # window_ms: 180_000

 # ==
====
 # assess.rules
 # Use the following properties to control simple rule configurations.
 # ==

Contrast Documentation

Agents 135

====
 # rules:

 # Define a list of Assess rules to disable in the agent. To view a
 # list of rule names, in Contrast go to user menu > Policy Management >
 # Assess rules. The rules must be formatted as a comma-delimited list.
 #
 # Example - Set `reflected-xss,sql-injection` to disable
 # the reflected-xss rule and the sql-injection rule.
 #
 # disabled_rules: NEEDS_TO_BE_SET

==
====
profile
Set configuration values under a profile name to enable
multi-tenant application configuration on web servers. See
https://support.contrastsecurity.com/hc/en-us/articles/360052187171-Multi-
Application-configuration-with-Contrast-Profiles
for more details.
==
====
profile: {}

==
====
protect
Use the properties in this section to override Protect features.
==
====
protect:

 # Include this property to determine if the Protect
 # feature should be enabled. If this property is not
 # present, the decision is delegated to the Contrast UI.
 # enable: false

 # ==
====
 # protect.rules
 # Use the following properties to set simple rule configurations.
 # ==
====
 # rules:

 # Define a list of Protect rules to disable in the agent. To view a
 # list of rule names, in Contrast go to user menu > Policy Management >
 # Protect rules. The rules must be formatted as a comma-delimited list.
 # disabled_rules: NEEDS_TO_BE_SET

 # ==
====
 # protect.rules.bot-blocker
 # Use the following selection to configure if the
 # agent blocks bots. Set to `true` to enable blocking.

Contrast Documentation

Agents 136

 # ==
====
 # bot-blocker:

 # Set to `true` for the agent to block known bots.
 # enable: false

 # ==
====
 # protect.rules.sql-injection
 # Use the following settings to configure the sql-injection rule.
 # ==
====
 # sql-injection:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or off.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # Tell the agent to detect when semantic analysis of the query
 # reveals tautologies used in exfiltration attacks (e.g., "or
 # 1=1" or "or 2<>3"). The agent blocks if blocking is enabled.
 # detect_tautologies: false

 # Tell the agent to detect when semantic analysis of the query
 # reveals the invocation of dangerous functions typically used in
 # weaponized exploits. The agent blocks if blocking is enabled.
 # detect_dangerous_functions: false

 # Tell the agent to detect when semantic analysis of the query
 # reveals chained queries, which is uncommon in normal usage but
 # common in exploit. The agent blocks if blocking is enabled.
 # detect_chained_queries: false

 # Tell the agent to detect when semantic analysis of the query
 # reveals database queries are being made for system tables and
 # sensitive information. The agent blocks if blocking is enabled.
 # detect_suspicious_unions: false

 # Tell the agent to be more aggressive in detecting user
 # inputs as SQL comments. This enables the agent to better
 # detect SQL Injection input vectors that use comments to
 # terminate queries. The agent blocks if blocking is enabled.
 # aggressive_comment: false

 # ==
====
 # protect.rules.cmd-injection
 # Use the following properties to configure
 # how the command injection rule works.
 # ==

Contrast Documentation

Agents 137

====
 # cmd-injection:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # Detect when the agent sees user parameters being executed as
 # system commands. The agent blocks if blocking is enabled.
 # detect_parameter_command_backdoors: true

 # Detect when a system command is issued which contains
 # chained commands. The agent blocks if blocking is enabled.
 # detect_chained_commands: true

 # Detect when a system command is issued with an argument matching a
 # known dangerous file path. The agent blocks if blocking is enabled.
 # detect_dangerous_path_args: true

 # Tell the agent to detect when commands come directly
 # from input. The agent blocks if blocking is enabled.
 # detect_phased_commands: true

 # ==
====
 # protect.rules.cmd-injection-process-hardening
 # Use the following settings to configure whether
 # the agent blocks all attempts to start an external
 # process. To enable blocking, set to 'true'.
 # ==
====
 # cmd-injection-process-hardening:

 # Set to `true` to enable the agent to block
 # all attempts to start external processes.
 # enable: false

 # ==
====
 # protect.rules.path-traversal
 # Use the following properties to configure
 # how the path traversal rule works.
 # ==
====
 # path-traversal:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.

Contrast Documentation

Agents 138

 #
 # mode: off

 # Detect when custom code attempts to access sensitive
 # system files. The agent blocks if blocking is enabled.
 # detect_custom_code_accessing_system_files: true

 # Detect when users attempt to bypass filters by
 # using "::$DATA" channels or null bytes in file
 # names. The agent blocks if blocking is enabled.
 # detect_common_file_exploits: true

 # ==
====
 # protect.rules.method-tampering
 # Use the following properties to configure
 # how the method tampering rule works.
 # ==
====
 # method-tampering:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.reflected-xss
 # Use the following properties to configure how
 # the reflected cross-site scripting rule works.
 # ==
====
 # reflected-xss:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.xxe
 # Use the following properties to configure
 # how the XML external entity works.
 # ==
====
 # xxe:

Contrast Documentation

Agents 139

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.padding-oracle
 # Use the following properties to configure
 # how the padding-oracle rule works.
 # ==
====
 # padding-oracle: {}

==
====
application
Use the properties in this section for
the application(s) hosting this agent.
==
====
application:

 # Override the reported application name.
 #
 # Note - On Java systems where multiple, distinct applications may be
 # served by a single process, this configuration causes the agent to \
report
 # all discovered applications as one application with the given name.
 #
 # name: NEEDS_TO_BE_SET

 # Override the reported application path.
 # path: NEEDS_TO_BE_SET

 # Add the name of the application group with which this
 # application should be associated in the Contrast UI.
 # group: NEEDS_TO_BE_SET

 # Add the application code this application should use in the Contrast UI.
 # code: NEEDS_TO_BE_SET

 # Override the reported application version.
 # version: NEEDS_TO_BE_SET

 # Apply labels to an application. Labels must
 # be formatted as a comma-delimited list.
 # Example - `label1,label2,label3`
 #
 # tags: NEEDS_TO_BE_SET

 # Define a set of `key=value` pairs (which conforms to RFC 2253) for

Contrast Documentation

Agents 140

 # specifying user-defined metadata associated with the application. The
 # set must be formatted as a comma-delimited list of `key=value` pairs.
 # Example - `business-unit=accounting, office=Baltimore`
 #
 # metadata: NEEDS_TO_BE_SET

 # Provide the ID of a session which already exists in the Contrast
 # UI. Vulnerabilities discovered by the agent are associated with
 # this session. If an invalid ID is supplied, the agent will be
 # disabled. This option and `application.session_metadata` are
 # mutually exclusive; if both are set, the agent will be disabled.
 # session_id: NEEDS_TO_BE_SET

 # Provide metadata which is used to create a new session ID in the
 # Contrast UI. Vulnerabilities discovered by the agent are associated with
 # this new session. This value should be formatted as `key=value` pairs
 # (conforming to RFC 2253). Available key names for this configuration
 # are branchName, buildNumber, commitHash, committer, gitTag, repository,
 # testRun, and version. This option and `application.session_id` are
 # mutually exclusive; if both are set the agent will be disabled.
 # session_metadata: NEEDS_TO_BE_SET

==
====
server
Use the settings in this section to set metadata for the server
hosting this agent. Contrast recognizes common, supported server
names, paths, types and environments. Doing this may require a new
server or license, and it may affect functionality of some features.
==
====
server:

 # Override the reported server name.
 # name: localhost

 # Override the reported server path.
 # path: NEEDS_TO_BE_SET

 # Override the reported server type.
 # type: NEEDS_TO_BE_SET

 # Set the environment directly to override the default set
 # by the Contrast UI. This allows the user to configure the
 # environment dynamically at startup rather than manually
 # updating the Server in the Contrast UI themselves afterwards.
 #
 # Valid values include `QA`, `PRODUCTION` and `DEVELOPMENT`.
 # For example, `PRODUCTION` registers this Server as
 # running in a `PRODUCTION` environment, regardless of the
 # organization's default environment in the Contrast UI.
 #
 # environment: NEEDS_TO_BE_SET

 # Apply a list of labels to the server. Labels

Contrast Documentation

Agents 141

 # must be formatted as a comma-delimited list.
 # Example - `label1,label2,label3`
 #
 # tags: NEEDS_TO_BE_SET

Java system properties
Substitute <YourContrastJarPath> with the path to your Contrast JAR (page 84), and use these
commands to learn more about system properties:

• To generate a list of general properties using the Contrast agent JAR, use:

 java -jar <YourContrastJarPath> properties

• Use command line with tools to search for commands. For example, these commands display a list of
proxy-related properties:
Using the built-in filter:

java -jar <YourContrastJarPath> properties --filter=proxy

Java YAML configuration template
Use this template to configure the Java agent using a YAML configuration file. (Learn more about YAML
configuration (page 73).)

Place your YAML file in the default location:

• Unix: /etc/contrast/java/contrast_security.yaml
• Windows: C:/ProgramData/contrast/java/contrast_security.yaml

==
====
Use the properties in this YAML file to configure a Contrast agent.
Go to https://docs.contrastsecurity.com/en/order-of-precedence.html
to determine the order of precedence for configuration values.
==
====

Use this setting if you want to temporarily disable a Contrast agent.
Set to `true` to enable the agent; set to `false` to disable the agent.
enable: true

==
====
api
Use the properties in this section to connect the agent to the Contrast \
UI.
==
====
api:

 # ********************** REQUIRED **********************
 # Set the URL for the Contrast UI.
 url: https://app.contrastsecurity.com/Contrast

 # ********************** REQUIRED **********************
 # Set the API key needed to communicate with the Contrast UI.
 api_key: NEEDS_TO_BE_SET

Contrast Documentation

Agents 142

 # ********************** REQUIRED **********************
 # Set the service key needed to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 service_key: NEEDS_TO_BE_SET

 # ********************** REQUIRED **********************
 # Set the user name used to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 user_name: NEEDS_TO_BE_SET

 # Set the timeout for communicating with TeamServer. This property will be
 # respected over the deprecated legacy configuration *contrast.timeout*.
 # timeout_ms: NEEDS_TO_BE_SET

 # ==
====
 # api.proxy
 # Use the following properties for communication
 # with the Contrast UI over a proxy.
 # ==
====
 # proxy:

 # Set value to `true` for the agent to communicate with
 # the Contrast web interface over a proxy. Set value to
 # `false` if you don't want to use the proxy. If no value is
 # indicated, the presence of a valid **contrast.proxy.host**
 # and **contrast.proxy.port** will enable the proxy.
 # enable: NEEDS_TO_BE_SET

 # Set the proxy host. It must be set with port and scheme.
 # host: localhost

 # Set the proxy port. It must be set with host and scheme.
 # port: 1234

 # Set the proxy scheme (e.g., `http` or
 # `https`). It must be set with host and port.
 # scheme: http

 # Set this property as an alternate for `scheme://host:port`. It takes
 # precedence over the other settings, if specified; however, an error
 # will be thrown if both the URL and individual properties are set.
 # url: NEEDS_TO_BE_SET

 # Set the proxy user.
 # user: NEEDS_TO_BE_SET

 # Set the proxy password.
 # pass: NEEDS_TO_BE_SET

 # Set the proxy authentication type. Value
 # options are `NTLM`, `Digest`, and `Basic`.
 # auth_type: NEEDS_TO_BE_SET

Contrast Documentation

Agents 143

==
====
agent
Use the properties in this section to control the way and frequency
with which the agent communicates to logs and the Contrast UI.
==
====
agent:

 # ==
====
 # agent.diagnostics
 # Use the properties in this section to specify the information the agent
 # should collect and report in order to diagnose problems in the agent.
 #
 # ==
====
 # diagnostics:

 # Set to `false` to disable agent diagnostics
 # enable: true

 # ==
====
 # agent.diagnostics.logger
 # The agent diagnostics logger that will
 # stream agent logs to a remote collector
 #
 # ==
====
 # logger:

 # Enables the agent diagnostics logger that
 # will stream agent logs to a remote collector.
 #
 # enable: false

 # The expiration time for diagnostics (in milliseconds since the
 # Unix Epoch, 1970-01-01). Defaults to 1 hour from when diagnostics
 # start. Maximum is 24 hours from when diagnostics start.
 #
 # expires_ms: NEEDS_TO_BE_SET

 # The log level of agent log messages to send to the diagnostics
 # collector. Levels with lower severity will not be sent.
 #
 # level: DEBUG

 # The unique identifier for the current diagnostics logger
 # collection. Defaults to a new UUID if none is provided.
 #
 # uuid: NEEDS_TO_BE_SET

 # ==

Contrast Documentation

Agents 144

====
 # agent.reporting
 # Use the following settings to configure reporting to the Contrast UI.
 # ==
====
 # reporting:

 # Set the grace period (in milliseconds) after
 # agent shutdown to allow draining pending reports.
 # shutdown_grace_period_ms: 120000

 # ==
====
 # agent.effective_config
 # None
 # ==
====
 # effective_config:

 # ==
====
 # agent.effective_config.reporting
 # None
 # ==
====
 # reporting:

 # Defaults to `true`. Controls whether configuration
 # setting reports are sent to the Contrast web interface.
 # enable: true

 # ==
====
 # agent.logger
 # Define the following properties to set logging values.
 # If the following properties are not defined, the
 # agent uses the logging values from the Contrast UI.
 # ==
====
 # logger:

 # Enable diagnostic logging by setting a path to a log file.
 # While diagnostic logging hurts performance, it generates
 # useful information for debugging Contrast. The value set here
 # is the location to which the agent saves log output. If no
 # log file exists at this location, the agent creates a file.
 #
 # Example - `/opt/Contrast/contrast.log` creates a log in the
 # `/opt/Contrast` directory, and rotates it automatically as needed.
 #
 # path: ./contrast_agent.log

 # Set the the log output level. Valid options are
 # `ERROR`, `WARN`, `INFO`, `DEBUG`, and `TRACE`.
 # level: INFO

Contrast Documentation

Agents 145

 # Set to `true` to redirect all logs to
 # `stdout` instead of the file system.
 # stdout: false

 # Set to `true` to redirect all logs to `stderr` instead of
 # the file system. May be combined with the corresponding
 # `stdout` configuration to write to both streams.
 # stderr: false

 # Change the Contrast logger from a file-sized based rolling scheme
 # to a date-based rolling scheme. At midnight server time, the
 # previous day log is renamed to *file_name.yyyy-MM-dd*. Note -
 # this scheme does not have a size limit; manual log pruning is
 # required. You must set this flag to use the backups and size flags.
 # roll_daily: false

 # Set the roll size for log files in megabytes. The agent will
 # attempt to prevent the log file from being larger than this size.
 # roll_size: 100

 # Set the number of backup files to keep. Set to `0` to disable.
 # backups: 10

 # ==
====
 # agent.security_logger
 # Define the following properties to set security
 # logging values. If not defined, the agent uses the
 # security logging (CEF) values from the Contrast UI.
 # ==
====
 # security_logger:

 # Set the file to which the agent logs security events.
 # path: ./contrast/security.log

 # Set the log level for security logging. Valid options
 # are `ERROR`, `WARN`, `INFO`, `DEBUG`, and `TRACE`.
 # level: ERROR

 # Change the Contrast security logger from a file-sized based rolling
 # scheme to a date-based rolling scheme. At midnight server time,
 # the log from the previous day is renamed to *file_name.yyyy-MM-dd*.
 # Note - this scheme does not have a size limit; manual log
 # pruning will be required. This flag must be set to use the
 # backups and size flags. Value options are `true` or `false`.
 # roll_daily: NEEDS_TO_BE_SET

 # Specify the file size cap (in MB) of each log file.
 # roll_size: NEEDS_TO_BE_SET

 # Specify the number of backup logs that the agent will create before
 # Contrast cleans up the oldest file. A value of `0` means that no \
backups

Contrast Documentation

Agents 146

 # are created, and the log is truncated when it reaches its size cap.
 #
 # Note - this property must be used with
 # `agent.security_logger.roll_daily=false`; otherwise,
 # Contrast continues to log daily and disregard this limit.
 #
 # backups: NEEDS_TO_BE_SET

 # ==
====
 # agent.security_logger.syslog
 # Define the following properties to set Syslog values. If the \
properties
 # are not defined, the agent uses the Syslog values from the Contrast \
UI.
 # ==
====
 # syslog:

 # Set to `true` to enable Syslog logging.
 # enable: NEEDS_TO_BE_SET

 # Set the IP address of the Syslog server
 # to which the agent should send messages.
 # ip: NEEDS_TO_BE_SET

 # Set the port of the Syslog server to
 # which the agent should send messages.
 # port: NEEDS_TO_BE_SET

 # Set the facility code of the messages the agent sends to Syslog.
 # facility: 19

 # Set the log level of Exploited attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_exploited: ALERT

 # Set the log level of Blocked attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_blocked: NOTICE

 # Set the log level of Blocked At Perimeter
 # attacks. Value options are `ALERT`, `CRITICAL`,
 # `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_blocked_perimeter: NOTICE

 # Set the log level of Probed attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_probed: WARNING

 # Set the log level of Suspicious attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_suspicious: WARNING

 # ==

Contrast Documentation

Agents 147

====
 # agent.security_logger.syslog.heartbeat
 # Define the following properties to
 # set the Syslog heartbeat properties.
 # ==
====
 # heartbeat:

 # Set to `true` to enable the Syslog heartbeat.
 # The heartbeat will issue a Syslog message at
 # the INFO level after every interval passes.
 # enable: false

 # Set the interval for sending heartbeat messages
 # to the Syslog server (in milliseconds).
 # interval_ms: 60000

 # ==
====
 # agent.java
 # The following properties apply to any Java agent-wide configurations.
 # ==
====
 # java:

 # Configure the Java agent to skip its application discovery
 # algorithm, and instead associate all libraries, vulnerabilities,
 # and web traffic to a single application with the name specified
 # by this property. This configuration is preferred when deploying
 # Java SE applications with embedded web servers (e.g., applications
 # built with Spring Boot, Dropwizard, and embedded Jetty). When used
 # with an application server, this configuration associates all
 # web traffic with the single, standalone application, including
 # web traffic handled by application server-hosted endpoints that
 # would not be associated with a discovered application otherwise.
 #
 # Note - This settings takes preferences
 # over the `application.name` setting.
 #
 # standalone_app_name: NEEDS_TO_BE_SET

 # By default, the Java agent visits all classes at startup to look
 # for vulnerabilities, which the agent may detect by scanning a
 # class (e.g., hardcoded passwords). Set this property to `false`
 # to disable the default behavior. If disabled, the agent will
 # only visit classes which are likely to require sensors; this
 # can improve application startup time, but may produce fewer
 # findings (most likely findings that require static analysis).
 #
 # scan_all_classes: true

 # By default, the Java agent deeply inspects all JAR and WAR files \
loaded
 # by the JVM to build a comprehensive understanding of the type \
hierarchy.

Contrast Documentation

Agents 148

 # This understanding allows Contrast to instrument sensors into types
 # that it might have overlooked. In most cases, this produces a slight
 # increase in accuracy at the cost of increased application startup
 # time. Set this property to `false` to disable this level of \
inspection.
 #
 # scan_all_code_sources: true

==
====
inventory
Use the properties in this section to override the inventory features.
==
====
inventory:

 # Set to `false` to disable inventory features in the agent.
 # enable: true

 # Define a list of directories where libraries are stored.
 # Directories must be formatted as a semicolon-delimited list.
 # Example - `path1;path2;path3`
 #
 # library_dirs: NEEDS_TO_BE_SET

 # Set the maximum archive unpacking depth when analyzing libraries.
 # library_depth: 10

 # Set the boolean to more aggressively limit the
 # manifest information reported for libraries. If true,
 # the limit is 1,000 characters, otherwise it's 3,000.
 # prune_package_details: true

 # Apply a list of labels to libraries. Labels
 # must be formatted as a comma-delimited list.
 # Example - `label1, label2, label3`
 #
 # tags: NEEDS_TO_BE_SET

==
====
assess
Use the properties in this section to control Assess.
==
====
assess:

 # Include this property to determine if the Assess
 # feature should be enabled. If this property is not
 # present, the decision is delegated to the Contrast UI.
 # enable: false

 # Control the values captured by Assess vulnerability events. `Full`
 # captures most values by calling ToString on objects, which can
 # provide more info but causes increased memory usage. `Minimal`

Contrast Documentation

Agents 149

 # has better performance as it only captures String type objects
 # as strings and uses type name for other object type values.
 # event_detail: minimal

 # Apply a list of labels to vulnerabilities and preflight
 # messages. Labels must be formatted as a comma-delimited list.
 # Example - `label1, label2, label3`
 #
 # tags: NEEDS_TO_BE_SET

 # ==
====
 # assess.sampling
 # Use the following properties to control sampling in the agent.
 # ==
====
 # sampling:

 # Set to `true` to enable sampling.
 # enable: false

 # This property indicates the number of requests
 # to analyze in each window before sampling begins.
 # baseline: 5

 # This property indicates that every *nth*
 # request after the baseline is analyzed.
 # request_frequency: 10

 # This property indicates the duration for which a sample set is valid.
 # window_ms: 180_000

 # ==
====
 # assess.rules
 # Use the following properties to control simple rule configurations.
 # ==
====
 # rules:

 # Define a list of Assess rules to disable in the agent. To view a
 # list of rule names, in Contrast go to user menu > Policy Management >
 # Assess rules. The rules must be formatted as a comma-delimited list.
 #
 # Example - Set `reflected-xss,sql-injection` to disable
 # the reflected-xss rule and the sql-injection rule.
 #
 # disabled_rules: NEEDS_TO_BE_SET

==
====
profile
Set configuration values under a profile name to enable
multi-tenant application configuration on web servers. See
https://support.contrastsecurity.com/hc/en-us/articles/360052187171-Multi-

Contrast Documentation

Agents 150

Application-configuration-with-Contrast-Profiles
for more details.
==
====
profile: {}

==
====
protect
Use the properties in this section to override Protect features.
==
====
protect:

 # Include this property to determine if the Protect
 # feature should be enabled. If this property is not
 # present, the decision is delegated to the Contrast UI.
 # enable: false

 # ==
====
 # protect.rules
 # Use the following properties to set simple rule configurations.
 # ==
====
 # rules:

 # Define a list of Protect rules to disable in the agent. To view a
 # list of rule names, in Contrast go to user menu > Policy Management >
 # Protect rules. The rules must be formatted as a comma-delimited list.
 # disabled_rules: NEEDS_TO_BE_SET

 # ==
====
 # protect.rules.bot-blocker
 # Use the following selection to configure if the
 # agent blocks bots. Set to `true` to enable blocking.
 # ==
====
 # bot-blocker:

 # Set to `true` for the agent to block known bots.
 # enable: false

 # ==
====
 # protect.rules.sql-injection
 # Use the following settings to configure the sql-injection rule.
 # ==
====
 # sql-injection:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or off.
 #

Contrast Documentation

Agents 151

 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # Tell the agent to detect when semantic analysis of the query
 # reveals tautologies used in exfiltration attacks (e.g., "or
 # 1=1" or "or 2<>3"). The agent blocks if blocking is enabled.
 # detect_tautologies: false

 # Tell the agent to detect when semantic analysis of the query
 # reveals the invocation of dangerous functions typically used in
 # weaponized exploits. The agent blocks if blocking is enabled.
 # detect_dangerous_functions: false

 # Tell the agent to detect when semantic analysis of the query
 # reveals chained queries, which is uncommon in normal usage but
 # common in exploit. The agent blocks if blocking is enabled.
 # detect_chained_queries: false

 # Tell the agent to detect when semantic analysis of the query
 # reveals database queries are being made for system tables and
 # sensitive information. The agent blocks if blocking is enabled.
 # detect_suspicious_unions: false

 # Tell the agent to be more aggressive in detecting user
 # inputs as SQL comments. This enables the agent to better
 # detect SQL Injection input vectors that use comments to
 # terminate queries. The agent blocks if blocking is enabled.
 # aggressive_comment: false

 # ==
====
 # protect.rules.cmd-injection
 # Use the following properties to configure
 # how the command injection rule works.
 # ==
====
 # cmd-injection:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # Detect when the agent sees user parameters being executed as
 # system commands. The agent blocks if blocking is enabled.
 # detect_parameter_command_backdoors: true

 # Detect when a system command is issued which contains
 # chained commands. The agent blocks if blocking is enabled.
 # detect_chained_commands: true

Contrast Documentation

Agents 152

 # Detect when a system command is issued with an argument matching a
 # known dangerous file path. The agent blocks if blocking is enabled.
 # detect_dangerous_path_args: true

 # Tell the agent to detect when commands come directly
 # from input. The agent blocks if blocking is enabled.
 # detect_phased_commands: true

 # ==
====
 # protect.rules.cmd-injection-process-hardening
 # Use the following settings to configure whether
 # the agent blocks all attempts to start an external
 # process. To enable blocking, set to 'true'.
 # ==
====
 # cmd-injection-process-hardening:

 # Set to `true` to enable the agent to block
 # all attempts to start external processes.
 # enable: false

 # ==
====
 # protect.rules.path-traversal
 # Use the following properties to configure
 # how the path traversal rule works.
 # ==
====
 # path-traversal:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # Detect when custom code attempts to access sensitive
 # system files. The agent blocks if blocking is enabled.
 # detect_custom_code_accessing_system_files: true

 # Detect when users attempt to bypass filters by
 # using "::$DATA" channels or null bytes in file
 # names. The agent blocks if blocking is enabled.
 # detect_common_file_exploits: true

 # ==
====
 # protect.rules.method-tampering
 # Use the following properties to configure
 # how the method tampering rule works.
 # ==

Contrast Documentation

Agents 153

====
 # method-tampering:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.reflected-xss
 # Use the following properties to configure how
 # the reflected cross-site scripting rule works.
 # ==
====
 # reflected-xss:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.xxe
 # Use the following properties to configure
 # how the XML external entity works.
 # ==
====
 # xxe:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.padding-oracle
 # Use the following properties to configure
 # how the padding-oracle rule works.
 # ==
====
 # padding-oracle: {}

==

Contrast Documentation

Agents 154

====
application
Use the properties in this section for
the application(s) hosting this agent.
==
====
application:

 # Override the reported application name.
 #
 # Note - On Java systems where multiple, distinct applications may be
 # served by a single process, this configuration causes the agent to \
report
 # all discovered applications as one application with the given name.
 #
 # name: NEEDS_TO_BE_SET

 # Override the reported application path.
 # path: NEEDS_TO_BE_SET

 # Add the name of the application group with which this
 # application should be associated in the Contrast UI.
 # group: NEEDS_TO_BE_SET

 # Add the application code this application should use in the Contrast UI.
 # code: NEEDS_TO_BE_SET

 # Override the reported application version.
 # version: NEEDS_TO_BE_SET

 # Apply labels to an application. Labels must
 # be formatted as a comma-delimited list.
 # Example - `label1,label2,label3`
 #
 # tags: NEEDS_TO_BE_SET

 # Define a set of `key=value` pairs (which conforms to RFC 2253) for
 # specifying user-defined metadata associated with the application. The
 # set must be formatted as a comma-delimited list of `key=value` pairs.
 # Example - `business-unit=accounting, office=Baltimore`
 #
 # metadata: NEEDS_TO_BE_SET

 # Provide the ID of a session which already exists in the Contrast
 # UI. Vulnerabilities discovered by the agent are associated with
 # this session. If an invalid ID is supplied, the agent will be
 # disabled. This option and `application.session_metadata` are
 # mutually exclusive; if both are set, the agent will be disabled.
 # session_id: NEEDS_TO_BE_SET

 # Provide metadata which is used to create a new session ID in the
 # Contrast UI. Vulnerabilities discovered by the agent are associated with
 # this new session. This value should be formatted as `key=value` pairs
 # (conforming to RFC 2253). Available key names for this configuration
 # are branchName, buildNumber, commitHash, committer, gitTag, repository,

Contrast Documentation

Agents 155

 # testRun, and version. This option and `application.session_id` are
 # mutually exclusive; if both are set the agent will be disabled.
 # session_metadata: NEEDS_TO_BE_SET

==
====
server
Use the settings in this section to set metadata for the server
hosting this agent. Contrast recognizes common, supported server
names, paths, types and environments. Doing this may require a new
server or license, and it may affect functionality of some features.
==
====
server:

 # Override the reported server name.
 # name: localhost

 # Override the reported server path.
 # path: NEEDS_TO_BE_SET

 # Override the reported server type.
 # type: NEEDS_TO_BE_SET

 # Set the environment directly to override the default set
 # by the Contrast UI. This allows the user to configure the
 # environment dynamically at startup rather than manually
 # updating the Server in the Contrast UI themselves afterwards.
 #
 # Valid values include `QA`, `PRODUCTION` and `DEVELOPMENT`.
 # For example, `PRODUCTION` registers this Server as
 # running in a `PRODUCTION` environment, regardless of the
 # organization's default environment in the Contrast UI.
 #
 # environment: NEEDS_TO_BE_SET

 # Apply a list of labels to the server. Labels
 # must be formatted as a comma-delimited list.
 # Example - `label1,label2,label3`
 #
 # tags: NEEDS_TO_BE_SET

==
====
Use the properties in this YAML file to configure a Contrast agent.
Go to https://docs.contrastsecurity.com/en/order-of-precedence.html
to determine the order of precedence for configuration values.
==
====

Use this setting if you want to temporarily disable a Contrast agent.
Set to `true` to enable the agent; set to `false` to disable the agent.
enable: true

Contrast Documentation

Agents 156

==
====
api
Use the properties in this section to connect the agent to the Contrast \
UI.
==
====
api:

 # ********************** REQUIRED **********************
 # Set the URL for the Contrast UI.
 url: https://app.contrastsecurity.com/Contrast

 # ********************** REQUIRED **********************
 # Set the API key needed to communicate with the Contrast UI.
 api_key: NEEDS_TO_BE_SET

 # ********************** REQUIRED **********************
 # Set the service key needed to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 service_key: NEEDS_TO_BE_SET

 # ********************** REQUIRED **********************
 # Set the user name used to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 user_name: NEEDS_TO_BE_SET

 # Set the timeout for communicating with TeamServer. This property will be
 # respected over the deprecated legacy configuration *contrast.timeout*.
 # timeout_ms: NEEDS_TO_BE_SET

 # ==
====
 # api.proxy
 # Use the following properties for communication
 # with the Contrast UI over a proxy.
 # ==
====
 # proxy:

 # Set value to `true` for the agent to communicate with
 # the Contrast web interface over a proxy. Set value to
 # `false` if you don't want to use the proxy. If no value is
 # indicated, the presence of a valid **contrast.proxy.host**
 # and **contrast.proxy.port** will enable the proxy.
 # enable: NEEDS_TO_BE_SET

 # Set the proxy host. It must be set with port and scheme.
 # host: localhost

 # Set the proxy port. It must be set with host and scheme.
 # port: 1234

 # Set the proxy scheme (e.g., `http` or
 # `https`). It must be set with host and port.

Contrast Documentation

Agents 157

 # scheme: http

 # Set this property as an alternate for `scheme://host:port`. It takes
 # precedence over the other settings, if specified; however, an error
 # will be thrown if both the URL and individual properties are set.
 # url: NEEDS_TO_BE_SET

 # Set the proxy user.
 # user: NEEDS_TO_BE_SET

 # Set the proxy password.
 # pass: NEEDS_TO_BE_SET

 # Set the proxy authentication type. Value
 # options are `NTLM`, `Digest`, and `Basic`.
 # auth_type: NEEDS_TO_BE_SET

==
====
agent
Use the properties in this section to control the way and frequency
with which the agent communicates to logs and the Contrast UI.
==
====
agent:

 # ==
====
 # agent.diagnostics
 # Use the properties in this section to specify the information the agent
 # should collect and report in order to diagnose problems in the agent.
 #
 # ==
====
 # diagnostics:

 # Set to `false` to disable agent diagnostics
 # enable: true

 # ==
====
 # agent.diagnostics.logger
 # The agent diagnostics logger that will
 # stream agent logs to a remote collector
 #
 # ==
====
 # logger:

 # Enables the agent diagnostics logger that
 # will stream agent logs to a remote collector.
 #
 # enable: false

 # The expiration time for diagnostics (in milliseconds since the

Contrast Documentation

Agents 158

 # Unix Epoch, 1970-01-01). Defaults to 1 hour from when diagnostics
 # start. Maximum is 24 hours from when diagnostics start.
 #
 # expires_ms: NEEDS_TO_BE_SET

 # The log level of agent log messages to send to the diagnostics
 # collector. Levels with lower severity will not be sent.
 #
 # level: DEBUG

 # The unique identifier for the current diagnostics logger
 # collection. Defaults to a new UUID if none is provided.
 #
 # uuid: NEEDS_TO_BE_SET

 # ==
====
 # agent.reporting
 # Use the following settings to configure reporting to the Contrast UI.
 # ==
====
 # reporting:

 # Set the grace period (in milliseconds) after
 # agent shutdown to allow draining pending reports.
 # shutdown_grace_period_ms: 120000

 # ==
====
 # agent.effective_config
 # None
 # ==
====
 # effective_config:

 # ==
====
 # agent.effective_config.reporting
 # None
 # ==
====
 # reporting:

 # Defaults to `true`. Controls whether configuration
 # setting reports are sent to the Contrast web interface.
 # enable: true

 # ==
====
 # agent.logger
 # Define the following properties to set logging values.
 # If the following properties are not defined, the
 # agent uses the logging values from the Contrast UI.
 # ==
====

Contrast Documentation

Agents 159

 # logger:

 # Enable diagnostic logging by setting a path to a log file.
 # While diagnostic logging hurts performance, it generates
 # useful information for debugging Contrast. The value set here
 # is the location to which the agent saves log output. If no
 # log file exists at this location, the agent creates a file.
 #
 # Example - `/opt/Contrast/contrast.log` creates a log in the
 # `/opt/Contrast` directory, and rotates it automatically as needed.
 #
 # path: ./contrast_agent.log

 # Set the the log output level. Valid options are
 # `ERROR`, `WARN`, `INFO`, `DEBUG`, and `TRACE`.
 # level: INFO

 # Set to `true` to redirect all logs to
 # `stdout` instead of the file system.
 # stdout: false

 # Set to `true` to redirect all logs to `stderr` instead of
 # the file system. May be combined with the corresponding
 # `stdout` configuration to write to both streams.
 # stderr: false

 # Change the Contrast logger from a file-sized based rolling scheme
 # to a date-based rolling scheme. At midnight server time, the
 # previous day log is renamed to *file_name.yyyy-MM-dd*. Note -
 # this scheme does not have a size limit; manual log pruning is
 # required. You must set this flag to use the backups and size flags.
 # roll_daily: false

 # Set the roll size for log files in megabytes. The agent will
 # attempt to prevent the log file from being larger than this size.
 # roll_size: 100

 # Set the number of backup files to keep. Set to `0` to disable.
 # backups: 10

 # ==
====
 # agent.security_logger
 # Define the following properties to set security
 # logging values. If not defined, the agent uses the
 # security logging (CEF) values from the Contrast UI.
 # ==
====
 # security_logger:

 # Set the file to which the agent logs security events.
 # path: ./contrast/security.log

 # Set the log level for security logging. Valid options
 # are `ERROR`, `WARN`, `INFO`, `DEBUG`, and `TRACE`.

Contrast Documentation

Agents 160

 # level: ERROR

 # Change the Contrast security logger from a file-sized based rolling
 # scheme to a date-based rolling scheme. At midnight server time,
 # the log from the previous day is renamed to *file_name.yyyy-MM-dd*.
 # Note - this scheme does not have a size limit; manual log
 # pruning will be required. This flag must be set to use the
 # backups and size flags. Value options are `true` or `false`.
 # roll_daily: NEEDS_TO_BE_SET

 # Specify the file size cap (in MB) of each log file.
 # roll_size: NEEDS_TO_BE_SET

 # Specify the number of backup logs that the agent will create before
 # Contrast cleans up the oldest file. A value of `0` means that no \
backups
 # are created, and the log is truncated when it reaches its size cap.
 #
 # Note - this property must be used with
 # `agent.security_logger.roll_daily=false`; otherwise,
 # Contrast continues to log daily and disregard this limit.
 #
 # backups: NEEDS_TO_BE_SET

 # ==
====
 # agent.security_logger.syslog
 # Define the following properties to set Syslog values. If the \
properties
 # are not defined, the agent uses the Syslog values from the Contrast \
UI.
 # ==
====
 # syslog:

 # Set to `true` to enable Syslog logging.
 # enable: NEEDS_TO_BE_SET

 # Set the IP address of the Syslog server
 # to which the agent should send messages.
 # ip: NEEDS_TO_BE_SET

 # Set the port of the Syslog server to
 # which the agent should send messages.
 # port: NEEDS_TO_BE_SET

 # Set the facility code of the messages the agent sends to Syslog.
 # facility: 19

 # Set the log level of Exploited attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_exploited: ALERT

 # Set the log level of Blocked attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.

Contrast Documentation

Agents 161

 # severity_blocked: NOTICE

 # Set the log level of Blocked At Perimeter
 # attacks. Value options are `ALERT`, `CRITICAL`,
 # `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_blocked_perimeter: NOTICE

 # Set the log level of Probed attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_probed: WARNING

 # Set the log level of Suspicious attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_suspicious: WARNING

 # ==
====
 # agent.security_logger.syslog.heartbeat
 # Define the following properties to
 # set the Syslog heartbeat properties.
 # ==
====
 # heartbeat:

 # Set to `true` to enable the Syslog heartbeat.
 # The heartbeat will issue a Syslog message at
 # the INFO level after every interval passes.
 # enable: false

 # Set the interval for sending heartbeat messages
 # to the Syslog server (in milliseconds).
 # interval_ms: 60000

 # ==
====
 # agent.java
 # The following properties apply to any Java agent-wide configurations.
 # ==
====
 # java:

 # Configure the Java agent to skip its application discovery
 # algorithm, and instead associate all libraries, vulnerabilities,
 # and web traffic to a single application with the name specified
 # by this property. This configuration is preferred when deploying
 # Java SE applications with embedded web servers (e.g., applications
 # built with Spring Boot, Dropwizard, and embedded Jetty). When used
 # with an application server, this configuration associates all
 # web traffic with the single, standalone application, including
 # web traffic handled by application server-hosted endpoints that
 # would not be associated with a discovered application otherwise.
 #
 # Note - This settings takes preferences
 # over the `application.name` setting.
 #

Contrast Documentation

Agents 162

 # standalone_app_name: NEEDS_TO_BE_SET

 # By default, the Java agent visits all classes at startup to look
 # for vulnerabilities, which the agent may detect by scanning a
 # class (e.g., hardcoded passwords). Set this property to `false`
 # to disable the default behavior. If disabled, the agent will
 # only visit classes which are likely to require sensors; this
 # can improve application startup time, but may produce fewer
 # findings (most likely findings that require static analysis).
 #
 # scan_all_classes: true

 # By default, the Java agent deeply inspects all JAR and WAR files \
loaded
 # by the JVM to build a comprehensive understanding of the type \
hierarchy.
 # This understanding allows Contrast to instrument sensors into types
 # that it might have overlooked. In most cases, this produces a slight
 # increase in accuracy at the cost of increased application startup
 # time. Set this property to `false` to disable this level of \
inspection.
 #
 # scan_all_code_sources: true

==
====
inventory
Use the properties in this section to override the inventory features.
==
====
inventory:

 # Set to `false` to disable inventory features in the agent.
 # enable: true

 # Define a list of directories where libraries are stored.
 # Directories must be formatted as a semicolon-delimited list.
 # Example - `path1;path2;path3`
 #
 # library_dirs: NEEDS_TO_BE_SET

 # Set the maximum archive unpacking depth when analyzing libraries.
 # library_depth: 10

 # Set the boolean to more aggressively limit the
 # manifest information reported for libraries. If true,
 # the limit is 1,000 characters, otherwise it's 3,000.
 # prune_package_details: true

 # Apply a list of labels to libraries. Labels
 # must be formatted as a comma-delimited list.
 # Example - `label1, label2, label3`
 #
 # tags: NEEDS_TO_BE_SET

Contrast Documentation

Agents 163

==
====
assess
Use the properties in this section to control Assess.
==
====
assess:

 # Include this property to determine if the Assess
 # feature should be enabled. If this property is not
 # present, the decision is delegated to the Contrast UI.
 # enable: false

 # Control the values captured by Assess vulnerability events. `Full`
 # captures most values by calling ToString on objects, which can
 # provide more info but causes increased memory usage. `Minimal`
 # has better performance as it only captures String type objects
 # as strings and uses type name for other object type values.
 # event_detail: minimal

 # Apply a list of labels to vulnerabilities and preflight
 # messages. Labels must be formatted as a comma-delimited list.
 # Example - `label1, label2, label3`
 #
 # tags: NEEDS_TO_BE_SET

 # ==
====
 # assess.sampling
 # Use the following properties to control sampling in the agent.
 # ==
====
 # sampling:

 # Set to `true` to enable sampling.
 # enable: false

 # This property indicates the number of requests
 # to analyze in each window before sampling begins.
 # baseline: 5

 # This property indicates that every *nth*
 # request after the baseline is analyzed.
 # request_frequency: 10

 # This property indicates the duration for which a sample set is valid.
 # window_ms: 180_000

 # ==
====
 # assess.rules
 # Use the following properties to control simple rule configurations.
 # ==
====
 # rules:

Contrast Documentation

Agents 164

 # Define a list of Assess rules to disable in the agent. To view a
 # list of rule names, in Contrast go to user menu > Policy Management >
 # Assess rules. The rules must be formatted as a comma-delimited list.
 #
 # Example - Set `reflected-xss,sql-injection` to disable
 # the reflected-xss rule and the sql-injection rule.
 #
 # disabled_rules: NEEDS_TO_BE_SET

==
====
profile
Set configuration values under a profile name to enable
multi-tenant application configuration on web servers. See
https://support.contrastsecurity.com/hc/en-us/articles/360052187171-Multi-
Application-configuration-with-Contrast-Profiles
for more details.
==
====
profile: {}

==
====
protect
Use the properties in this section to override Protect features.
==
====
protect:

 # Include this property to determine if the Protect
 # feature should be enabled. If this property is not
 # present, the decision is delegated to the Contrast UI.
 # enable: false

 # ==
====
 # protect.rules
 # Use the following properties to set simple rule configurations.
 # ==
====
 # rules:

 # Define a list of Protect rules to disable in the agent. To view a
 # list of rule names, in Contrast go to user menu > Policy Management >
 # Protect rules. The rules must be formatted as a comma-delimited list.
 # disabled_rules: NEEDS_TO_BE_SET

 # ==
====
 # protect.rules.bot-blocker
 # Use the following selection to configure if the
 # agent blocks bots. Set to `true` to enable blocking.
 # ==
====

Contrast Documentation

Agents 165

 # bot-blocker:

 # Set to `true` for the agent to block known bots.
 # enable: false

 # ==
====
 # protect.rules.sql-injection
 # Use the following settings to configure the sql-injection rule.
 # ==
====
 # sql-injection:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or off.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # Tell the agent to detect when semantic analysis of the query
 # reveals tautologies used in exfiltration attacks (e.g., "or
 # 1=1" or "or 2<>3"). The agent blocks if blocking is enabled.
 # detect_tautologies: false

 # Tell the agent to detect when semantic analysis of the query
 # reveals the invocation of dangerous functions typically used in
 # weaponized exploits. The agent blocks if blocking is enabled.
 # detect_dangerous_functions: false

 # Tell the agent to detect when semantic analysis of the query
 # reveals chained queries, which is uncommon in normal usage but
 # common in exploit. The agent blocks if blocking is enabled.
 # detect_chained_queries: false

 # Tell the agent to detect when semantic analysis of the query
 # reveals database queries are being made for system tables and
 # sensitive information. The agent blocks if blocking is enabled.
 # detect_suspicious_unions: false

 # Tell the agent to be more aggressive in detecting user
 # inputs as SQL comments. This enables the agent to better
 # detect SQL Injection input vectors that use comments to
 # terminate queries. The agent blocks if blocking is enabled.
 # aggressive_comment: false

 # ==
====
 # protect.rules.cmd-injection
 # Use the following properties to configure
 # how the command injection rule works.
 # ==
====
 # cmd-injection:

Contrast Documentation

Agents 166

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # Detect when the agent sees user parameters being executed as
 # system commands. The agent blocks if blocking is enabled.
 # detect_parameter_command_backdoors: true

 # Detect when a system command is issued which contains
 # chained commands. The agent blocks if blocking is enabled.
 # detect_chained_commands: true

 # Detect when a system command is issued with an argument matching a
 # known dangerous file path. The agent blocks if blocking is enabled.
 # detect_dangerous_path_args: true

 # Tell the agent to detect when commands come directly
 # from input. The agent blocks if blocking is enabled.
 # detect_phased_commands: true

 # ==
====
 # protect.rules.cmd-injection-process-hardening
 # Use the following settings to configure whether
 # the agent blocks all attempts to start an external
 # process. To enable blocking, set to 'true'.
 # ==
====
 # cmd-injection-process-hardening:

 # Set to `true` to enable the agent to block
 # all attempts to start external processes.
 # enable: false

 # ==
====
 # protect.rules.path-traversal
 # Use the following properties to configure
 # how the path traversal rule works.
 # ==
====
 # path-traversal:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

Contrast Documentation

Agents 167

 # Detect when custom code attempts to access sensitive
 # system files. The agent blocks if blocking is enabled.
 # detect_custom_code_accessing_system_files: true

 # Detect when users attempt to bypass filters by
 # using "::$DATA" channels or null bytes in file
 # names. The agent blocks if blocking is enabled.
 # detect_common_file_exploits: true

 # ==
====
 # protect.rules.method-tampering
 # Use the following properties to configure
 # how the method tampering rule works.
 # ==
====
 # method-tampering:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.reflected-xss
 # Use the following properties to configure how
 # the reflected cross-site scripting rule works.
 # ==
====
 # reflected-xss:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.xxe
 # Use the following properties to configure
 # how the XML external entity works.
 # ==
====
 # xxe:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.

Contrast Documentation

Agents 168

 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.padding-oracle
 # Use the following properties to configure
 # how the padding-oracle rule works.
 # ==
====
 # padding-oracle: {}

==
====
application
Use the properties in this section for
the application(s) hosting this agent.
==
====
application:

 # Override the reported application name.
 #
 # Note - On Java systems where multiple, distinct applications may be
 # served by a single process, this configuration causes the agent to \
report
 # all discovered applications as one application with the given name.
 #
 # name: NEEDS_TO_BE_SET

 # Override the reported application path.
 # path: NEEDS_TO_BE_SET

 # Add the name of the application group with which this
 # application should be associated in the Contrast UI.
 # group: NEEDS_TO_BE_SET

 # Add the application code this application should use in the Contrast UI.
 # code: NEEDS_TO_BE_SET

 # Override the reported application version.
 # version: NEEDS_TO_BE_SET

 # Apply labels to an application. Labels must
 # be formatted as a comma-delimited list.
 # Example - `label1,label2,label3`
 #
 # tags: NEEDS_TO_BE_SET

 # Define a set of `key=value` pairs (which conforms to RFC 2253) for
 # specifying user-defined metadata associated with the application. The
 # set must be formatted as a comma-delimited list of `key=value` pairs.

Contrast Documentation

Agents 169

 # Example - `business-unit=accounting, office=Baltimore`
 #
 # metadata: NEEDS_TO_BE_SET

 # Provide the ID of a session which already exists in the Contrast
 # UI. Vulnerabilities discovered by the agent are associated with
 # this session. If an invalid ID is supplied, the agent will be
 # disabled. This option and `application.session_metadata` are
 # mutually exclusive; if both are set, the agent will be disabled.
 # session_id: NEEDS_TO_BE_SET

 # Provide metadata which is used to create a new session ID in the
 # Contrast UI. Vulnerabilities discovered by the agent are associated with
 # this new session. This value should be formatted as `key=value` pairs
 # (conforming to RFC 2253). Available key names for this configuration
 # are branchName, buildNumber, commitHash, committer, gitTag, repository,
 # testRun, and version. This option and `application.session_id` are
 # mutually exclusive; if both are set the agent will be disabled.
 # session_metadata: NEEDS_TO_BE_SET

==
====
server
Use the settings in this section to set metadata for the server
hosting this agent. Contrast recognizes common, supported server
names, paths, types and environments. Doing this may require a new
server or license, and it may affect functionality of some features.
==
====
server:

 # Override the reported server name.
 # name: localhost

 # Override the reported server path.
 # path: NEEDS_TO_BE_SET

 # Override the reported server type.
 # type: NEEDS_TO_BE_SET

 # Set the environment directly to override the default set
 # by the Contrast UI. This allows the user to configure the
 # environment dynamically at startup rather than manually
 # updating the Server in the Contrast UI themselves afterwards.
 #
 # Valid values include `QA`, `PRODUCTION` and `DEVELOPMENT`.
 # For example, `PRODUCTION` registers this Server as
 # running in a `PRODUCTION` environment, regardless of the
 # organization's default environment in the Contrast UI.
 #
 # environment: NEEDS_TO_BE_SET

 # Apply a list of labels to the server. Labels
 # must be formatted as a comma-delimited list.
 # Example - `label1,label2,label3`

Contrast Documentation

Agents 170

 #
 # tags: NEEDS_TO_BE_SET

Configure the Java agent for standalone applications

NOTE
Standalone application configuration is not needed with the Java agent 4.X.

If you are still using 3.X, check the Java agent legacy (page 172) documentation.

Transport Layer Security (TLS)
The Contrast Java agent uses a secure TLS connection to communicate with Contrast.

For hosted customers, Contrast uses strong TLSv1.2 connections and certificates signed by industry
standard certificate authorities (CAs). However, on-premises customers may need to configure the
Java agent to use enterprise CAs, and may want the Java agent to send client certificates in the TLS
handshake.

The Contrast Java agent uses the standard Java Cryptography Architecture for configuring
TLS. Specifically, the Java agent uses the system's "TLS" javax.net.ssl.SSLContext. For
most users, this means that you can adjust the certificates trusted by the agent using
the standard javax.net.ssl.trustStore system properties. You can also adjust the
certificate the agent sends when the TLS server requests a client certificate using the
standard javax.net.ssl.keyStore system properties.

This example configures the Java agent to use a custom key store and trust store:

java \
 -javaagent:contrast.jar \
 -Djavax.net.ssl.trustStore=/etc/pki/tls/my-enterprise-truststore.p12 \
 -Djavax.net.ssl.trustStorePassword=changeit \
 -Djavax.net.ssl.trustStoreType=PKCS12 \
 -Djavax.net.ssl.keyStore=/etc/pki/tls/server-client-certificate.p12 \
 -Djavax.net.ssl.keyStorePassword=password \
 -Djavax.net.ssl.keyStoreType=PKCS12 \
 -jar my-server.jar

Use the Java Agent with the Java Platform Module System (JPMS)
JPMS is a way to encapsulate code that is present in Java versions 9 and later. Contrast supports
inspection of modules and launching of applications written with the JPMS.

The Java Agent requires that the java.sql package be required by the application's module-
info.java files:

module mymodule {
 requires java.sql;
}

or supplied by the --add-modules command-line argument at runtime:

java -javaagent:/opt/contrast/contrast-agent.jar --add-modules java.sql --
module-path libs --module mymodule/mycompany.App

Contrast Documentation

Agents 171

https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/SSLContext.html#getDefault()

Java 2 security
The Java 2 security manager allows system administrators to enforce policies that dictate the
permissions available to Java code within a JVM.

If you are using the Java 2 security manager with the Java agent, you will need to configure Java
security policy files to apply permissions to Java code principals.

Java code principals are typically identified by a CodeSource (like, a JAR), and in rare cases, by the
entity that signed the JAR.

For example, in Tomcat’s default catalina.policy file, the policy grants permissions to the JDBC driver
JAR:

// The permission granted to your JDBC driver
grant codeBase "jar:file:${catalina.base}/webapps/examples/WEB-INF/lib/
driver.jar!/-" {
 permission java.net.SocketPermission "dbhost.mycompany.com:5432", \
"connect";
};

The Java 2 security manager can be useful in situations where the system administrator can't fully trust
the code deployed by users. For example, if you are hosting users' applications on multi-tenant Tomcat
instances, you could use the Java 2 security manager to constrain users' applications from taking down
their whole service (for example, by disallowing calls to System.exit()).

If you are using the Java 2 security manager with the Contrast Java agent, you should grant the Java
agent the full set of permissions in your security policy file (java.security.AllPermission). To do this,
replace <YourContrastJarPath> with the path to your Contrast JAR (page 84), and use:

grant codeBase "file:<YourContrastJarPath>" {
 permission java.security.AllPermission;
};

If you are using Java 2 security manager and one of these environments, you may also need to
complete further configuration:

• Glassfish
• Jetty (page 107)
• Tomcat (page 108)
• WebLogic (page 108)
• WebSphere (page 109)
• WildFly (page 106)

Legacy Java agent
Since the release of Java agent 4.x and EOP version 3.9.5, the legacy Contrast Java agent (3.x and
earlier) can be used to analyze Java 6 and 7 web applications running on legacy technologies including:

• Jboss 4.2, 6.1, 7.1
• Weblogic 9, 10, 11

The legacy agent includes a JNDI rule in Protect which provides protection against CVE-45046.

Steps
In agent versions 3.15 and below, for certain features like Route Coverage to function you will need to
set additional properties.

1. Open the YAML configuration file in an editor.

Contrast Documentation

Agents 172

https://tomcat.apache.org/tomcat-9.0-doc/security-manager-howto.html
https://support.contrastsecurity.com/hc/en-us/articles/4408096890772-Configure-the-Java-agent-for-NetBeans

2. In addition to the pre-populated authentication keys, add the
agent.java.standalone_app_name property.
This property assigns the name of your application as you'd like to see it in Contrast. In this
example, replace <MyAppName> with the name you'd like to use:

api:
 url: https://xxx.contrastsecurity.com/Contrast
 api_key: A2xxxxxxxxxxxxxxxxxxxxxxxxxxxG9N
 service_key: 88xxxxxxxxxxxx5Z
 user_name: agent_xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx@OrgName
agent:
 java:
 standalone_app_name: <MyAppName>

The legacy agent can be downloaded from Maven Central Repository Search.

Java agent telemetry
The Contrast Java agent use telemetry to collect usage data. Telemetry is collected when an
instrumented application first loads the agent’s sensors and then periodically (every few hours)
afterwards.

Your privacy is important to us (page 956). The telemetry feature doesn't collect application data.
The data is anonymized before being sent securely to Contrast. Then the aggregated data is stored
encrypted and under restricted access control. Any collected data will be deleted after one year.

The telemetry feature collects the following data (optional):

Agent version Data collected

Java 3.16.XXXX • Operating system and version
• Whether the agent is running in a container
• Memory limits configured in the JVM
• Java version and vendor
• Physical memory available
• CPU count

NOTE
To opt-out of the telemetry feature, set CONTRAST_AGENT_TELEMETRY_OPTOUT
environment variable to true or 1. Telemetry data is securely sent to
telemetry.java.contrastsecurity.com. You can also opt out of telemetry by
blocking communication at the network level.

.NET Framework agent
The Contrast .NET Framework agent analyzes the behavior of .NET web applications as users interact
with these applications.

Once installed, the .NET Framework agent automatically instruments ASP.NET applications deployed
to IIS. Agent analysis is performed as applications are exercised by users (or by automated scripts or
tests).

You can view the results of the agent's analysis in the Contrast application. The Contrast .NET
Framework agent consists of several components:

Contrast Documentation

Agents 173

https://search.maven.org/artifact/com.contrastsecurity/contrast-agent/3.18.1/jar

• Background Windows service: (DotnetAgentService.exe) This service prepares the environment
for instrumentation and manages communication between agent components. This is the main
service that controls agent behavior. You can disable Contrast's instrumentation and analysis by
stopping the agent's background Windows service.

• The .NET Profiler: This instruments applications to weave in method calls out to agent sensors.
• Sensors: These gather security, architecture and library information.
• The .NET Framework Contrast tray (page 228): This is a Windows system tray application that

displays high-level information about the health of the agent.

As a next step, you can:

• Install the .NET Framework agent (page 176)
• View supported technologies (page 174)
• View system requirements (page 175)
• Use the agent with IIS Express (page 222)
• Use application pools in IIS (page 229)

Supported technologies for the .NET Framework agent
The Contrast .NET agent supports analysis of web applications built on the following technologies.

Technology Supported versions Notes

.NET Framework for Windows

Application
runtime
version

4.5 and later Most users are able to use the modern .NET Framework agent, even if their
application targets an older version of .NET 4, due to .NET framework application
compatibility.

Not supported:

• Classic ASP
Classic ASP applications don't run on the .NET runtime.

• Mono runtime
The agent uses the CLR Profiling API to instrument applications. The CLR
Profiling API is a Component Object Model (COM)-based interface exposed by
the CLR. Linux does not support COM. Therefore Mono does not support the
CLR Profiling API and Contrast cannot support Mono.

Server
runtime
version

4.7.1, 4.7.2, 4.8

CLR CLR4

Web servers • IIS
• IIS Express

Application
frameworks

• ASP.NET MVC 3-5
• ASP.NET Web

Forms
• ASP.NET Web

Pages
• IIS-Hosted ASMX-

based Web
Services

• IIS-Hosted Web
API

• IIS-Hosted WCF
Services

• OWIN Hosted
Web API (via a
Windows service
or a command line
application)

These frameworks are explicitly tested, however, you may still be able to analyze
other applications if the framework simply wraps the typical ASP.NET classes (for
example, System.Web.HttpRequest).

Not supported:

• Analysis of .NET Framework ASP.NET Core applications (use our .NET Core
agent (page 232) to analyze .NET Core applications).

• Applications running under partial trust.

Contrast Documentation

Agents 174

NOTE

• For Azure App Service, .NET Framework applications must use the .NET
Framework site extension or NuGet package.
• .NET Core applications must use the .NET Core-specific site extension or NuGet

package.

System requirements for .NET Framework agent
Before installing the .NET Framework agent, you must meet the following requirements:

• You have administrative access to a web server, and the server is supported by Contrast.
• There is a deployed application to be analyzed, and the web application technology is supported by

Contrast.
• IIS can be restarted.
• The web server has network connectivity with Contrast.
• The server meets the minimum requirements.

Requirements Recommended Notes

Server runtime
version

4.7.1 or later While .NET 4.7.1 or later is
required to install the .NET
Framework agent, the agent
can analyze applications that
target .NET 4.5 and later due
to .NET Framework application
compatibility.

Operating system • Windows 10
• Windows Server 2012, 2012 R2, 2016, 2019
• Azure Virtual Machines, Cloud Services, Mobile Services
• Azure App Service

Processor
architecture

• 32-bit
• 64-bit

On 64-bit systems, you can use the
agent to analyze both 32-bit and
64-bit web applications.

CPU At least 4 Minimum: 2

Memory At least 8 GB

The .NET agent roughly doubles the memory requirements of
analyzed applications. Applications should use less than half of
the available memory when the .NET agent is not installed.

Minimum: 4 GB

Server • .NET Framework 4.7.1
• CLR 4 (.NET 4.0 and later).

For servers on earlier versions
use the Legacy .Net Framework
agent.

NOTE

• The .NET Framework agent uses the CLR Profiling API to perform data and code
flow analysis (for example, detect SQL-injection, XSS, weak cryptography) as well
as to detect libraries and technologies used by analyzed applications.

• The Contrast agent can exist alongside other .NET Profiler
agents (page 225), such as performance or APM tools with
the agent.dotnet.enable_chaining configuration setting enabled.

• For servers on earlier versions use the Legacy .NET Framework agent.

Contrast Documentation

Agents 175

https://www.nuget.org/packages/Contrast.NET.Azure.SiteExtension/
https://www.nuget.org/packages/Contrast.NET.Azure.AppService/
https://www.nuget.org/packages/Contrast.NetCore.Azure.SiteExtension/
https://www.nuget.org/packages/Contrast.SensorsNetCore/
https://www.nuget.org/packages/Contrast.SensorsNetCore/
https://support.contrastsecurity.com/hc/en-us/articles/12602794806804-Install-the-NET-Framework-Agent-legacy-
https://support.contrastsecurity.com/hc/en-us/articles/12602794806804-Install-the-NET-Framework-Agent-legacy-
https://support.contrastsecurity.com/hc/en-us/articles/12602794806804-Install-the-NET-Framework-Agent-legacy-

Install the .NET Framework agent
In most deployments, much of the installation is done automatically by the installer or site extension. A
basic installation of the .NET Framework agent looks like this:

1. Download the installer and place it on the server.
2. Run the installer.
3. Use the application as you normally would and verify that Contrast sees your application.

NOTE
If you are using Windows 2008, a version of .NET Framework prior to 4.7.1 or if your
application targets CLR2, you should use the Legacy .Net Framework agent installer.

Specifically, installation varies depending on how you want to install the .NET Framework agent:

• .NET Framework Windows installer (page 176)
• Azure App Service (page 179)
• Into a container, like Docker (page 182)
• Web API-OWIN (page 185)

To auto-upgrade your agent, enable this option with the Agent Upgrade Service (page 188).

.NET Framework agent installer for Windows
The Contrast .NET Framework agent installer is a normal Windows application installer built using
standard MSI technology. It validates that the target server satisfies several requirements (for example,
that the server's operating system is a supported operating system). If all requirements are met, the
installer:

• Registers the .NET Framework agent as a standard Windows program.
• Places the agent’s files on a disk in the specified install location (for example, C:\Program

Files\Contrast\dotnet). This includes several dynamic link libraries (DLLs) and executables, such as
the background Windows service that drives agent behavior.

• Creates the specified data directory for the agent that's primarily used to store agent log files and
configuration (for example, C:\ProgramData\Contrast\dotnet).

• Registers the agent’s background Window service with the operating system.
• Adds the agent's Native Module to IIS. The Native Module registers the agent’s profiler component

with IIS through environment variables. This causes the CLR to load the agent’s profiler, which is
responsible for instrumenting analyzed applications.

• Starts the agent’s background Windows service and Contrast tray (page 228) application. This
service is responsible for:
• Communication with profiler and sensor components through local named pipes.

NOTE

• If you are using the agent with self-hosted Web API and OWIN (page 185) (outside
of IIS), further configuration is needed.

• If you are using Windows 2008, a version of .NET Framework prior to 4.7.1 or if
your application targets CLR2, you should use the Legacy .NET Framework agent
installer.

Contrast Documentation

Agents 176

https://support.contrastsecurity.com/hc/en-us/articles/12602794806804-Install-the-NET-Framework-Agent-legacy-
https://support.contrastsecurity.com/hc/en-us/articles/12602794806804-Install-the-NET-Framework-Agent-legacy-
https://support.contrastsecurity.com/hc/en-us/articles/12602794806804-Install-the-NET-Framework-Agent-legacy-

Install the .NET Framework agent using Contrast:

Install the .NET Framework agent using Contrast

1. In the Contrast web application, select Add new in the top right.
2. Select the Application card.
3. Choose .NET Framework in the application language dropdown, then select IIS hosted and select

the link to Download the agent and YAML configuration file.
4. Extract the downloaded ZIP archive on the web server, and run ContrastSetup.exe. This installs

the .NET Framework agent.
The contrast_security.yaml file is copied to the agent's data directory by the installer and placed in
C:\ProgramData\Contrast\dotnet\contrast_security.yaml by default. The installer does not copy the
YAML file if it already exists at the destination.
• You can use the command line (page 190) to access additional options supported by the .NET

Framework agent installer for Windows.
• If you are using another profiler in this environment, such as an APM like New Relic or

AppDynamics, then you need to enable Contrast profiler chaining (page 225).
5. You can further configure the agent using the .NET Framework YAML template (page 192).
6. Use the application as you normally would and verify that Contrast sees your application.

If there are some applications you don't need to analyze, or if you are trying to be lean on
performance, consider using application pools (page 229) to limit the number of applications
instrumented.

Install the .NET Framework agent using command line
You can use the command line to access additional options supported by the .NET Framework agent
installer for Windows.

The .NET agent can be installed using the Windows UI, and uninstalled or repaired using standard
Windows features (including the Programs and Features Control Panel and Powershell). However, you
may want to use the .NET Framework agent installer for Windows to perform these actions instead for
certain scenarios such as automated scripting.

Use these commands for attended mode:

• Install:ContrastSetup.exe
• Uninstall:ContrastSetup.exe -uninstall
• Repair:ContrastSetup.exe -repair

Use these commands for unattended or silent mode:

• Install:ContrastSetup.exe -s -norestart
• Uninstall:ContrastSetup.exe -uninstall -s -norestart
• Repair:ContrastSetup.exe -repair -s -norestart

The .NET Framework agent installer for Windows supports several additional options that are
accessible when you use the command line for installation.

Option Description Example
INSTALLFOLDER This option specifies the install directory. Program files

will be written to this directory. Defaults are dependent
on OS variables.

INSTALLFOLDER="D:\Programs\Contra
st"

AGENT_EXPLORER_INSTALLFOLDER This option specifies the directory for Agent Explorer
files.

AGENT_EXPLORER_INSTALLFOLDER="C:\
Program Files\Contrast\agent-
explorer"

DATAFOLDER This option specifies the data directory. Logs and the
contrast_security.yaml file will be written to this
directory. Defaults are dependent on OS variables.

DATAFOLDER ="D:\Data\Contrast"

Contrast Documentation

Agents 177

Option Description Example
PathToYaml This option specifies a custom YAML configuration

file. The default value is the contrast_security.yaml file
located relative to the installer's location.

PathToYaml=c:\contrast_security.y
aml

SERVICE_STARTUP_TYPE_MANUAL This option is required when you install, upgrade, and
repair the agent. If you set the value to 1, this option
sets the Contrast service startup type to Manual. The
default value is 0 (Automatic Delayed Start).

SERVICE_STARTUP_TYPE_MANUAL=1

SUPPRESS_SERVICE_START This option is required when you install, upgrade,
and repair the agent. If you set the value to 1, this
option automatically suppresses starting the service.
The default value is 0.

SUPPRESS_SERVICE_START=1

SUPPRESS_RESTARTING_IIS If you set the value of this option to 1, the installer does
not restart IIS.

The default value is 0.

NOTE

• Applications do not load the
agent until IIS restarts.

• Setting
SUPPRESS_RESTARTING_IIS
will prevent an auto-upgrade
from running unless IIS does
not have any active workers
when the upgrade runs.

SUPPRESS_RESTARTING_IIS=0

USE_VIRTUAL_SERVICE_ACCOUNT Run the agent service under a restricted virtual service
account. Configures the service to run as the NT
Service\DotnetAgentSvc virtual account instead of
SYSTEM.

USE_VIRTUAL_SERVICE_ACCOUNT=0

INSECURE_YAML_FILE Restrict edits to the contrast_security.yaml file
of non-elevated users.

INSECURE_YAML_FILE=0

INSTALL_AGENT_EXPLORER If you don't want to install the Agent Explorer, set the
value for this option to 0.

The default value is 1, which installs the Agent
Explorer.

INSTALL_AGENT_EXPLORER=1

INSTALL_UPGRADE_SERVICE If you don't want to install the agent upgrade service,
set the value of this option to 0 . The default value is 1
which installs the agent upgrade service.

INSTALL_UPGRADE_SERVICE=1

UPGRADE_SERVICE_INSTALLFOLDER This option specifies the directory for the upgrade
service files.

UPGRADE_SERVICE_INSTALLFOLDER="C:
\Program Files
(x86)\Contrast\upgrade-service"

TIP
To install the .NET agent using scripts, you can use this command:

ContrastSetup.exe -s PathToYaml=C:\Temp\custom.yaml

This command installs the .NET agent in silent and unattended mode and uses a
custom path to the YAML configuration file.

Contrast Documentation

Agents 178

IMPORTANT
Contrast automatically restarts IIS when you install the agent.

Install the .NET Framework agent for Azure App Service
Use this procedure for an express installation of the .NET Framework agent using Azure Portal
Extensions.

Before you begin
Before you begin, check the system requirements (page 175) and supported technologies (page 174) to
be sure installation will work and ensure best performance.

Steps

1. Create an Azure account, if you don't have one already.
2. Create a .NET web application and deploy it to Azure App Service.
3. Publish your application to Azure, and confirm that it works as expected without Contrast.
4. Ensure that your application is deployed using a Windows plan. (Linux plans do not support Site

Extensions.)

NOTE
If you do not have access to the site extension, you can install the .NET
Framework agent manually with NuGet (page 185).

5. Add the Contrast .NET Framework Agent Site Extension:
• With the Azure portal

a. In the Azure Portal, select your hosted application.
b. Select Extensions.

Contrast Documentation

Agents 179

https://portal.azure.com/#home
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-get-started-dotnet

c. Select Add.
d. Select the Contrast .NET Framework Site Extension for Azure App Service. This is the

extension for .NET Framework applications.
e. Select OK, and agree to the terms and conditions.
f. Wait a few seconds and confirm the site extension installed correctly.

Contrast Documentation

Agents 180

NOTE
The site extension sets a number of environment variables, including:

COR_ENABLE_PROFILING=1
COR_PROFILER={EFEB8EE0-6D39-4347-A5FE-4D0C88BC5BC1}
COR_PROFILER_PATH_32=D:\home\siteextensions\Contrast.Net.Az
ure.SiteExtension\ContrastAppService\runtimes\win-
x86\native\ContrastProfiler.dll
COR_PROFILER_PATH_64=D:\home\siteextensions\Contrast.Net.Az
ure.SiteExtension\ContrastAppService\runtimes\win-
x64\native\ContrastProfiler.dll
CONTRAST_INSTALL_DIRECTORY=D:\home\siteextensions\Contrast.
Net.Azure.SiteExtension\ContrastAppService\
MicrosoftInstrumentationEngine_ConfigPath32_ContrastX86Conf
ig=D:\home\siteextensions\Contrast.Net.Azure.SiteExtension\
runtimes\win-x86\ContrastCieProfiler.config
MicrosoftInstrumentationEngine_ConfigPath64_ContrastX64Conf
ig=D:\home\siteextensions\Contrast.Net.Azure.SiteExtension\
runtimes\win-x64\ContrastCieProfiler.config

If the CLR instrumentation engine (CIE) is configured for the application (for
example, because Application Insights is enabled), Azure should automatically
overwrite the CORECLR_PROFILER* variables to point to the profiler of the
CIE.

The CIE will then use the MicrosoftInstrumentationEngine_* variables to load
the Contrast agent.

If the CIE is not configured for the application, the standard
CORECLR_PROFILER* variables will be used to load the Contrast agent.

• With the Azure CLI
• Use a command similar to this one for a .NET Framework Site Extension

az resource create --resource-group 'myResourceGroup' --resource-
type Microsoft.Web/sites/siteextensions --name myAppService/
siteextensions/Contrast.NET.Azure.SiteExtension --properties "{}"

In this example, the command adds a Contrast .NET Framework Site Extension to an App
Service named "myAppService" in Resource Group "myResourceGroup".

After you add the extension, the Azure Portal displays a list of the installed agents with details
similar to the following:

Name Version Update Available

Contrast.NET Framework Site Extension for Azure App Service 51.0.22 No

TIP
You can also install the agent from the Site Extensions area of your application
management SCM (Kudu) site.

Contrast Documentation

Agents 181

IMPORTANT
If a new version of the .NET Framework agent is available, it's indicated in the
Azure Portal or Kudu dashboard. You must stop the site before starting the
update; otherwise, the update may fail.

6. Add configuration options
• With the Azure Portal

a. In the Azure Portal, select your hosted application.
b. Select Configuration under Settings to configure settings that allow the agent to connect to

Contrast.
c. Select New application setting and add the following values for your application:

Key Value

CONTRAST__API__USER_NAME Replace with your agent username (page 71).

CONTRAST__API__SERVICE_KEY Replace with your agent service key (page 71).

CONTRAST__API__API_KEY Replace with your agent API key (page 71).

CONTRAST__API__URL Defaults to https://app.contrastsecurity.com. Replace with another URL, if
you're using a Contrast application that's hosted elsewhere.

• With the Azure CLI
• Enter a command similar to this one:

az webapp config appsettings set --resource-
group 'myResourceGroup' --name 'myAppService' --settings \
CONTRAST__API__URL=https://app.contrastsecurity.com \
CONTRAST__API__API_KEY={Your API KEY} \
CONTRAST__API__SERVICE_KEY={Your Service key} \
CONTRAST__API__USER_NAME={Your agent user}

Get API values (agent keys (page 71)) from the Contrast web interface or by downloading a YAML
file for the or .NET Framework agent.

7. In the Azure Portal, go to the application overview and Restart the application.
Running the application automatically instruments any application that is running inside of the App
Service. You should begin to see data in Contrast

8. Navigate to the application and confirm the application is reporting to Contrast.
You can view log files to verify that Contrast is running:
a. In the Azure Portal, go to Advanced Tools for the app service.
b. Select Go.
c. In the Kudu Services window, select “Debug console” menu at the top and select “CMD”.
d. Select the LogFiles directory.
e. Select the Contrast directory.
f. Select the dotnet directory.

You will see an agent log named <PID>_Profiler_<App Service Name>_<XXX>.log.
g. Verify that there are no ERROR log entries.

Install the .NET Framework agent using a container

Before you begin
This topic provides general guidance for installing the Contrast .NET Framework agent in a
containerized application, with Docker as an example.

You should have a basic understanding of how containers and related software work. You may need to
adjust the instructions to meet your specific circumstances.

Contrast Documentation

Agents 182

Step 1: Install the agent
In this example, the latest .NET Framework agent is copied. Check DockerHub for available tags.

FROM mcr.microsoft.com/dotnet/framework/sdk:4.8

Hidden for brevity...

Copy the required agent files from the official Contrast agent image.
COPY --from=contrast/agent-dotnet-framework:latest C:\Contrast C:\Contrast

In this example, the latest .NET Framework agent is copied. Check DockerHub for available tags.

Step 2: Configure the agent
Contrast agents accept configuration from multiple sources, with order of precedence documented in
the order of precedence (page 72) section.

A mixed approach is recommended:

• Use a YAML file so that you can share a common configuration between multiple applications.
• Use environment variables for application-specific configuration values, to override values specified in

a YAML file, or for sensitive keys that are injected during runtime.

YAML file configuration:

When you use a YAML file to configure (page 73) the agent, you can use the environment
variable CONTRAST_CONFIG_PATH to indicate where the YAML file is located inside the container.

For example, given a YAML file called contrast_security.yaml that exists in the Docker build
context:

agent:
 logger:
 path: /var/tmp
 level: WARN

You can use the CONTRAST_CONFIG_PATH environment variable to add the agent YAML file to the
container image as follows:

FROM mcr.microsoft.com/dotnet/framework/sdk:4.8

Hidden for brevity...

Add the Contrast agent to the image.
COPY --from=contrast/agent-dotnet-framework:latest C:\Contrast C:\Contrast

Copy the contrast_security.yaml file from Docker build context.
COPY ./contrast_security.yaml /contrast_security.yaml

Finally configure configure the agent to use the YAML file previously \
copied.
ENV CONTRAST_CONFIG_PATH=/contrast_security.yaml

Environment variable configuration:

To set an application-specific configuration, use environment variables. (page 76) This table contains
some common configuration options.

Contrast Documentation

Agents 183

Title Usage Environment variable

Application name Specify the application name reported to Contrast. CONTRAST__APPLICATION__NAME

Application group Specify the application access group for this application during
onboarding.

NOTE
Create application access groups in
Contrast before using this variable.

CONTRAST__APPLICATION__GROUP

Application tags Add labels to an application. CONTRAST__APPLICATION__TAGS

Server name Specify the server name reported to Contrast. CONTRAST__SERVER__NAME

Server
environment

Specify in which environment the application is running.
Valid values for this configuration are: Development, QA, and
Production.

CONTRAST__SERVER__ENVIRONMENT

Server tag Add labels to the server. CONTRAST__SERVER__TAG

Step 3: Add profiler variables and authentication credentials
To enable instrumentation of your application, the .NET agent requires additional environment
variables (page 76). The COR_CLR variables load the agent and the CONTRAST_ variables are for
agent authentication to the server.

Using the Dockerfile example in this topic:

FROM mcr.microsoft.com/dotnet/framework/sdk:4.8

COPY --from=contrast/agent-dotnet-framework:latest C:\Contrast C:\Contrast

ENV COR_ENABLE_PROFILING=1 \
 COR_PROFILER={EFEB8EE0-6D39-4347-A5FE-4D0C88BC5BC1} \
 COR_PROFILER_PATH_32=C:\Contrast\runtimes\win-
x86\native\ContrastProfiler.dll \
 COR_PROFILER_PATH_64=C:\Contrast\runtimes\win-
x64\native\ContrastProfiler.dll

Additionally, the following environment variables (page 71) are required for agent authentication to the
server.

CONTRAST__API__URL=https://app.contrastsecurity.com/Contrast
CONTRAST__API__API_KEY={Your API KEY here}
CONTRAST__API__SERVICE_KEY={Your Service key here}

Get the API values (agent keys (page 71)) from the Contrast web interface or by downloading a YAML
file (page 192) for the .NET Framework agent.

Examples
You can see examples of finished code in this GitHub repository. In particular, these ASP.NET
application use cases might be helpful:

• Default AppPool:
• Dockerfile
• Entrypoint script

• Custom AppPool:
• Dockerfile
• Entrypoint script

Contrast Documentation

Agents 184

https://github.com/Contrast-Security-OSS/contrast-dotnet-examples
https://github.com/Contrast-Security-OSS/contrast-dotnet-examples/blob/master/docker/netframework/Dockerfile-DefaultAppPool
https://github.com/Contrast-Security-OSS/contrast-dotnet-examples/blob/master/docker/netframework/shared/startDefaultAppPool.ps1
https://github.com/Contrast-Security-OSS/contrast-dotnet-examples/blob/master/docker/netframework/Dockerfile-CustomAppPool
https://github.com/Contrast-Security-OSS/contrast-dotnet-examples/blob/master/docker/netframework/shared/startCustomAppPool.ps1

See also
Contrast Support Portal Kubernetes and Contrast

Contrast Support Portal AWS Fargate and Contrast agents

Install the .NET Framework agent manually with NuGet
In some instances, you may prefer to manually install the .NET Framework agent using NuGet.
For example, this can be useful if you are unable to access the Azure App Service site
extension (page 179) or if you prefer to include the .NET Framework agent as a dependency.

1. Add the Contrast NuGet package to your application.
In Visual Studio, under the application project in the Solution Explorer, right-click on References
and select Manage NuGet Packages.
Search for the Contrast.Net.Azure.AppService package, select it and add it to your project.
Build your application. Confirm that Contrast assemblies (for example, ContrastProfiler.dll)
are in a new contrastsecurity folder that's created in the application's root directory.

2. Add application authentication settings for Contrast.
You can either add the authentication settings through the App Service Settings window in Visual
Studio's "Publish to Azure App Service", or directly through the Azure App Service Portal.
Set the Contrast authentication keys that the agent needs to connect to Contrast, and select Save.
You can find your keys (page 71) in your profile.

3. Follow the build process from the dotnet source code repository.
4. Go to the Application settings area of your application in the Azure Portal. Set the Contrast

authentication keys that the agent needs to connect to Contrast, and select Save.
5. Using Visual Studio, publish the application to Azure.

Once the application has loaded, use the application and then open Contrast to verify that the
server and application are active, and that any expected vulnerabilities appear.

Install the .NET Framework agent with Web API and Owin
The .NET agent supports analysis of Web API applications that are self-hosted with the Open Web
Interface for .NET (OWIN). The Web Api can be deployed as a command line application and Windows
service.

NOTE
Web API applications hosted in the IIS integrated pipeline using the SystemWeb
HttpModule and those deployed with an OWIN Host are not supported.

1. Install the .NET agent with .NET Framework agent installer for Windows (page 176).
2. Set the environment variables, depending on how you deploy your Web API hosted by OWIN.

• Deployed as a command line application: Set these environment variables before running the
command line application that is being used to self-host OWIN:

Environment variable Value
COR_ENABLE_PROFILING 1

COR_PROFILER {EFEB8EE0-6D39-4347-A5FE-4D0C88BC5BC1}

COR_PROFILER_PATH_32 C:\Program Files\Contrast\dotnet\runtimes\win-
x86\native\ContrastProfiler.dll

COR_PROFILER_PATH_64 C:\Program Files\Contrast\dotnet\runtimes\win-
x64\native\ContrastProfiler.dll

Contrast Documentation

Agents 185

https://support.contrastsecurity.com/hc/en-us/articles/4402067193364-Java-agent-with-Kubernetes
https://support.contrastsecurity.com/hc/en-us/articles/360056537312-AWS-Fargate-and-Contrast-agents

NOTE
COR_PROFILER_PATH_32 / COR_PROFILER_PATH_64 must match the
installation directory chosen during the install of the .NET Framework agent.

• Deployed as a Windows service:
Install the service that contains the Web API application. Note the name of the service.
Under the service's registry key, create a REG_MULTI_SZ value called Environment. If there is
already an Environment value, add the new values below the existing values.
Set the required environment variables. Each environment variable key/value pair must
be separated by a new line. Environment variables that are unique for each service
can be set under that service's registry key. The service's registry key can be found at:
HKLM\SYSTEM\CurrentControlSet\Services\YourServiceName.

Environment variable Value
COR_ENABLE_PROFILING 1

COR_PROFILER {EFEB8EE0-6D39-4347-A5FE-4D0C88BC5BC1}

COR_PROFILER_PATH_32 C:\Program Files\Contrast\dotnet\runtimes\win-
x86\native\ContrastProfiler.dll

COR_PROFILER_PATH_64 C:\Program Files\Contrast\dotnet\runtimes\win-
x64\native\ContrastProfiler.dll

CONTRAST_CONFIG_PATH C:\ProgramData\contrast\dotnet\contrast_security.yaml

NOTE
COR_PROFILER_PATH_32 / COR_PROFILER_PATH_64 must match the
installation directory chosen during the install of the .NET Framework agent.

3. Restart the service so that new values are loaded. This PowerShell script can be used to set the
required environment variables:

param (
 # Name of the service that it was given at installation.
 [Parameter(Mandatory=$true)]
 [string]
 $ServiceName,

 # Path to the 64-bit Contrast profiler DLL.
 # Defaults to: "C:\Program Files\Contrast\dotnet\runtimes\win-
x64\native\ContrastProfiler.dll"
 [string]
 $ProfilerPath64 = "C:\Program Files\Contrast\dotnet\runtimes\win-
x64\native\ContrastProfiler.dll",

 # Path to the 32-bit Contrast profiler DLL.
 # Defaults to: "C:\Program Files\Contrast\dotnet\runtimes\win-
x86\native\ContrastProfiler.dll"
 [string]
 $ProfilerPath32 = "C:\Program Files\Contrast\dotnet\runtimes\win-
x86\native\ContrastProfiler.dll",

 # Path to the Contrast agent configuration YAML file.
 # Defaults to: \
"C:\ProgramData\contrast\dotnet\contrast_security.yaml"

Contrast Documentation

Agents 186

 [string]
 $ConfigYamlPath = \
"C:\ProgramData\contrast\dotnet\contrast_security.yaml"
)

if (-Not (Test-Path -Path $ProfilerPath64 -PathType Leaf)) {
 Write-Host "Cannot find 64-bit profiler DLL at path \
`"$ProfilerPath64`"."
 exit 1
}

if (-Not (Test-Path -Path $ConfigYamlPath -PathType Leaf)) {
 Write-Host "Cannot find configuration YAML file at path \
`"$ConfigYamlPath`"."
 exit 1
}

if (-Not (Test-Path -Path $ProfilerPath32 -PathType Leaf)) {
 Write-Host "Cannot find 32-bit profiler DLL at path \
`"$ProfilerPath32`"."
 exit 1
}

Check if there is a service with the specified name installed.
$service = Get-Service -Name $ServiceName -ErrorAction Ignore

if ($null -Eq $service) {
 Write-Host "The service `"$ServiceName`" was not found."
 exit 2
}

Create value for multiline registry string.
$values = @(
 "COR_ENABLE_PROFILING=1",
 "COR_PROFILER={EFEB8EE0-6D39-4347-A5FE-4D0C88BC5BC1}",
 "COR_PROFILER_PATH_64=$ProfilerPath64",
 "COR_PROFILER_PATH_32=$ProfilerPath32",
 "CONTRAST_CONFIG_PATH=$ConfigYamlPath"
)

$registryKey = "HKLM:\SYSTEM\CurrentControlSet\Services\$ServiceName"

Check if the Environment value already exists.
$environmentValue = Get-ItemProperty -Path $registryKey -
Name "Environment" -ErrorAction Ignore

if ($null -Ne $environmentValue) {
 # Add the Contrast environment variables to the existing variables.
 $existingValues = \
[System.Collections.ArrayList]@($environmentValue.Environment)
 foreach ($item in $values) {
 $idx = $existingValues.Add($item)
 }
 $values = $existingValues
}

Contrast Documentation

Agents 187

Set the environment variables for the service.
Set-ItemProperty -Path $registryKey -Type MultiString -
Name "Environment" -Value $values

Restart the service so it picks up the new environment variables.
Restart-Service -Name $ServiceName

Agent upgrade service
The Agent Upgrade Service is a background Windows service that helps you keep the .NET Framework
and .NET Core for IIS agents automatically updated to the most recent version on Windows. The Agent
Upgrade Service is included with the .NET Framework Agent Installer and .NET Core Agent for IIS
Installer; the agent installers install two products:

• the corresponding agent, and
• the Agent Upgrade Service.

By default, the Agent Upgrade Service checks for new agent versions released to NuGet when the
service first starts up (when the Windows Server is restarted.) If a new agent version is found, the
Upgrade Service will download the new agent version, verify the installer’s signature, and then finally
execute the installer.

NOTE
When a new agent version installed, IIS will be restarted.

The Agent Upgrade Service is an optional component and is not required for agent Assess and Protect
features.

• De-select the Install the agent upgrade service checkbox when installing the agent if you do not
want to use the Agent Upgrade Service.

• If installing the agent via command line, add INSTALL_UPGRADE_SERVICE=0 argument to not install
the Agent Upgrade Service.

Contrast Documentation

Agents 188

The behavior of the Agent Upgrade Service can be modified via an agent-specific configuration
file in the Contrast data directory. The default location is C:\ProgramData\Contrast\upgrade-
service.

The configuration for upgrading the .NET Core agent is located in the .NET Core YAML file.

enable: true # Set to `true` for the agent to automatically upgrade to \
newer versions.
checks: Startup # Set the frequency with which the agent checks for \
updates. Valid values are `daily` for every 24 hours and on startup, or \
`startup` for *only* when service starts up.
timeout_ms: 60000 # Set the time allocated to execute the downloaded agent \
installer before cancelling.
nuget_repository_url: https://api.nuget.org/v3/index.json # Set the URL of \
the Nuget repository to be used for the .NET Core Agent for IIS Installer
nuget_package_name: Contrast.CoreIIS.Installer # Set the name of the .NET \
Core Agent for IIS Nuget package.
installer_upgrade_code: 82468c04-dfc0-4a4c-9eb9-c4b314c67fdc # Used \
internally to retrieve the current installed agent version from Windows.

NOTE
The Agent Upgrade Service is only included with the agent installer. It is not included
with the manual .NET Core Agent, agent NuGet packages, or Azure App Service site
extensions.

Contrast Documentation

Agents 189

Update the .NET Framework agent
Use either of these methods to update the .NET Framework agent:

• Automatically update the agent
• Use the Contrast API to download the agent and install with the command line

Before you begin

• Confirm your .NET Framework application runs properly without the Contrast .NET Framework agent.
• Previously successfully installed the Contrast .NET Framework agent.
• Defined a policy for how and when to update the agent, based on your change management policy,

workflow, and the environment where you deploy agents.
• Have some familiarity with Windows scripting methods, including PowerShell.

Update the agent automatically
The agent automatically updates through the Agent upgrade service (page 188). Contrast supports and
releases new versions of the agent, versions 20.5.1 and later. The agent does not auto-update if it
detects an unsupported environment (page 174).

Use the Contrast API to download the agent

1. Download the Contrast agent directly from the Contrast API. This step works for both hosted and
on-premises instances of Contrast.
You need an account (service or user) to access the API.

2. Use the silent installer to install the agent with the command line, after downloading the agent.
You can find your credentials by viewing your organization and personal keys (page 518).

See also

• Agent upgrade service (page 188)

Configure the .NET Framework agent
The standard configuration (page 70) uses this order of precedence (page 72).

Configure the .NET Framework agent:

• For Azure App Service (page 190)
• In the web.config file (page 191)
• With the .NET Framework YAML template (page 192)

TIP
Use the Contrast agent configuration editor (page 74) to create or upload a YAML
configuration file, validate YAML and get setting recommendations.

.NET Framework agent-specific settings for Azure App Service
You can configure the .NET Framework agent for Azure App Service in the Azure Portal in three ways:

• Use the environment variable convention of agent configuration. Add all settings to the Application
Settings section of the Configuration blade in the Azure Portal using environment variable
syntax (page 76).

• Specify application configuration options in an application's web.config file. For the agent to pick
up customized application settings, you must place these settings in the application web.config file's

Contrast Documentation

Agents 190

root configuration appSettings section. See application-specific settings for Windows (page 191)
for more details.

• Instead of setting individual options in the Azure Portal, you may use a YAML configuration
file containing Contrast settings. First, upload the file to your Azure web application by
including it in your application deployment or using the Kudu console. Then add an application
setting, CONTRAST_CONFIG_PATH, that points to this file.
For example, To use the contrast_security.yaml file in the root of your application, add an application
setting with key CONTRAST_CONFIG_PATH and value D:\Home\site\wwwroot\contrast_security.yaml.
Application files in Azure App Service are deployed to D:\home\site\wwwroot.

Configure .NET Framework with web.config file
You can specify the configuration options in an application's web.config file or using YAML
configuration. For the agent to pick up customized application settings with web.config, you must place
these settings in the application web.config file's root configuration appSettings section.

For example, two applications hosted in the same application pool will report as different servers if you
configure the contrast.server.name property in the appSettings in each application's web.config
file. Or, you could use web.config to configure the contrast.application.name, like this:

<configuration>
 <appSettings>
 <add key="contrast.application.name" value="MyWebAppName" />
 <add key="contrast.application.version" value="1.2.3" />
 </appSettings>
 <system.web>
 ...

See the .NET Framework YAML template (page 192) for a description of other available properties.

If your agent version is earlier than 21.1.4, only some properties can be configured with web.config as
listed here.

Properties Introduced with this .NET Framework agent version
contrast.application.code 19.6.3

contrast.application.group 19.1.3

contrast.application.metadata 19.1.3

contrast.application.name 19.1.3

contrast.application.session_id 20.6.6

contrast.application.session_metadata 20.6.6

contrast.application.tags 19.1.3

contrast.application.version 19.1.3

contrast.assess.tags 19.1.3

contrast.inventory.tags 19.1.3

NOTE
If contrast.application.name is not specified, the .NET Framework agent will
use the application's virtual path as an application name. If the application is hosted in
the root of a site (meaning, the virtual path is /), the .NET Framework agent will use the
site's name as the application name.

Contrast Documentation

Agents 191

IMPORTANT
Starting with agent version 21.1.4, users can set most agent configuration settings
either with the application's web.config file or with a contrast_security.yaml
file in the same directory as the application. For example, two applications hosted
in the same application pool can now report as different servers by setting
contrast.server.name in the appSettings in each application's web.config file.

The following configuration settings are applied at the process level and cannot be
customized separately for each application. You cannot set these properties using
web.config and must set these configurations another way (like with YAML).

• agent.dotnet.app_pool_denylist
• agent.dotnet.app_pool_allowlist
• agent.dotnet.enable_instrumentation_optimizations
• agent.dotnet.enable_jit_inlining
• agent.dotnet.enable_transparency_checks
• agent.dotnet.enable_struct_dataflow
• assess.enable_control_detection

Additionally, the agent's profiler component uses the process-level settings for the
following keys, while the agent's sensor component will use the application-specific
settings (if specified):

• agent.logger.level
• agent.logger.stdout

.NET Framework YAML template
Configure the .NET Framework agent using a YAML configuration (page 73) file.

The contrast_security.yaml file is copied to the agent's data directory by the installer
(C:\ProgramData\Contrast\dotnet\contrast_security.yaml by default). The installer does not copy the
YAML file if it already exists at the destination.

The template below contains all valid YAML options for this agent. For example, you can use
the file to set the server name reported by the .NET Framework agent. To do this, update
the contrast_security.yaml file, add a new line and the code below, and then continue the installation as
normal.

server:
 name: MyServerName

==
====
Use the properties in this YAML file to configure a Contrast agent.
Go to https://docs.contrastsecurity.com/en/order-of-precedence.html
to determine the order of precedence for configuration values.
==
====

Use this setting if you want to temporarily disable a Contrast agent.
Set to `true` to enable the agent; set to `false` to disable the agent.
enable: true

Contrast Documentation

Agents 192

==
====
api
Use the properties in this section to connect the agent to the Contrast \
UI.
==
====
api:

 # ********************** REQUIRED **********************
 # Set the URL for the Contrast UI.
 url: https://app.contrastsecurity.com/Contrast

 # ********************** REQUIRED **********************
 # Set the API key needed to communicate with the Contrast UI.
 api_key: NEEDS_TO_BE_SET

 # ********************** REQUIRED **********************
 # Set the service key needed to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 service_key: NEEDS_TO_BE_SET

 # ********************** REQUIRED **********************
 # Set the user name used to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 user_name: NEEDS_TO_BE_SET

 # Set the version of the TLS protocol the agent uses to communicate with \
the
 # Contrast UI. The .NET agent default behavior is \
(SecurityProtocolType.Tls
 # | SecurityProtocolType.Tls11 | SecurityProtocolType.Tls12).
 # tls_versions: tls|tls11|tls12

 # ==
====
 # api.certificate
 # Use the following properties for communication
 # with the Contrast UI using certificates.
 # ==
====
 # certificate:

 # If set to `false`, the agent will ignore the
 # certificate configuration in this section.
 # enable: true

 # Determine the location from which the agent loads a client
 # certificate. Value options include `File` or `Store`.
 # certificate_location: NEEDS_TO_BE_SET

 # Set the absolute path to the client certificate's
 # .CER file for communication with Contrast UI. The
 # `certificate_location` property must be set to `File`.

Contrast Documentation

Agents 193

 # cer_file: NEEDS_TO_BE_SET

 # Specify the name of certificate store to open. The
 # `certificate_location` property must be set to `Store`.
 # Value options include `AuthRoot`, `CertificateAuthority`,
 # `My`, `Root`, `TrustedPeople`, or `TrustedPublisher`.
 # store_name: NEEDS_TO_BE_SET

 # Specify the location of the certificate store. The
 # `certificate_location` property must be set to `Store`.
 # Value options include `CurrentUser` or `LocalMachine`.
 # store_location: NEEDS_TO_BE_SET

 # Specify the type of value the agent uses to find the certificate
 # in the collection of certificates from the certificate store.
 # The `certificate_location` property must be set to `Store`.
 # Value options include `FindByIssuerDistinguishedName`,
 # `FindByIssuerName`, `FindBySerialNumber`,
 # `FindBySubjectDistinguishedName`, `FindBySubjectKeyIdentifier`,
 # `FindBySubjectName`, or `FindByThumbprint`.
 # find_type: NEEDS_TO_BE_SET

 # Specify the value the agent uses in combination with
 # `find_type` to find a certification in the certificate store.
 #
 # Note - The agent will use the first certificate from
 # the certificate store that matches this search criteria.
 #
 # find_value: NEEDS_TO_BE_SET

 # ==
====
 # api.proxy
 # Use the following properties for communication
 # with the Contrast UI over a proxy.
 # ==
====
 # proxy:

 # Set value to `true` for the agent to communicate
 # with the Contrast web interface over a proxy. Set
 # value to `false` if you don't want to use the proxy.
 # enable: NEEDS_TO_BE_SET

 # Set the URL for your Proxy Server. The URL form is `scheme://
host:port`.
 # url: NEEDS_TO_BE_SET

 # Set the proxy user.
 # user: NEEDS_TO_BE_SET

 # Set the proxy password.
 # pass: NEEDS_TO_BE_SET

 # Set the proxy authentication type. Value

Contrast Documentation

Agents 194

 # options are `NTLM`, `Digest`, and `Basic`.
 # auth_type: NEEDS_TO_BE_SET

==
====
agent
Use the properties in this section to control the way and frequency
with which the agent communicates to logs and the Contrast UI.
==
====
agent:

 # ==
====
 # agent.logger
 # Define the following properties to set logging values.
 # If the following properties are not defined, the
 # agent uses the logging values from the Contrast UI.
 # ==
====
 # logger:

 # Set the the log output level. Valid options are
 # `ERROR`, `WARN`, `INFO`, `DEBUG`, and `TRACE`.
 # level: INFO

 # Set to `true` to redirect all logs to
 # `stdout` instead of the file system.
 # stdout: false

 # Set the roll size for log files in megabytes. The agent will
 # attempt to prevent the log file from being larger than this size.
 # roll_size: 100

 # Set the number of backup files to keep. Set to `0` to disable.
 # backups: 10

 # ==
====
 # agent.security_logger
 # Define the following properties to set security
 # logging values. If not defined, the agent uses the
 # security logging (CEF) values from the Contrast UI.
 # ==
====
 # security_logger:

 # Set the log level for security logging. Valid options
 # are `ERROR`, `WARN`, `INFO`, `DEBUG`, and `TRACE`.
 # level: ERROR

 # ==
====
 # agent.security_logger.syslog
 # Define the following properties to set Syslog values. If the \

Contrast Documentation

Agents 195

properties
 # are not defined, the agent uses the Syslog values from the Contrast \
UI.
 # ==
====
 # syslog:

 # Set to `true` to enable Syslog logging.
 # enable: NEEDS_TO_BE_SET

 # Set the IP address of the Syslog server
 # to which the agent should send messages.
 # ip: NEEDS_TO_BE_SET

 # Set the port of the Syslog server to
 # which the agent should send messages.
 # port: NEEDS_TO_BE_SET

 # Set the facility code of the messages the agent sends to Syslog.
 # facility: 19

 # Set the log level of Exploited attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_exploited: ALERT

 # Set the log level of Blocked attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_blocked: NOTICE

 # Set the log level of Blocked At Perimeter
 # attacks. Value options are `ALERT`, `CRITICAL`,
 # `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_blocked_perimeter: NOTICE

 # Set the log level of Probed attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_probed: WARNING

 # Set the log level of Suspicious attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_suspicious: WARNING

 # Set the connection type used for Syslog messages.
 # Value options are `UNENCRYPTED` and `ENCRYPTED`.
 # connection_type: UNENCRYPTED

 # ==
====
 # agent.dotnet
 # The following properties apply to any .NET agent-wide configurations.
 # ==
====
 # dotnet:

 # Set a list of application pool names that the agent does not

Contrast Documentation

Agents 196

 # instrument or analyze. Names must be formatted as a comma-separated
 # list. New after .NET Framework 19.1.3 and .NET Core 4.0.2.
 # app_pool_denylist: NEEDS_TO_BE_SET

 # Set a list of application pool names that the agent instruments or
 # analyzes. If set, other application pools are ignored. Allowlist takes
 # precedence over denylist. Names must be formatted as a comma-separated
 # list. New after .NET Framework 19.1.3 and .NET Core 4.0.2.
 # app_pool_allowlist: NEEDS_TO_BE_SET

 # Set a list of application names that the agent does not
 # analyze. (The applications are still instrumented).
 # Names must be formatted as a comma-separated list.
 # New after .NET Framework 19.1.3 and .NET Core 1.0.0.
 # application_denylist: NEEDS_TO_BE_SET

 # Set a list of application names that the agent analyzes.
 # If set, other applications are not analyzed, but are
 # still instrumented. Allowlist takes precedence over
 # denylist. Names must be formatted as a comma-separated
 # list. New after .NET Framework 19.1.3 and .NET Core 1.0.0.
 # application_allowlist: NEEDS_TO_BE_SET

 # Enable a profiler chaining feature to allow Contrast to
 # work alongside other tools that use the CLR Profiling
 # API. Defaults to `true`. New after .NET Framework 19.1.3
 # (Installed Only) and .NET Core 1.9.3 (Installed Only).
 # enable_chaining: true

 # Indicate that the agent should produce a report that
 # summarizes application hosting on the server (e.g.,
 # CLR versions, bitness or pipeline modes). Defaults to
 # `true`. New after .NET Framework 19.1.3 (Installed Only).
 # enable_dvnr: true

 # Indicate that the agent should allow CLR optimizations
 # of JIT-compiled methods. Defaults to `true`. New
 # after .NET Framework 19.1.3 and .NET Core 1.0.0.
 # enable_instrumentation_optimizations: true

 # Indicate that the agent should allow the CLR to inline
 # methods that are not instrumented by Contrast. Defaults to
 # `true`. New after .NET Framework 19.1.3 and .NET Core 1.0.0.
 # enable_jit_inlining: true

 # Indicate that the agent should allow the CLR to perform
 # transparency checks under full trust. Defaults to `false`.
 # New after .NET Framework 19.1.3 and .NET Core 1.0.0.
 # enable_transparency_checks: false

 # Responses for request paths (e.g., HttpRequest.Path)
 # that match this regex are not analyzed. Defaults to
 # `WebResource.axd`. New after .NET Framework 19.1.3.
 # web_module_allowlist: WebResource.axd

Contrast Documentation

Agents 197

 # Set to display ASCII art to std::out on agent startup. Defaults
 # to `true`. New after .NET Framework 20.6.3 and .NET Core 1.0.0.
 # enable_cat: true

 # Sets the maximum amount of time a Protect regular expression
 # is allowed to run before being cancelled. Set to -1 to never
 # cancel regular expression execution. Defaults to `20_000`.
 # New after .NET Framework 20.4.3 and .NET Core 1.5.0.
 # protect_searchers_single_pattern_deadline_ms: 20_000

 # Sets the maximum amount of time a 'Probe Analysis' Protect
 # regular expression is allowed to run before being cancelled. Set
 # to -1 to never cancel regular expression execution. Defaults to
 # `5_000`. New after .NET Framework 20.7.3 and .NET Core 1.5.11.
 # protect_searchers_probe_analysis_single_pattern_deadline_ms: 5_000

 # Sets the maximum amount of time a Protect rule is
 # allowed to run before being cancelled. Set to -1 to never
 # cancel Protect rule execution. Defaults to `60_000`.
 # New after .NET Framework 20.4.3 and .NET Core 1.5.0.
 # protect_searchers_total_rule_deadline_ms: 60_000

 # Sets the maximum amount of time a 'Probe Analysis' Protect
 # rule is allowed to run before being cancelled. Set to -1 to
 # never cancel Protect rule execution. Defaults to `10_000`.
 # New after .NET Framework 20.7.3 and .NET Core 1.5.11.
 # protect_searchers_probe_analysis_total_rule_deadline_ms: 10_000

 # Sets the maximum duration of time agent log files should be kept
 # since last write before being deleted by the agent. Defaults to
 # `604_800_000`. New after .NET Framework 20.6.1 and .NET Core 1.5.5.
 # log_cleanup_maximum_age_ms: 604_800_000

 # Suppresses gathering process-level metrics (process level metrics are
 # gathered by default), used to identify performance problems. Metric
 # counters may further decrease the stability of already unstable
 # systems and can be disabled (set to true) if issues occur. Defaults
 # to `false`. New after .NET Framework 20.6.6 and .NET Core 1.5.10.
 # suppress_metric_counters: false

 # Enable file based application watching. Set to false if
 # file watching is causing locking issues. Defaults to `true`.
 # New after .NET Framework 20.7.3 and .NET Core 1.5.11.
 # enable_file_based_app_watching: true

 # Enables HttpClient isolation using AppDomain remoting. This can be \
used
 # to workaround .NET TLS version limitations at the cost of performance
 # and stability. Enabled by default on applications targeting .NET
 # Framework < 4.7.0, else disabled. New after .NET Framework 21.5.1.
 # enable_http_client_app_domain_isolation: false

 # Enables LINQ optimizations to improve performance
 # at the cost of possible false negatives. Defaults
 # to `true`. New after .NET Framework 50.0.1.

Contrast Documentation

Agents 198

 # enable_linq_optimizations: true

 # ==
====
 # agent.dotnet.file_analysis_time_ms
 # Controls the interval in milliseconds to perform file
 # analysis for supported rules. Setting a value > 0 will
 # result in the job running at that interval and not just when
 # the application loads. If set to `-1`, the job just runs
 # once. Defaults to `-1`. New after .NET Framework 50.0.15.
 # ==
====
 # file_analysis_time_ms: {}

==
====
inventory
Use the properties in this section to override the inventory features.
==
====
inventory:

 # Set to `false` to disable inventory features in the agent.
 # enable: true

 # Apply a list of labels to libraries. Labels
 # must be formatted as a comma-delimited list.
 # Example - `label1, label2, label3`
 #
 # tags: NEEDS_TO_BE_SET

 # Specifies the cloud provider from which the agent should gather metadata
 # (such as resource identifiers). Options are `AWS`, `Azure`, or `GCP`.
 #
 # gather_metadata_via: NEEDS_TO_BE_SET

==
====
assess
Use the properties in this section to control Assess.
==
====
assess:

 # Include this property to determine if the Assess
 # feature should be enabled. If this property is not
 # present, the decision is delegated to the Contrast UI.
 # enable: false

 # Control the values captured by Assess vulnerability events. `Full`
 # captures most values by calling ToString on objects, which can
 # provide more info but causes increased memory usage. `Minimal`
 # has better performance as it only captures String type objects
 # as strings and uses type name for other object type values.
 # event_detail: minimal

Contrast Documentation

Agents 199

 # Apply a list of labels to vulnerabilities and preflight
 # messages. Labels must be formatted as a comma-delimited list.
 # Example - `label1, label2, label3`
 #
 # tags: NEEDS_TO_BE_SET

 # Value options are `ALL`, `SOME`, or `NONE`.
 # stacktraces: ALL

 # ==
====
 # assess.sampling
 # Use the following properties to control sampling in the agent.
 # ==
====
 # sampling:

 # Set to `true` to enable sampling.
 # enable: false

 # This property indicates the number of requests
 # to analyze in each window before sampling begins.
 # baseline: 5

 # This property indicates that every *nth*
 # request after the baseline is analyzed.
 # request_frequency: 10

 # This property indicates the duration for which a sample set is valid.
 # window_ms: 180_000

 # ==
====
 # assess.rules
 # Use the following properties to control simple rule configurations.
 # ==
====
 # rules:

 # Define a list of Assess rules to disable in the agent. To view a
 # list of rule names, in Contrast go to user menu > Policy Management >
 # Assess rules. The rules must be formatted as a comma-delimited list.
 #
 # Example - Set `reflected-xss,sql-injection` to disable
 # the reflected-xss rule and the sql-injection rule.
 #
 # disabled_rules: NEEDS_TO_BE_SET

==
====
protect
Use the properties in this section to override Protect features.
==
====

Contrast Documentation

Agents 200

protect:

 # Include this property to determine if the Protect
 # feature should be enabled. If this property is not
 # present, the decision is delegated to the Contrast UI.
 # enable: false

 # ==
====
 # protect.rules
 # Use the following properties to set simple rule configurations.
 # ==
====
 # rules:

 # Define a list of Protect rules to disable in the agent. To view a
 # list of rule names, in Contrast go to user menu > Policy Management >
 # Protect rules. The rules must be formatted as a comma-delimited list.
 # disabled_rules: NEEDS_TO_BE_SET

 # ==
====
 # protect.rules.bot-blocker
 # Use the following selection to configure if the
 # agent blocks bots. Set to `true` to enable blocking.
 # ==
====
 # bot-blocker:

 # Set to `true` for the agent to block known bots.
 # enable: false

 # ==
====
 # protect.rules.sql-injection
 # Use the following settings to configure the sql-injection rule.
 # ==
====
 # sql-injection:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or off.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.sql-injection-semantic-chaining
 # Use the following properties to configure how the
 # sql injection semantic analysis chaining rule works.
 # ==
====

Contrast Documentation

Agents 201

 # sql-injection-semantic-chaining:

 # Set the mode of the rule. Value options
 # are `monitor`, `block` or `off`.
 # mode: off

 # ==
====
 # protect.rules.sql-injection-semantic-dangerous-functions
 # Use the following properties to configure how the sql
 # injection semantic analysis dangerous functions rule works.
 # ==
====
 # sql-injection-semantic-dangerous-functions:

 # Set the mode of the rule. Value options
 # are `monitor`, `block` or `off`.
 # mode: off

 # ==
====
 # protect.rules.sql-injection-semantic-suspicious-unions
 # Use the following properties to configure how the sql
 # injection semantic analysis suspicious unions rule works.
 # ==
====
 # sql-injection-semantic-suspicious-unions:

 # Set the mode of the rule. Value options
 # are `monitor`, `block` or `off`.
 # mode: off

 # ==
====
 # protect.rules.sql-injection-semantic-tautologies
 # Use the following properties to configure how the sql
 # injection semantic analysis tautologies rule works.
 # ==
====
 # sql-injection-semantic-tautologies:

 # Set the mode of the rule. Value options
 # are `monitor`, `block` or `off`.
 # mode: off

 # ==
====
 # protect.rules.cmd-injection
 # Use the following properties to configure
 # how the command injection rule works.
 # ==
====
 # cmd-injection:

 # Set the mode of the rule. Value options are

Contrast Documentation

Agents 202

 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # Tell the agent to detect when commands come directly
 # from input. The agent blocks if blocking is enabled.
 # detect_phased_commands: true

 # ==
====
 # protect.rules.cmd-injection-semantic-chained-commands
 # Use the following properties to configure how the
 # 'command injection - chained commands' rule works
 # ==
====
 # cmd-injection-semantic-chained-commands:

 # Set the mode of the rule. Value options
 # are `monitor`, `block`, or `off`.
 # mode: off

 # ==
====
 # protect.rules.cmd-injection-semantic-dangerous-paths
 # Use the following properties to configure how the
 # 'command injection - dangerous paths' rule works
 # ==
====
 # cmd-injection-semantic-dangerous-paths:

 # Set the mode of the rule. Value options
 # are `monitor`, `block`, or `off`.
 # mode: off

 # ==
====
 # protect.rules.cmd-injection-command-backdoors
 # Use the following properties to configure how the
 # 'command injection - command backdoors' rule works
 # ==
====
 # cmd-injection-command-backdoors:

 # Set the mode of the rule. Value options
 # are `monitor`, `block`, or `off`.
 # mode: off

 # ==
====
 # protect.rules.path-traversal-semantic-file-security-bypass
 # Use the following properties to configure how the
 # 'path traversal - file security bypass' rule works

Contrast Documentation

Agents 203

 # ==
====
 # path-traversal-semantic-file-security-bypass:

 # Set the mode of the rule. Value options
 # are `monitor`, `block`, or `off`.
 # mode: off

 # ==
====
 # protect.rules.path-traversal
 # Use the following properties to configure
 # how the path traversal rule works.
 # ==
====
 # path-traversal:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.method-tampering
 # Use the following properties to configure
 # how the method tampering rule works.
 # ==
====
 # method-tampering:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.reflected-xss
 # Use the following properties to configure how
 # the reflected cross-site scripting rule works.
 # ==
====
 # reflected-xss:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",

Contrast Documentation

Agents 204

 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.unsafe-file-upload
 # Use the following properties to configure
 # how the unsafe file upload rule works.
 # ==
====
 # unsafe-file-upload:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.xxe
 # Use the following properties to configure
 # how the XML external entity works.
 # ==
====
 # xxe:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.untrusted-deserialization
 # Use the following properties to configure
 # how the untrusted deserialization rule works.
 # ==
====
 # untrusted-deserialization:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

Contrast Documentation

Agents 205

==
====
application
Use the properties in this section for
the application(s) hosting this agent.
==
====
application:

 # Override the reported application name.
 #
 # Note - On Java systems where multiple, distinct applications may be
 # served by a single process, this configuration causes the agent to \
report
 # all discovered applications as one application with the given name.
 #
 # name: NEEDS_TO_BE_SET

 # Add the name of the application group with which this
 # application should be associated in the Contrast UI.
 # group: NEEDS_TO_BE_SET

 # Add the application code this application should use in the Contrast UI.
 # code: NEEDS_TO_BE_SET

 # Override the reported application version.
 # version: NEEDS_TO_BE_SET

 # Apply labels to an application. Labels must
 # be formatted as a comma-delimited list.
 # Example - `label1,label2,label3`
 #
 # tags: NEEDS_TO_BE_SET

 # Define a set of `key=value` pairs (which conforms to RFC 2253) for
 # specifying user-defined metadata associated with the application. The
 # set must be formatted as a comma-delimited list of `key=value` pairs.
 # Example - `business-unit=accounting, office=Baltimore`
 #
 # metadata: NEEDS_TO_BE_SET

 # Provide the ID of a session which already exists in the Contrast
 # UI. Vulnerabilities discovered by the agent are associated with
 # this session. If an invalid ID is supplied, the agent will be
 # disabled. This option and `application.session_metadata` are
 # mutually exclusive; if both are set, the agent will be disabled.
 # session_id: NEEDS_TO_BE_SET

 # Provide metadata which is used to create a new session ID in the
 # Contrast UI. Vulnerabilities discovered by the agent are associated with
 # this new session. This value should be formatted as `key=value` pairs
 # (conforming to RFC 2253). Available key names for this configuration
 # are branchName, buildNumber, commitHash, committer, gitTag, repository,
 # testRun, and version. This option and `application.session_id` are
 # mutually exclusive; if both are set the agent will be disabled.

Contrast Documentation

Agents 206

 # session_metadata: NEEDS_TO_BE_SET

==
====
server
Use the settings in this section to set metadata for the server
hosting this agent. Contrast recognizes common, supported server
names, paths, types and environments. Doing this may require a new
server or license, and it may affect functionality of some features.
==
====
server:

 # Override the reported server name.
 # name: localhost

 # Set the environment directly to override the default set
 # by the Contrast UI. This allows the user to configure the
 # environment dynamically at startup rather than manually
 # updating the Server in the Contrast UI themselves afterwards.
 #
 # Valid values include `QA`, `PRODUCTION` and `DEVELOPMENT`.
 # For example, `PRODUCTION` registers this Server as
 # running in a `PRODUCTION` environment, regardless of the
 # organization's default environment in the Contrast UI.
 #
 # environment: NEEDS_TO_BE_SET

 # Apply a list of labels to the server. Labels
 # must be formatted as a comma-delimited list.
 # Example - `label1,label2,label3`
 #
 # tags: NEEDS_TO_BE_SET

 # Override the reported server path. New after
 # .NET Framework v21.3.1 and .NET Core v1.8.0.
 # path: NEEDS_TO_BE_SET

==
====
Use the properties in this YAML file to configure a Contrast agent.
Go to https://docs.contrastsecurity.com/en/order-of-precedence.html
to determine the order of precedence for configuration values.
==
====

Use this setting if you want to temporarily disable a Contrast agent.
Set to `true` to enable the agent; set to `false` to disable the agent.
enable: true

==
====
api
Use the properties in this section to connect the agent to the Contrast \

Contrast Documentation

Agents 207

UI.
==
====
api:

 # ********************** REQUIRED **********************
 # Set the URL for the Contrast UI.
 url: https://app.contrastsecurity.com/Contrast

 # ********************** REQUIRED **********************
 # Set the API key needed to communicate with the Contrast UI.
 api_key: NEEDS_TO_BE_SET

 # ********************** REQUIRED **********************
 # Set the service key needed to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 service_key: NEEDS_TO_BE_SET

 # ********************** REQUIRED **********************
 # Set the user name used to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 user_name: NEEDS_TO_BE_SET

 # Set the version of the TLS protocol the agent uses to communicate with \
the
 # Contrast UI. The .NET agent default behavior is \
(SecurityProtocolType.Tls
 # | SecurityProtocolType.Tls11 | SecurityProtocolType.Tls12).
 # tls_versions: tls|tls11|tls12

 # ==
====
 # api.certificate
 # Use the following properties for communication
 # with the Contrast UI using certificates.
 # ==
====
 # certificate:

 # If set to `false`, the agent will ignore the
 # certificate configuration in this section.
 # enable: true

 # Determine the location from which the agent loads a client
 # certificate. Value options include `File` or `Store`.
 # certificate_location: NEEDS_TO_BE_SET

 # Set the absolute path to the client certificate's
 # .CER file for communication with Contrast UI. The
 # `certificate_location` property must be set to `File`.
 # cer_file: NEEDS_TO_BE_SET

 # Specify the name of certificate store to open. The
 # `certificate_location` property must be set to `Store`.
 # Value options include `AuthRoot`, `CertificateAuthority`,

Contrast Documentation

Agents 208

 # `My`, `Root`, `TrustedPeople`, or `TrustedPublisher`.
 # store_name: NEEDS_TO_BE_SET

 # Specify the location of the certificate store. The
 # `certificate_location` property must be set to `Store`.
 # Value options include `CurrentUser` or `LocalMachine`.
 # store_location: NEEDS_TO_BE_SET

 # Specify the type of value the agent uses to find the certificate
 # in the collection of certificates from the certificate store.
 # The `certificate_location` property must be set to `Store`.
 # Value options include `FindByIssuerDistinguishedName`,
 # `FindByIssuerName`, `FindBySerialNumber`,
 # `FindBySubjectDistinguishedName`, `FindBySubjectKeyIdentifier`,
 # `FindBySubjectName`, or `FindByThumbprint`.
 # find_type: NEEDS_TO_BE_SET

 # Specify the value the agent uses in combination with
 # `find_type` to find a certification in the certificate store.
 #
 # Note - The agent will use the first certificate from
 # the certificate store that matches this search criteria.
 #
 # find_value: NEEDS_TO_BE_SET

 # ==
====
 # api.proxy
 # Use the following properties for communication
 # with the Contrast UI over a proxy.
 # ==
====
 # proxy:

 # Set value to `true` for the agent to communicate
 # with the Contrast web interface over a proxy. Set
 # value to `false` if you don't want to use the proxy.
 # enable: NEEDS_TO_BE_SET

 # Set the URL for your Proxy Server. The URL form is `scheme://
host:port`.
 # url: NEEDS_TO_BE_SET

 # Set the proxy user.
 # user: NEEDS_TO_BE_SET

 # Set the proxy password.
 # pass: NEEDS_TO_BE_SET

 # Set the proxy authentication type. Value
 # options are `NTLM`, `Digest`, and `Basic`.
 # auth_type: NEEDS_TO_BE_SET

==
====

Contrast Documentation

Agents 209

agent
Use the properties in this section to control the way and frequency
with which the agent communicates to logs and the Contrast UI.
==
====
agent:

 # ==
====
 # agent.logger
 # Define the following properties to set logging values.
 # If the following properties are not defined, the
 # agent uses the logging values from the Contrast UI.
 # ==
====
 # logger:

 # Set the the log output level. Valid options are
 # `ERROR`, `WARN`, `INFO`, `DEBUG`, and `TRACE`.
 # level: INFO

 # Set to `true` to redirect all logs to
 # `stdout` instead of the file system.
 # stdout: false

 # Set the roll size for log files in megabytes. The agent will
 # attempt to prevent the log file from being larger than this size.
 # roll_size: 100

 # Set the number of backup files to keep. Set to `0` to disable.
 # backups: 10

 # ==
====
 # agent.security_logger
 # Define the following properties to set security
 # logging values. If not defined, the agent uses the
 # security logging (CEF) values from the Contrast UI.
 # ==
====
 # security_logger:

 # Set the log level for security logging. Valid options
 # are `ERROR`, `WARN`, `INFO`, `DEBUG`, and `TRACE`.
 # level: ERROR

 # ==
====
 # agent.security_logger.syslog
 # Define the following properties to set Syslog values. If the \
properties
 # are not defined, the agent uses the Syslog values from the Contrast \
UI.
 # ==
====

Contrast Documentation

Agents 210

 # syslog:

 # Set to `true` to enable Syslog logging.
 # enable: NEEDS_TO_BE_SET

 # Set the IP address of the Syslog server
 # to which the agent should send messages.
 # ip: NEEDS_TO_BE_SET

 # Set the port of the Syslog server to
 # which the agent should send messages.
 # port: NEEDS_TO_BE_SET

 # Set the facility code of the messages the agent sends to Syslog.
 # facility: 19

 # Set the log level of Exploited attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_exploited: ALERT

 # Set the log level of Blocked attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_blocked: NOTICE

 # Set the log level of Blocked At Perimeter
 # attacks. Value options are `ALERT`, `CRITICAL`,
 # `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_blocked_perimeter: NOTICE

 # Set the log level of Probed attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_probed: WARNING

 # Set the log level of Suspicious attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_suspicious: WARNING

 # Set the connection type used for Syslog messages.
 # Value options are `UNENCRYPTED` and `ENCRYPTED`.
 # connection_type: UNENCRYPTED

 # ==
====
 # agent.dotnet
 # The following properties apply to any .NET agent-wide configurations.
 # ==
====
 # dotnet:

 # Set a list of application pool names that the agent does not
 # instrument or analyze. Names must be formatted as a comma-separated
 # list. New after .NET Framework 19.1.3 and .NET Core 4.0.2.
 # app_pool_denylist: NEEDS_TO_BE_SET

 # Set a list of application pool names that the agent instruments or

Contrast Documentation

Agents 211

 # analyzes. If set, other application pools are ignored. Allowlist takes
 # precedence over denylist. Names must be formatted as a comma-separated
 # list. New after .NET Framework 19.1.3 and .NET Core 4.0.2.
 # app_pool_allowlist: NEEDS_TO_BE_SET

 # Set a list of application names that the agent does not
 # analyze. (The applications are still instrumented).
 # Names must be formatted as a comma-separated list.
 # New after .NET Framework 19.1.3 and .NET Core 1.0.0.
 # application_denylist: NEEDS_TO_BE_SET

 # Set a list of application names that the agent analyzes.
 # If set, other applications are not analyzed, but are
 # still instrumented. Allowlist takes precedence over
 # denylist. Names must be formatted as a comma-separated
 # list. New after .NET Framework 19.1.3 and .NET Core 1.0.0.
 # application_allowlist: NEEDS_TO_BE_SET

 # Enable a profiler chaining feature to allow Contrast to
 # work alongside other tools that use the CLR Profiling
 # API. Defaults to `true`. New after .NET Framework 19.1.3
 # (Installed Only) and .NET Core 1.9.3 (Installed Only).
 # enable_chaining: true

 # Indicate that the agent should produce a report that
 # summarizes application hosting on the server (e.g.,
 # CLR versions, bitness or pipeline modes). Defaults to
 # `true`. New after .NET Framework 19.1.3 (Installed Only).
 # enable_dvnr: true

 # Indicate that the agent should allow CLR optimizations
 # of JIT-compiled methods. Defaults to `true`. New
 # after .NET Framework 19.1.3 and .NET Core 1.0.0.
 # enable_instrumentation_optimizations: true

 # Indicate that the agent should allow the CLR to inline
 # methods that are not instrumented by Contrast. Defaults to
 # `true`. New after .NET Framework 19.1.3 and .NET Core 1.0.0.
 # enable_jit_inlining: true

 # Indicate that the agent should allow the CLR to perform
 # transparency checks under full trust. Defaults to `false`.
 # New after .NET Framework 19.1.3 and .NET Core 1.0.0.
 # enable_transparency_checks: false

 # Responses for request paths (e.g., HttpRequest.Path)
 # that match this regex are not analyzed. Defaults to
 # `WebResource.axd`. New after .NET Framework 19.1.3.
 # web_module_allowlist: WebResource.axd

 # Set to display ASCII art to std::out on agent startup. Defaults
 # to `true`. New after .NET Framework 20.6.3 and .NET Core 1.0.0.
 # enable_cat: true

 # Sets the maximum amount of time a Protect regular expression

Contrast Documentation

Agents 212

 # is allowed to run before being cancelled. Set to -1 to never
 # cancel regular expression execution. Defaults to `20_000`.
 # New after .NET Framework 20.4.3 and .NET Core 1.5.0.
 # protect_searchers_single_pattern_deadline_ms: 20_000

 # Sets the maximum amount of time a 'Probe Analysis' Protect
 # regular expression is allowed to run before being cancelled. Set
 # to -1 to never cancel regular expression execution. Defaults to
 # `5_000`. New after .NET Framework 20.7.3 and .NET Core 1.5.11.
 # protect_searchers_probe_analysis_single_pattern_deadline_ms: 5_000

 # Sets the maximum amount of time a Protect rule is
 # allowed to run before being cancelled. Set to -1 to never
 # cancel Protect rule execution. Defaults to `60_000`.
 # New after .NET Framework 20.4.3 and .NET Core 1.5.0.
 # protect_searchers_total_rule_deadline_ms: 60_000

 # Sets the maximum amount of time a 'Probe Analysis' Protect
 # rule is allowed to run before being cancelled. Set to -1 to
 # never cancel Protect rule execution. Defaults to `10_000`.
 # New after .NET Framework 20.7.3 and .NET Core 1.5.11.
 # protect_searchers_probe_analysis_total_rule_deadline_ms: 10_000

 # Sets the maximum duration of time agent log files should be kept
 # since last write before being deleted by the agent. Defaults to
 # `604_800_000`. New after .NET Framework 20.6.1 and .NET Core 1.5.5.
 # log_cleanup_maximum_age_ms: 604_800_000

 # Suppresses gathering process-level metrics (process level metrics are
 # gathered by default), used to identify performance problems. Metric
 # counters may further decrease the stability of already unstable
 # systems and can be disabled (set to true) if issues occur. Defaults
 # to `false`. New after .NET Framework 20.6.6 and .NET Core 1.5.10.
 # suppress_metric_counters: false

 # Enable file based application watching. Set to false if
 # file watching is causing locking issues. Defaults to `true`.
 # New after .NET Framework 20.7.3 and .NET Core 1.5.11.
 # enable_file_based_app_watching: true

 # Enables HttpClient isolation using AppDomain remoting. This can be \
used
 # to workaround .NET TLS version limitations at the cost of performance
 # and stability. Enabled by default on applications targeting .NET
 # Framework < 4.7.0, else disabled. New after .NET Framework 21.5.1.
 # enable_http_client_app_domain_isolation: false

 # Enables LINQ optimizations to improve performance
 # at the cost of possible false negatives. Defaults
 # to `true`. New after .NET Framework 50.0.1.
 # enable_linq_optimizations: true

 # ==
====
 # agent.dotnet.file_analysis_time_ms

Contrast Documentation

Agents 213

 # Controls the interval in milliseconds to perform file
 # analysis for supported rules. Setting a value > 0 will
 # result in the job running at that interval and not just when
 # the application loads. If set to `-1`, the job just runs
 # once. Defaults to `-1`. New after .NET Framework 50.0.15.
 # ==
====
 # file_analysis_time_ms: {}

==
====
inventory
Use the properties in this section to override the inventory features.
==
====
inventory:

 # Set to `false` to disable inventory features in the agent.
 # enable: true

 # Apply a list of labels to libraries. Labels
 # must be formatted as a comma-delimited list.
 # Example - `label1, label2, label3`
 #
 # tags: NEEDS_TO_BE_SET

 # Specifies the cloud provider from which the agent should gather metadata
 # (such as resource identifiers). Options are `AWS`, `Azure`, or `GCP`.
 #
 # gather_metadata_via: NEEDS_TO_BE_SET

==
====
assess
Use the properties in this section to control Assess.
==
====
assess:

 # Include this property to determine if the Assess
 # feature should be enabled. If this property is not
 # present, the decision is delegated to the Contrast UI.
 # enable: false

 # Control the values captured by Assess vulnerability events. `Full`
 # captures most values by calling ToString on objects, which can
 # provide more info but causes increased memory usage. `Minimal`
 # has better performance as it only captures String type objects
 # as strings and uses type name for other object type values.
 # event_detail: minimal

 # Apply a list of labels to vulnerabilities and preflight
 # messages. Labels must be formatted as a comma-delimited list.
 # Example - `label1, label2, label3`
 #

Contrast Documentation

Agents 214

 # tags: NEEDS_TO_BE_SET

 # Value options are `ALL`, `SOME`, or `NONE`.
 # stacktraces: ALL

 # ==
====
 # assess.sampling
 # Use the following properties to control sampling in the agent.
 # ==
====
 # sampling:

 # Set to `true` to enable sampling.
 # enable: false

 # This property indicates the number of requests
 # to analyze in each window before sampling begins.
 # baseline: 5

 # This property indicates that every *nth*
 # request after the baseline is analyzed.
 # request_frequency: 10

 # This property indicates the duration for which a sample set is valid.
 # window_ms: 180_000

 # ==
====
 # assess.rules
 # Use the following properties to control simple rule configurations.
 # ==
====
 # rules:

 # Define a list of Assess rules to disable in the agent. To view a
 # list of rule names, in Contrast go to user menu > Policy Management >
 # Assess rules. The rules must be formatted as a comma-delimited list.
 #
 # Example - Set `reflected-xss,sql-injection` to disable
 # the reflected-xss rule and the sql-injection rule.
 #
 # disabled_rules: NEEDS_TO_BE_SET

==
====
protect
Use the properties in this section to override Protect features.
==
====
protect:

 # Include this property to determine if the Protect
 # feature should be enabled. If this property is not
 # present, the decision is delegated to the Contrast UI.

Contrast Documentation

Agents 215

 # enable: false

 # ==
====
 # protect.rules
 # Use the following properties to set simple rule configurations.
 # ==
====
 # rules:

 # Define a list of Protect rules to disable in the agent. To view a
 # list of rule names, in Contrast go to user menu > Policy Management >
 # Protect rules. The rules must be formatted as a comma-delimited list.
 # disabled_rules: NEEDS_TO_BE_SET

 # ==
====
 # protect.rules.bot-blocker
 # Use the following selection to configure if the
 # agent blocks bots. Set to `true` to enable blocking.
 # ==
====
 # bot-blocker:

 # Set to `true` for the agent to block known bots.
 # enable: false

 # ==
====
 # protect.rules.sql-injection
 # Use the following settings to configure the sql-injection rule.
 # ==
====
 # sql-injection:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or off.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.sql-injection-semantic-chaining
 # Use the following properties to configure how the
 # sql injection semantic analysis chaining rule works.
 # ==
====
 # sql-injection-semantic-chaining:

 # Set the mode of the rule. Value options
 # are `monitor`, `block` or `off`.
 # mode: off

Contrast Documentation

Agents 216

 # ==
====
 # protect.rules.sql-injection-semantic-dangerous-functions
 # Use the following properties to configure how the sql
 # injection semantic analysis dangerous functions rule works.
 # ==
====
 # sql-injection-semantic-dangerous-functions:

 # Set the mode of the rule. Value options
 # are `monitor`, `block` or `off`.
 # mode: off

 # ==
====
 # protect.rules.sql-injection-semantic-suspicious-unions
 # Use the following properties to configure how the sql
 # injection semantic analysis suspicious unions rule works.
 # ==
====
 # sql-injection-semantic-suspicious-unions:

 # Set the mode of the rule. Value options
 # are `monitor`, `block` or `off`.
 # mode: off

 # ==
====
 # protect.rules.sql-injection-semantic-tautologies
 # Use the following properties to configure how the sql
 # injection semantic analysis tautologies rule works.
 # ==
====
 # sql-injection-semantic-tautologies:

 # Set the mode of the rule. Value options
 # are `monitor`, `block` or `off`.
 # mode: off

 # ==
====
 # protect.rules.cmd-injection
 # Use the following properties to configure
 # how the command injection rule works.
 # ==
====
 # cmd-injection:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #

Contrast Documentation

Agents 217

 # mode: off

 # Tell the agent to detect when commands come directly
 # from input. The agent blocks if blocking is enabled.
 # detect_phased_commands: true

 # ==
====
 # protect.rules.cmd-injection-semantic-chained-commands
 # Use the following properties to configure how the
 # 'command injection - chained commands' rule works
 # ==
====
 # cmd-injection-semantic-chained-commands:

 # Set the mode of the rule. Value options
 # are `monitor`, `block`, or `off`.
 # mode: off

 # ==
====
 # protect.rules.cmd-injection-semantic-dangerous-paths
 # Use the following properties to configure how the
 # 'command injection - dangerous paths' rule works
 # ==
====
 # cmd-injection-semantic-dangerous-paths:

 # Set the mode of the rule. Value options
 # are `monitor`, `block`, or `off`.
 # mode: off

 # ==
====
 # protect.rules.cmd-injection-command-backdoors
 # Use the following properties to configure how the
 # 'command injection - command backdoors' rule works
 # ==
====
 # cmd-injection-command-backdoors:

 # Set the mode of the rule. Value options
 # are `monitor`, `block`, or `off`.
 # mode: off

 # ==
====
 # protect.rules.path-traversal-semantic-file-security-bypass
 # Use the following properties to configure how the
 # 'path traversal - file security bypass' rule works
 # ==
====
 # path-traversal-semantic-file-security-bypass:

 # Set the mode of the rule. Value options

Contrast Documentation

Agents 218

 # are `monitor`, `block`, or `off`.
 # mode: off

 # ==
====
 # protect.rules.path-traversal
 # Use the following properties to configure
 # how the path traversal rule works.
 # ==
====
 # path-traversal:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.method-tampering
 # Use the following properties to configure
 # how the method tampering rule works.
 # ==
====
 # method-tampering:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.reflected-xss
 # Use the following properties to configure how
 # the reflected cross-site scripting rule works.
 # ==
====
 # reflected-xss:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==

Contrast Documentation

Agents 219

====
 # protect.rules.unsafe-file-upload
 # Use the following properties to configure
 # how the unsafe file upload rule works.
 # ==
====
 # unsafe-file-upload:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.xxe
 # Use the following properties to configure
 # how the XML external entity works.
 # ==
====
 # xxe:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.untrusted-deserialization
 # Use the following properties to configure
 # how the untrusted deserialization rule works.
 # ==
====
 # untrusted-deserialization:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

==
====
application
Use the properties in this section for
the application(s) hosting this agent.

Contrast Documentation

Agents 220

==
====
application:

 # Override the reported application name.
 #
 # Note - On Java systems where multiple, distinct applications may be
 # served by a single process, this configuration causes the agent to \
report
 # all discovered applications as one application with the given name.
 #
 # name: NEEDS_TO_BE_SET

 # Add the name of the application group with which this
 # application should be associated in the Contrast UI.
 # group: NEEDS_TO_BE_SET

 # Add the application code this application should use in the Contrast UI.
 # code: NEEDS_TO_BE_SET

 # Override the reported application version.
 # version: NEEDS_TO_BE_SET

 # Apply labels to an application. Labels must
 # be formatted as a comma-delimited list.
 # Example - `label1,label2,label3`
 #
 # tags: NEEDS_TO_BE_SET

 # Define a set of `key=value` pairs (which conforms to RFC 2253) for
 # specifying user-defined metadata associated with the application. The
 # set must be formatted as a comma-delimited list of `key=value` pairs.
 # Example - `business-unit=accounting, office=Baltimore`
 #
 # metadata: NEEDS_TO_BE_SET

 # Provide the ID of a session which already exists in the Contrast
 # UI. Vulnerabilities discovered by the agent are associated with
 # this session. If an invalid ID is supplied, the agent will be
 # disabled. This option and `application.session_metadata` are
 # mutually exclusive; if both are set, the agent will be disabled.
 # session_id: NEEDS_TO_BE_SET

 # Provide metadata which is used to create a new session ID in the
 # Contrast UI. Vulnerabilities discovered by the agent are associated with
 # this new session. This value should be formatted as `key=value` pairs
 # (conforming to RFC 2253). Available key names for this configuration
 # are branchName, buildNumber, commitHash, committer, gitTag, repository,
 # testRun, and version. This option and `application.session_id` are
 # mutually exclusive; if both are set the agent will be disabled.
 # session_metadata: NEEDS_TO_BE_SET

==
====
server

Contrast Documentation

Agents 221

Use the settings in this section to set metadata for the server
hosting this agent. Contrast recognizes common, supported server
names, paths, types and environments. Doing this may require a new
server or license, and it may affect functionality of some features.
==
====
server:

 # Override the reported server name.
 # name: localhost

 # Set the environment directly to override the default set
 # by the Contrast UI. This allows the user to configure the
 # environment dynamically at startup rather than manually
 # updating the Server in the Contrast UI themselves afterwards.
 #
 # Valid values include `QA`, `PRODUCTION` and `DEVELOPMENT`.
 # For example, `PRODUCTION` registers this Server as
 # running in a `PRODUCTION` environment, regardless of the
 # organization's default environment in the Contrast UI.
 #
 # environment: NEEDS_TO_BE_SET

 # Apply a list of labels to the server. Labels
 # must be formatted as a comma-delimited list.
 # Example - `label1,label2,label3`
 #
 # tags: NEEDS_TO_BE_SET

 # Override the reported server path. New after
 # .NET Framework v21.3.1 and .NET Core v1.8.0.
 # path: NEEDS_TO_BE_SET

Certificate exceptions
If you see certificate exception messages and feel that it's safe to ignore them, add this setting to the
YAML configuration file:

api:
 certificate:
 ignore_cert_errors: true

Learn more about managing certificate issues.

Use the .NET Framework agent with IIS Express
The .NET agent can analyze ASP.NET applications hosted on IIS Express but it takes a little bit of work
to enable instrumentation on IIS Express. The Contrast tray displays a tab for IIS Express if IIS Express
is installed on the server.

The Contrast tray (page 228) initially displays a Set environment variables button to enable
instrumentation of IIS Express-hosted applications. Selecting this button sets environment variables
for the current user so that any new IIS Express process will load the .NET agent's profiler, and be
instrumented and analyzed.

Once you set environment variables, the tray displays a Remove environment variables button that
you can use to disable Contrast analysis of IIS Express-hosted applications.

Contrast Documentation

Agents 222

https://support.contrastsecurity.com/hc/en-us/articles/360025270571--NET-Agent-fails-to-connect-to-Contrast-UI

Any instrumented applications currently running on IIS Express are displayed in the IIS Express tab
along with a count of the number of URLs (without the querystring) observed.

NOTE
IIS Express process instances are commonly launched by other programs such
as Visual Studio or a command window. You should restart these programs after
setting these user environment variables. Any programs (such as Visual Studio) that
were running before you set user environment variables will consequently launch IIS
Express without the environment variables, and the IIS Express-hosted application
won't be instrumented and analyzed.

Setting user environment variables also causes any .NET applications launched by the
user to load the Contrast Profiler. The Contrast Profiler will safely detach from any
non-IIS/non-IIS Express process. Windows treats detachment of a profiler DLL as an
error message in the Windows Event Log; however, you can safely ignore these errors.

Use the .NET Framework agent with applications on Azure
Use the Contrast .NET Framework agent to analyze ASP.NET applications running on Azure Virtual
Machines (VMs), Azure Cloud Services, Mobile Services or Azure App Service (formerly Azure Web
Sites).

To install the .NET Framework agent on Azure Virtual Machines:

1. Set up the Azure VM or the Azure Cloud Services as you would normally, and deploy the ASP.NET
applications to be analyzed.

2. Log in to Contrast, and download the ZIP file for the .NET Framework agent.
3. Access the Remote Desktop Azure VM or Azure Cloud Service instance.
4. Copy the .NET Framework agent ZIP file to the Azure VM or to the Azure Cloud Services instance,

and extract the archive.
5. Run the .NET Framework agent installer (ContrastSetup.exe).
6. Exercise the application so that Contrast can analyze it.

TIP
To install with Azure App Service (formerly Azure Web Apps), install with
NuGet (page 185) or Azure Portal Extension (page 179).

Use Azure Service Fabric with the .NET Framework or .NET Core agent
If you are using a container image, follow the instructions to install in containers (page 182). Otherwise,
to add the Contrast .NET Framework or .NET Core agent to an Azure Service Fabric service:

TIP
For Standalone Executable services, the ServiceManifest.xml file is located in
the top-level Azure Service Fabric project (for example, the sfproj file).

Contrast Documentation

Agents 223

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/connect-logon?toc=%2Fazure%2Fvirtual-machines%2Fwindows%2Fclassic%2Ftoc.json
https://docs.microsoft.com/en-us/azure/cloud-services/cloud-services-role-enable-remote-desktop-new-portal

1. Install the appropriate NuGet package to the main project for the service.
• .NET Framework: Install Contrast.NET.Azure.AppService. All files in the
contrastsecurity folder must have Copy to Output Directory set to Copy if
newer.

• .NET Core: Install Contrast.SensorsNetCore. All files in the contrast folder have Copy
to Output Directory set to Copy if newer.

2. Set ServiceManifest/CodePackage/EntryPoint/ExeHost/WorkingDirectory in
ServiceManifest.xml to CodePackage.

<CodePackage Name="Code" Version="1.0.0">
 <EntryPoint>
 <ExeHost>
 <Program>DemoNetFxStatelessService.exe</Program>
 <WorkingFolder>CodePackage</WorkingFolder>

3. Set environment variables in ServiceManifest.xml to configure the profiler.
• .NET Framework:

<CodePackage>
 <EnvironmentVariables>
 <EnvironmentVariable Name="COR_ENABLE_PROFILING" Value="1"/
>
 <EnvironmentVariable Name="COR_PROFILER" \
Value="{EFEB8EE0-6D39-4347-A5FE-4D0C88BC5BC1}"/>
 <EnvironmentVariable Name="COR_PROFILER_PATH_32" \
Value=".\contrastsecurity\runtimes\win-
x86\native\ContrastProfiler.dll" />
 <EnvironmentVariable Name="COR_PROFILER_PATH_64" \
Value=".\contrastsecurity\runtimes\win-
x64\native\ContrastProfiler.dll" />
 <EnvironmentVariable Name="CONTRAST_CONFIG_PATH" \
Value="contrast_security.yaml"/>

• .NET Core:

<CodePackage>
 <EnvironmentVariables>
 <EnvironmentVariable Name="CORECLR_ENABLE_PROFILING" \
Value="1"/>
 <EnvironmentVariable Name="CORECLR_PROFILER" \
Value="{8B2CE134-0948-48CA-A4B2-80DDAD9F5791}"/>
 <EnvironmentVariable Name="CORECLR_PROFILER_PATH_32" \
Value="contrast\runtimes\win-x86\native\ContrastProfiler.dll"/>
 <EnvironmentVariable Name="CORECLR_PROFILER_PATH_64" \
Value="contrast\runtimes\win-x64\native\ContrastProfiler.dll"/>
 <EnvironmentVariable Name="CONTRAST_CONFIG_PATH" \
Value="contrast_security.yaml"/>

4. Configure the agent with either:
• A YAML file: Add it to the main project for the service. Make sure Copy to Output
Directory for the file is set to Copy if newer. Add an environment variable to
ServiceManifest.xml specifying the location of the file, like this:

<CodePackage>
 <EnvironmentVariables>
 <EnvironmentVariable Name="CONTRAST_CONFIG_PATH" \
Value="contrast_security.yaml"/>

• Environment variables: Add them to ServiceManifest.xml, like this:

Contrast Documentation

Agents 224

<CodePackage>
 <EnvironmentVariables>
 <EnvironmentVariable Name="CONTRAST__API__URL" \
Value="https://teamserver-staging.contsec.com"/>
 <EnvironmentVariable Name="CONTRAST__API__API_KEY" \
Value="aBcD0123"/>
 <EnvironmentVariable Name="CONTRAST__API__SERVICE_KEY" \
Value="ABCD0123"/>
 <EnvironmentVariable Name="CONTRAST__API__USER_NAME" \
Value="agent_123@Team"/>

5. Deploy the Azure Service Fabric application as usual.

Profiler chaining for the .NET Framework agent
You can use profiler chaining to run the .NET Framework agent alongside other .NET profiler agents,
such as performance or APM tools.

The Contrast .NET Framework agent is tested and proven to be compatible with these profiling tools:

Profiling tool Versions tested

AppDynamics 4.5.18.1

Dynatrace One Agent 1.253.245

New Relic 8.23.107

Riverbed SteelCentral Aternity APM 12.9.0

Datadog 2.35.0

NOTE
The agent may also be compatible with other profiling tools if those tools follow the
conventions of the CLR Profiling API and do not make assumptions about the profiling
environment.

Profiler chaining is enabled by default. To disable profiler chaining, configure the .NET Framework
agent (page 190) so that the agent.dotnet.enable_chaining setting is set to false. For
example, you could use this YAML configuration:

agent:
 dotnet:
 enable_chaining: false

Once configured, you must restart the agent. On restart, the Contrast .NET Framework agent
automatically detects the presence of other profiling tools registered with IIS and configures the
environment to load both the Contrast .NET Framework agent profiler and the third-party profiler.

Contrast Documentation

Agents 225

IMPORTANT
If you are using profiler chaining with:

• IIS:
Install the third-party agent, then the Contrast .NET Framework agent.
(If you install the Contrast .NET Framework agent before the third-party agent, you
need to restart the Contrast.NET Main Service under Windows Services.)

• Outside of IIS:
The agent.dotnet.enable_chaining configuration flag will not work if you are
using profiler chaining for applications:
• hosted outside of IIS, or
• that use the third-party agent's Nuget package (rather than the installed agent).
If this applies to you, replace the CLR environment variables for the profiling tool with
CONTRAST_CCC_COR versions. Any of these names should be transformed:

Change this To this

COR_PROFILER CONTRAST_CCC_COR_PROFILER

COR_PROFILER_PATH CONTRAST_CCC_COR_PROFILER_PATH

COR_PROFILER_PATH_32 CONTRAST_CCC_COR_PROFILER_PATH_32

COR_PROFILER_PATH_64 CONTRAST_CCC_COR_PROFILER_PATH_64

Then follow the usual setup instructions for your environment and application.
• AppInsights in Azure App Service:

As of version 20.9.3, the Contrast .NET Framework Site Extension now supports
compatibility with Application Insights (using the CLR Instrumentation Engine (CIE)).
There is no further action required to use AppInsights with the Contrast .NET
Framework Site Extension. The .NET Framework agent's profiler will be loaded by
the CIE if it is registered as the profiling tool in the Azure AppService instance (for
example because AppInsights is enabled).

.NET Agent Explorer

IMPORTANT
Starting with .NET Core agent 4.0.0 and .NET Framework agent 51.0.0, Agent
Explorer replaces the Contrast Tray application.

The .NET Agent Explorer is an application that displays high-level information about the health of
the .NET Core and .NET Framework agents. Use this application to verify that the agent is working as
expected, especially after you initially install the agent.

Installing an agent also installs this application. If you install both types of agents, only one instance of
Agent Explorer is installed.

Agent Explorer access
After you install a .NET Core or .NET Framework agent, the Agent Explorer icon () displays in the
tray. Right-click the icon to open the application.

Contrast Documentation

Agents 226

Agent Explorer details
The Agent Explorer displays these details:

• Summary

This dashboard shows high level details about your agents, including their stage, whether any of
them have issues, and route coverage.

• Agents

This tab provides details about the health of your .NET Core and .NET Framework agents. The
Configuration section displays a message if Agent Explorer discovers a specific issue that is
occurring.

Contrast Documentation

Agents 227

You can access the agent's configuration (YAML) file directly from the link in the Overview section.
Scroll down to see information about the agent's configuration, advanced information, and session
metadata.

• IIS Express
This tab shows details for web applications running on IIS Express.

• IIS
This tab shows details for the web applications running on the IIS server.

.NET Framework Contrast tray
The last agent version that supported Contrast tray is 50.0.0. For later agent versions, use Contrast
Agent Explorer (page 226).

The .NET Framework Contrast tray is a Windows system tray application (ContrastTray.exe) that
displays high-level information about the health of the agent.

NOTE
You do not have to run the .NET Framework Contrast tray to analyze applications with
Contrast. It exists only to provide status information about the agent. This helps verify
that the agent works as expected, especially when you initially install the agent.

The Contrast tray provides these status indicators:

• Agent Windows Service displays a green light when you correctly install and run the Contrast
service.

• Contrast displays a green light when the Agent Windows Service can communicate with the Contrast
application. The most common communication failure is incorrect proxy settings.

Contrast Documentation

Agents 228

• IIS Sensors displays a green light when you successfully instrument an application hosted on IIS.
A yellow light indicates you did instrument an application with the agent, but IIS hasn't loaded the
application yet.

• IIS Express Sensors displays a green light for applications hosted on IIS Express when the
application loads and you correctly install and run the Contrast agent. A yellow light indicates you
correctly installed the Contrast agent, but IIS Express did not load the application yet. A red light
indicates you have not set environment variables for IIS Express.

Select tabs in Contrast tray for more information and help:

• Action: Select this to see high-level user instructions for the .NET Framework agent. The instructions
change based on the state of the agent. For example, if the agent can't connect to Contrast, the
Action tab provides details on the error and suggestions on how to resolve the problem.

• IIS: Select this to see a list of all web applications running on the IIS server. The name displayed
matches the alias that IIS uses to identify the application unless you specify a custom application
name for Windows (page 190). The URLs column displays the number of unique URLs (not including
the query string) that the agent observed for the application. The Last Activity column displays the
time of the last request analyzed by the agent for that application.

• IIS AppPools: Select this to display a list of all application pools on the IIS server. You can
see configuration details for each application pool: architecture, pipeline mode, CLR version, and
identity. You can also see whether Contrast will analyze applications in this application pool. You can
configure application pool filtering (page 229) with IIS for the .NET Framework agent.

• IIS Express: Select this to display a list of all web applications running on IIS Express.
• Console: Select this tab to see status and error messages that will help you troubleshoot problems

with the Contrast .NET agent.

Use application pools in IIS
The .NET agent automatically instruments all ASP.NET applications deployed to IIS. If you install
the .NET agent and ensure the background Windows service runs for the agent, Contrast will
instrument all IIS-hosted applications.

You might want to exclude some applications from instrumentation because:

• You don't need to gather security, architecture and library information for these applications.
• The applications are on resource-constrained servers or need to avoid additional performance

demands for Contrast instrumentation.

Web applications hosted in IIS run in application pools. If you need to disable the .NET agent for an
application, you can denylist the application pool (page 230) where it runs.

There are three ways to find the application pool that runs a specific application:

• Internet Information Services (IIS) Manager
Start IIS Manager with the command: %windir%\system32\inetsrv\InetMgr.exe. Select the
web application you want, and select Basic Settings. You will see a field that displays the application
pool name.

• AppCmd.exe

If you Administrator privileges, run cmd.exe. Navigate to C:\Windows\System32\inetsrv.
Enter appcmd list apps to see a list of applications and the application pools for each.

• Contrast .NET logs
Start the Contrast .NET agent. Browse to an application. In Windows,
navigate toC:\ProgramData\Contrast\dotnet\LOGS. Open the most recent Profiler log
(XXXXX_Profiler_[AppDomain]XXXXX[XX].log). The application pool name is on the line that starts
with ApplicationPool Name.

Contrast Documentation

Agents 229

Denylist or allowlist an application pool
Denylists and allowlists are based on the application pool name. Application pool denylists
and allowlists also accept * as a variable-length wildcard. (AppPool* will match AppPool1,
AppPool_arb, etc.)

Allowlists take precedence over denylists. Application pools that satisfy both lists aren't analyzed.

To disable the agent for a specific application, populate agent.dotnet.app_pool_denylist with
the appropriate application pool in C:\ProgramData\Contrast\dotnet\contrast_security.yaml:

Comma-separated list of application pools ignored by Contrast
agent:
 dotnet:
 app_pool_denylist: ExampleAppPoolName

To only enable the agent for specific applications hosted by IIS,
configure agent.dotnet.app_pool_allowlist to only analyze certain application pools. If an
application pool is allowlisted, the agent analyzes the matching pools. There should be no performance
impact for any other applications.

To enable the agent for only specific application pools,
populate agent.dotnet.app_pool_allowlist with the appropriate application pool
in C:\ProgramData\Contrast\dotnet\contrast_security.yaml:

Comma-separated list of application pools exclusively profiled by Contrast
agent:
 dotnet:
 app_pool_allowlist: ExampleAppPoolName

TIP
Read more about yaml configuration (page 73).

.NET Framework and .NET Core Telemetry

.NET Framework and .NET Core agents use telemetry to collect usage data. Telemetry is collected
when an instrumented application first loads the agent’s sensors and then periodically (every few hours)
afterwards.

Your privacy is important to us (page 956). The telemetry feature doesn't collect application data.
The data is anonymized before being sent securely to Contrast. Then the aggregated data is stored
encrypted and under restricted access control. Any collected data will be deleted after one year.

The telemetry feature collects the following data:

Agent versions Data

.NET Framework later than 2020.8.3

.NET Core later than 1.5.15

Agent version

Operating system and version

Whether the agent is running in a container

Whether the agent is running in Azure App Service

Hashed Media Access Control (MAC) address: a cryptographically
(SHA256) anonymous and unique ID for a machine

Kernel version

Contrast Documentation

Agents 230

Agent versions Data

Process running time

Whether Assess is enabled

Whether Protect is enabled

.NET Framework later than 2020.8.3 .NET
Framework
runtime
version

.NET Core later than 1.5.15 .NET Core
runtime
version

.NET Framework later than 20.9.1

.NET Core later than 1.5.17

Hosted or on-premises Contrast instance

.NET Framework later than 20.9.3

.NET Core later than 1.5.19

CLR Instrumentation Engine (CIE) usage

Application framework

Chained profiler vendor

.NET Framework later than 20.10.1

.NET Core later than 1.5.20

Process hosting mode

CIE Raw Profiler Hook usage

.NET Framework later than 20.10.2

.NET Core later than 1.5.21

Names of configuration settings with non-default values

Names of disabled Assess rules

.NET Framework later than 20.12.2

.NET Core later than 1.7.2

Time elapsed for agent’s profiler component to initialize

Time elapsed for agent’s first request to the Contrast web interface

Time elapsed for agent’s profiler component to initialize

Time elapsed between agent initialization and end of the first request

.NET Framework later than 21.1.1 Metrics on IIS-hosted applications, including:

• Total application count
• Application count that will be analyzed (pass application allow list/

deny list configuration)
• Count of apps hosted on CLR4 application pools
• Count of apps hosted on CLR2 application pools

Metrics on IIS applications pools

• Total count
• Count with agent attached
• Count of CLR4
• Count of CLR2

Minimum number of applications in a single app pool

Maximum number of applications in a single app pool

Median number of applications across all app pools

.NET Framework later than 21.1.2

.NET Core later than 1.7.5

Rule mode (i.e. Monitor vs. Block) for each Protect rule

.NET Framework later than 21.4.2

.NET Core later than 1.8.4

Exceptions thrown and caught within agent sensor code, including log
message, exception type, exception message, and stack trace frames
for System and Contrast methods.

.NET Framework later than 21.7.1

.NET Core later than 1.9.7

• Process Architecture (x86/x64)

OS Architecture (x86/x64)

In Azure App Service, the values of the following environment
variables:

• WEBSITE_PHYSICAL_MEMORY_MB

• WEBSITE_PLATFORM_VERSION

• WEBSITE_SKU

.NET Framework later than 21.9.2

.NET Core later than 2.0.1

Description of location where YAML config file was loaded from (i.e.,
path specified by environment variable, default location, application
directory).

Contrast Documentation

Agents 231

To opt-out of the telemetry feature, set the CONTRAST_AGENT_TELEMETRY_OPTOUT environment
variable to 1 or true.

Telemetry data is securely sent to telemetry.dotnet.contrastsecurity.com. You can also opt out of
telemetry by blocking communication at the network level.

.NET Core agent
The Contrast .NET Core agent analyzes the behavior of .NET Core web applications as users interact
with them.

The agent automatically instruments the ASP.NET Core application when the host process is set up
with profiling environment variables or an application launch profile.

The Contrast .NET Core agent consists of two components that run within the same process as your
application:

• The .NET Profiler instruments applications by adding calls to Contrast sensor code in security
relevant APIs used by the application and its dependencies (also known as IL weaving).

• Sensors gather security, architecture and library information.

Once you install the .NET Core agent (page 234), its sensors will gather information about the
application's security, architecture and libraries as users exercise the applications. You can view the
results of the agent's analysis in Contrast. The agent uses these supported technologies (page 232)
and these system requirements (page 233).

.NET Core supported technologies
We support the following technologies for this agent.

Technology Supported versions Notes

Application
frameworks

• ASP.NET Core (3.1.X, 5.0.X
6.0.X, 7.0.X, 8.0X)

• Model-View-Controller (MVC)
• Razor Pages

Limited support

ASP .NET Core 3.1.X and 5.0.X

Not supported:

• .NET Core or ASP.NET Core version 2.1 or below
• ASP.NET Core applications running under the .NET Framework

(Windows) or Mono (Linux/Windows)

Runtime • .NET Core Runtimes: 3.1.X,
5.0.X, 6.0.X , 7.0.X. 8.0X

• .NET Core target framework
monikers:
• netcoreapp3.1
• net5.0
• net6.0
• net7.0
• net8.0

Limited support:

.NET Core Runtimes 3.1.x and 5.0.X

Not supported:

• Running with an ASP.NET Core application that's a higher version
than the runtime (for example, an application with the .NET Core
3.1 runtime that references ASP.NET Core 5.0)

• Running with a .NET Core application for which the referenced
ASP.NET Core version and the target runtime selected during
compilation time don't match

.NET Core for Windows

Windows
operating
systems

• Windows Server (LTSC) (x86,
x64): 2012 R2, 2016, 2019, 2022

• Windows Server (SAC) (x64):
1809, 1903

• Windows workstation (x86, x64):
7, 8/8.1, 10

On 64-bit systems, you can use the agent to analyze both 32-bit and
64-bit web applications.

Not supported:

• Windows on ARM

Server
container

Kestrel, IISHttpServer Not supported:

Http.sys (formerly called WebListener)

Hosting
container

Self-hosted, IIS, IIS Express

Contrast Documentation

Agents 232

Technology Supported versions Notes

.NET Core for Linux operating systems

Linux
operating
systems

• Ubuntu: 18.04 and later (x64,
ARM64)

• Debian: 10 and later (x64,
ARM64)

• openSUSE: 15 and later (x64)
• Alpine: 3.13 and later (x64,

ARM64)
• CentOS: 7 (x64)
• CentOS Stream 8 (x64)
• Red Hat Enterprise Linux: 7 and

later (x64)

Not supported: Red Hat Enterprise Linux 6

Server
container

Kestrel

Hosting
container

Self-hosted

IMPORTANT

• .NET Core 2.2 is not supported after the .NET core agent version 1.5.20. If you are
using .NET Core 2.2, you'll need to use .NET Core agent version 1.5.20 or lower
until you can upgrade your application’s .NET Core runtime.

• As of .NET core agent version 1.9.9, we no longer support .NET Core 2.1. If you are
using .NET Core 2.1, you'll need to use .NET Core agent version 1.9.9 or lower until
you can upgrade your application’s .NET Core runtime.

• Microsoft support for .NET 5.0 ended on May 10th, 2022 and support for .NET
Core 3.1 ended on December 13th, 2022. Contrast support for .NET 5.0 and .NET
Core 3.1 entered limited support with .NET Core agent version 3.0.0. Under
limited support, Contrast will only solve problems that can be reproduced under
supported language versions. Contrast strongly recommends that you upgrade your
applications to a supported version of .NET.

NOTE
The .NET Core agent does not support applications that do not reference
System.Runtime and ASPNET Core. The agent also does not support trimmed
self-contained deployments and executables, because the compiler can potentially trim
assemblies that the agent depends on.

.NET Core system requirements
Before installing the .NET Core agent confirm you can meet the following requirements:

• You have administrative access to a server, and the server is supported by Contrast (page 232).
• There is a deployed application to be analyzed, and the web application technology is

supported (page 232) by Contrast.
• The web server has network connectivity with Contrast.
• The server meets the minimum requirements (stated below).

Contrast Documentation

Agents 233

https://docs.microsoft.com/en-us/dotnet/core/deploying/trimming/trim-self-contained
https://docs.microsoft.com/en-us/dotnet/core/deploying/trimming/trim-self-contained

Requirement Recommended Minimum Notes

CPU at least 4 2

Memory at least 8 GB 4 GB Agents running in Assess roughly double the memory
requirements of analyzed applications. Applications
should use less than half of the available memory when
an agent isn't installed.

Operating system • Windows
• Linux

macOS is not supported.

Processor
architecture

• 32-bit x86 processors
• 64-bit x86 processors
• 64-bit ARM processors

Windows on ARM processors is not supported.

Install the .NET Core agent
To install the .NET Core agent:

1. Place the agent’s components on the server’s file system.
2. Set environment variables so that the .NET runtime loads the agent’s profiler component.
3. Use the application as you normally would and verify that Contrast sees your application.

Depending on your situation, use one of these installation methods:

• Manual installation (page 234) (if you are using self-hosted web application running on Windows,
Linux or Docker)

• .NET Core agent for IIS installer (page 242) (if you are using IIS)
• Azure App Service (page 239)
• NuGet (page 238)

To auto-upgrade your agent, enable this option with the Agent Upgrade Service (page 188).

Install the .NET Core agent manually
Use this method to install the .NET Core agent if you are using a web application hosted on IIS, or
running a self-hosted application on Windows, Linux or Docker.

NOTE
Installing within containers can be complex, and these steps might not work for your
situation. Read more about installing with Docker.

Before you begin
Check the system requirements (page 233) and supported technologies (page 232) to be sure
installation will work and ensure best performance.

Steps

1. Select Add new at the top right of the Contrast web interface. Select the Application card,
select .NET Core and select the link to download the .NET Core agent.

2. On the web server, extract the downloaded ZIP archive (for example, Contrast.NET.Core_1.0.1.zip)
to a directory that your applications have sufficient permissions to access.

3. Set the following environment variables on your application's process. Use the
appropriate CORECLR_PROFILER_PATH settings for your operating system. Replace
<UnzippedDirectoryRoot> with your archive directory.
• Windows

Contrast Documentation

Agents 234

https://support.contrastsecurity.com/hc/en-us/articles/360052815632

Environment variable Value

CORECLR_PROFILER_PATH_64 <UnzippedDirectoryRoot>\runtimes\win-
x64\native\ContrastProfiler.dll

CORECLR_PROFILER_PATH_32 <UnzippedDirectoryRoot>\runtimes\win-
x86\native\ContrastProfiler.dll

CORECLR_PROFILER {8B2CE134-0948-48CA-A4B2-80DDAD9F5791}

CORECLR_ENABLE_PROFILING 1

CONTRAST_CONFIG_PATH <path_to_contrast_security.yaml>

IMPORTANT
If you are running the .NET Core agent and the .NET Framework agent on
the same server, the CONTRAST_CONFIG_PATH option applies to the load
path (page 72) for both agents. To apply distinct paths for each agent, use these
options to set the data directory:

• CONTRAST_CORECLR_DATA_DIRECTORY
• CONTRAST_DATA_DIRECTORY

• Linux x64

Environment variable Value

CORECLR_PROFILER_PATH_64 <UnzippedDirectoryRoot>/runtimes/linux-x64/native/
ContrastProfiler.so

CORECLR_PROFILER {8B2CE134-0948-48CA-A4B2-80DDAD9F5791}

CORECLR_ENABLE_PROFILING 1

CONTRAST_CONFIG_PATH <path_to_contrast_security.yaml>

• Linux ARM64

Environment variable Value

CORECLR_PROFILER_PATH_64 <UnzippedDirectoryRoot>/runtimes/linux-arm64/native/
ContrastProfiler.so

CORECLR_PROFILER {8B2CE134-0948-48CA-A4B2-80DDAD9F5791}

CORECLR_ENABLE_PROFILING 1

CONTRAST_CONFIG_PATH <path_to_contrast_security.yaml>

4. Ensure the following paths are accessible by the runtime user of the application.

Path Usage Customizable Permissions

The path to .NET Core
YAML (page 252)

Configures
the agent

Yes; set the environment
variable CONTRAST_CONFIG_PATH

Read

<UnzippedDirectoryRoot> The root
"installation"
directory;
stores the
agent
binaries

No Read

• Windows: %ProgramData%
\Contrast\dotnet-core\logs

• Linux: /var/tmp/contrast/
dotnet-core/logs

Directory
for Contrast
agent logs.
If missing,
the
directory
will be
created

Yes; set the environment
variable CONTRAST_CORECLR_LOGS_DIRECTORY

Read/
Write(or
inherited
from a parent
directory)

Contrast Documentation

Agents 235

NOTE
When running in IIS, make sure that the application pool can access these paths.

For example, given an application pool called Default Web Site using
the default identity ApplicationPoolIdentity, ensure that the user IIS
AppPool\Default Web Site has effective permissions to read the unzipped
directory root.

5. Configure the agent (page 251) with authentication credentials and proxy settings to connect to
Contrast.

6. Once the application has loaded, use the application and then verify that the server and application
are active in Contrast, and that any expected vulnerabilities appear.

TIP
To update the agent (page 249), replace the agent files in the agent directory and
restart your application. As the agent is running alongside your application, it can't
update itself.

The agent automatically starts with your application as long as the environment is
properly set up.

To stop the agent, stop the application and remove agent from its environment.
Alternatively, you may change the CORECLR_ENABLE_PROFILING setting to 0.

Follow any of these examples to set environment variables using:
• IIS (page 236)
• Bash (Linux) (page 237)
• Powershell or Powershell Core (Windows) (page 237)
• Launch profile (dotnet.exe) (page 237)

IIS and IIS Express
Set the environment variables with either:

• The environmentVariables section in the application web.config

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <system.webServer>
 <!-- ... -->
 <aspNetCore processPath="dotnet" \
arguments=".\ExampleNetCoreApp.dll" stdoutLogEnabled="false" \
stdoutLogFile=".\logs\stdout">
 <environmentVariables>
 <environmentVariable name="CORECLR_PROFILER_PATH_64" \
value="C:\contrast\dotnetcore\runtimes\win-
x64\native\ContrastProfiler.dll" />
 <environmentVariable name="CORECLR_PROFILER_PATH_32" \
value="C:\contrast\dotnetcore\runtimes\win-
x86\native\ContrastProfiler.dll" />
 <environmentVariable name="CORECLR_ENABLE_PROFILING" \
value="1" />
 <environmentVariable name="CORECLR_PROFILER" \
value="{8B2CE134-0948-48CA-A4B2-80DDAD9F5791}" />

Contrast Documentation

Agents 236

https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/aspnet-core-module?view=aspnetcore-2.2#setting-environment-variables

 <environmentVariable name="CONTRAST_CONFIG_PATH" \
value="C:\contrast\dotnet-core\contrast_security.yaml" />
 </environmentVariables>
 </aspNetCore>
 </system.webServer>
</configuration>

• The application pool setting on the server

Bash (Linux)
Linux x64:

export CORECLR_PROFILER_PATH_64=/usr/local/contrast/runtimes/linux-x64/
native/ContrastProfiler.so
export CORECLR_ENABLE_PROFILING=1
export CORECLR_PROFILER={8B2CE134-0948-48CA-A4B2-80DDAD9F5791}
export CONTRAST_CONFIG_PATH=/etc/contrast/contrast_security.yaml

Linux ARM64:

export CORECLR_PROFILER_PATH_64=/usr/local/contrast/runtimes/linux-arm64/
native/ContrastProfiler.so
export CORECLR_ENABLE_PROFILING=1
export CORECLR_PROFILER={8B2CE134-0948-48CA-A4B2-80DDAD9F5791}
export CONTRAST_CONFIG_PATH=/etc/contrast/contrast_security.yaml

Then run the application:

dotnet ./MyAppWithContrastAgent.dll

Powershell or Powershell Core (Windows)

$env:CORECLR_PROFILER_PATH_64 = 'C:\contrast\dotnetcore\runtimes\win-
x64\native\ContrastProfiler.dll'
$env:CORECLR_PROFILER_PATH_32 = 'C:\contrast\dotnetcore\runtimes\win-
x86\native\ContrastProfiler.dll'
$env:CORECLR_ENABLE_PROFILING = '1'
$env:CORECLR_PROFILER = '{8B2CE134-0948-48CA-A4B2-80DDAD9F5791}'
$env:CONTRAST_CONFIG_PATH = 'C:\contrast\dotnet-
core\contrast_security.yaml'

Then run the application:

dotnet .\MyAppWithContrastAgent.dll

Launch profile (dotnet.exe)

{
 "MyAppWithContrastAgent": {
 "environmentVariables": {
 "CORECLR_PROFILER_PATH_64": "C:\\contrast\\dotnetcore\\runtimes\
\win-x64\\native\\ContrastProfiler.dll",
 "CORECLR_PROFILER_PATH_32": "C:\\contrast\\dotnetcore\\runtimes\
\win-x86\\native\\ContrastProfiler.dll",
 "CORECLR_ENABLE_PROFILING": "1",
 "CORECLR_PROFILER": "{8B2CE134-0948-48CA-A4B2-80DDAD9F5791}",
 "CONTRAST_CONFIG_PATH": "c:\\contrast\\config\\MyApp\
\contrast_security.yaml"
 }

Contrast Documentation

Agents 237

https://docs.microsoft.com/en-us/iis/configuration/system.applicationHost/applicationPools/add/environmentVariables/#appcmdexe

 }
}

Then run the application:

dotnet run --launch-profile MyAppWithContrastAgent

Install the .NET Core agent manually with NuGet
In some instances, you may prefer to manually install the .NET Core agent using NuGet. For example,
this can be useful if you are unable to access the Azure App Service site extension (page 239) or if you
prefer to include the .NET Core agent as a dependency.

Before you begin

IMPORTANT
When redeploying a web application that has Contrast agent running, you may run
into an error that says "Files in use" on ContrastProfiler.dll. This happens because the
agent DLL files are locked by .NET, and can't be overwritten while the application is still
running.

Steps

1. Add the Contrast NuGet package to your application.
Using dotnet command line:

dotnet add package Contrast.SensorsNetCore

Using Visual Studio:
• Under the application project in the Solution Explorer, right-click on References and

select Manage NuGet Packages.
• Search for the Contrast.SensorsNetCore package, select it and add it to your project.
• Build your application. Confirm that a contrast folder appears in your project. When the

application is published, this folder also appears in the build output directory.
2. Set environment variables so that the .NET runtime loads the agent’s profiler component.:

Windows:

CORECLR_ENABLE_PROFILING: 1
CORECLR_PROFILER: {8B2CE134-0948-48CA-A4B2-80DDAD9F5791}
CORECLR_PROFILER_PATH_32: <application directory>\contrast\runtimes\win-
x86\native\ContrastProfiler.dll
CORECLR_PROFILER_PATH_64: <application directory>\contrast\runtimes\win-
x64\native\ContrastProfiler.dll

Linux x64:

CORECLR_ENABLE_PROFILING: 1
CORECLR_PROFILER: {8B2CE134-0948-48CA-A4B2-80DDAD9F5791}
CORECLR_PROFILER_PATH: <application directory>/contrast/runtimes/linux-
x64/native/ContrastProfiler.so

Linux ARM64:

Contrast Documentation

Agents 238

CORECLR_ENABLE_PROFILING: 1
CORECLR_PROFILER: {8B2CE134-0948-48CA-A4B2-80DDAD9F5791}
CORECLR_PROFILER_PATH: <application directory>/contrast/runtimes/linux-
arm64/native/ContrastProfiler.so

3. Set the basic configuration either with the YAML configuration file (page 252) or with environment
variables (page 252). For example:

CONTRAST_CONFIG_PATH: [Path to yaml config file]

At minimum, the following environment variables are required:

CONTRAST__API__URL: [IF USING ANOTHER SERVER THAN THE DEFAULT: https://
app.contrastsecurity.com]
CONTRAST__API__USER_NAME: [REPLACE WITH YOUR AGENT USERNAME]
CONTRAST__API__SERVICE_KEY: [REPLACE WITH YOUR AGENT SERVICE KEY]
CONTRAST__API__API_KEY: [REPLACE WITH YOUR AGENT API KEY]

4. Deploy your application with the environment variables from the previous step.
5. Once the application has loaded, use the application and then verify that the server and application

are active in Contrast, and that any expected vulnerabilities appear.

Install the .NET Core agent with Azure App Service
Use this procedure for an express installation of the .NET Core agent using Azure Portal Extensions.

Before you begin
Before you begin, check the system requirements (page 233) and supported technologies (page 232) to
be sure installation will work and ensure best performance.

Steps

1. Create an Azure account, if you don't have one already.
2. Create a .NET web application and deploy it to Azure App Service.
3. Publish your application to Azure, and confirm that it works as expected without Contrast.
4. Ensure that your application is deployed using a Windows plan. (Linux plans do not support Site

Extensions.)

NOTE
If you do not have access to the site extension, you can install the .NET Core
agent manually with NuGet (page 238).

5. Add the Contrast .NET Core Site Extension:
• With the Azure portal

a. In the Azure Portal, select your hosted application.
b. Select Extensions.

Contrast Documentation

Agents 239

https://portal.azure.com/#home
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-get-started-dotnet

c. Select Add.
d. Select the Contrast .NET Core Site Extension for Azure App Service. This is the

extension for .NET Core applications.
e. Select OK, and agree to the terms and conditions.
f. Wait a few seconds and confirm the site extension installed correctly.

Contrast Documentation

Agents 240

NOTE
The site extension sets a number of environment variables, including:

CORECLR_ENABLE_PROFILING=1
CORECLR_PROFILER={8B2CE134-0948-48CA-A4B2-80DDAD9F5791}
CORECLR_PROFILER_PATH_32=D:\Home\siteextensions\Contrast.Ne
tCore.Azure.SiteExtension\ContrastNetCoreAppService\runtime
s\win-x86\native\ContrastProfiler.dll
CORECLR_PROFILER_PATH_64=D:\Home\siteextensions\Contrast.Ne
tCore.Azure.SiteExtension\ContrastNetCoreAppService\runtime
s\win-x64\native\ContrastProfiler.dll
CONTRAST_INSTALL_DIRECTORY=D:\Home\siteextensions\Contrast.
NetCore.Azure.SiteExtension\ContrastNetCoreAppService\
MicrosoftInstrumentationEngine_ConfigPath32_ContrastCoreX86
Config=D:\Home\siteextensions\Contrast.NetCore.Azure.SiteEx
tension\ContrastCieCoreClrProfiler-32.config
MicrosoftInstrumentationEngine_ConfigPath64_ContrastCoreX64
Config=D:\Home\siteextensions\Contrast.NetCore.Azure.SiteEx
tension\ContrastCieCoreClrProfiler-64.config

If the CLR instrumentation engine (CIE) is configured for the application (for
example, because Application Insights is enabled), Azure should automatically
overwrite the CORECLR_PROFILER* variables to point to the profiler of the
CIE.

The CIE will then use the MicrosoftInstrumentationEngine_* variables to load
the Contrast agent.

If the CIE is not configured for the application, the standard
CORECLR_PROFILER* variables will be used to load the Contrast agent.

• With the Azure CLI
• Use a command similar to this one for a .NET Core Site Extension:

az resource create --resource-
group 'myResourceGroup' --resource-type Microsoft.Web/
sites/siteextensions --name myAppService/siteextensions/
Contrast.NetCore.Azure.SiteExtension --properties "{}"

In this example, the command adds a Contrast .NET Core Site Extension to an App Service
named "myAppService" in Resource Group "myResourceGroup"

After you add the extension, the Azure Portal displays a list of the installed agents with details
similar to the following:

Name Version Update Available

Contrast.NET Core Site Extension for Azure App Service 4.2.4 No

TIP
You can also install the agent from the Site Extensions area of your application
management SCM (Kudu) site.

Contrast Documentation

Agents 241

IMPORTANT
If a new version of the .NET Core agent is available, it's indicated in the Azure
Portal or Kudu dashboard. You must stop the site before starting the update;
otherwise, the update may fail.

6. Add configuration options
• With the Azure Portal

a. In the Azure Portal, select your hosted application.
b. Select Configuration under Settings to configure settings that allow the agent to connect to

Contrast.
c. Select New application setting and add the following values for your application:

Key Value

CONTRAST__API__USER_NAME Replace with your agent username (page 71).

CONTRAST__API__SERVICE_KEY Replace with your agent service key (page 71).

CONTRAST__API__API_KEY Replace with your agent API key (page 71).

CONTRAST__API__URL Defaults to https://app.contrastsecurity.com. Replace with another URL, if
you're using a Contrast application that's hosted elsewhere.

• With the Azure CLI
• Enter a command similar to this one:

az webapp config appsettings set --resource-
group 'myResourceGroup' --name 'myAppService' --settings \
CONTRAST__API__URL=https://app.contrastsecurity.com \
CONTRAST__API__API_KEY={Your API KEY} \
CONTRAST__API__SERVICE_KEY={Your Service key} \
CONTRAST__API__USER_NAME={Your agent user}

Get API values (agent keys (page 71)) from the Contrast web interface or by downloading a YAML
file for the .NET Core agent.

7. In the Azure Portal, go to the application overview and Restart the application.
Running the application automatically instruments any application that is running inside of the App
Service. You should begin to see data in Contrast

8. Navigate to the application and confirm the application is reporting to Contrast.
You can view log files to verify that Contrast is running:
a. In the Azure Portal, go to Advanced Tools for the app service.
b. Select Go.
c. In the Kudu Services window, select “Debug console” menu at the top and select “CMD”.
d. Select the LogFiles directory.
e. Select the Contrast directory.
f. Select the dotnet directory.

You will see an agent log named <PID>_Profiler_<App Service Name>_<XXX>.log.
g. Verify that there are no ERROR log entries.

Install the .NET Core agent with the .NET Core agent for IIS installer
The .NET Core agent for IIS installer is a normal Windows application installer built using standard MSI
technology. It validates that the target server and satisfies several requirements (for example, that the
server's operating system is a supported operating system). If all requirements are met, the installer:

• Registers the .NET Core agent for IIS as a standard Windows program.
• Places the agent’s files on a disk in the specified install location (for example, C:\Program
Files\Contrast\dotnet-core). This includes several dynamic link libraries (DLLs) and
executables.

Contrast Documentation

Agents 242

• Creates the specified data directory for the agent that's primarily used to store agent log files and
configuration (for example, C:\ProgramData\Contrast\dotnet-core).

• Adds the .NET Core agent’s native modules to IIS.

Before you begin
Before you begin, check the system requirements (page 233) and supported technologies (page 232) to
be sure installation will work and ensure best performance.

Install the agent using Contrast

1. In the Contrast web application, select Add new.
2. Choose .NET Core in the Choose an agent dropdown menu.
3. Select the link .NET Core IIS agent installer under Install with IIS. A ZIP archive downloads.
4. Extract the downloaded ZIP archive on the web server, and run contrast-dotnet-core-

agent-for-iis-installer.exe. This installs the .NET Core agent for IIS.

TIP
You can use the command line to access additional options supported by the .NET
Core agent for IIS installer.

5. Configure the .NET Core agent with a YAML configuration file (page 252) to set the authentication
keys (page 71) and any application-specific configuration.

6. Copy the yaml file to C:\ProgramData\Contrast\dotnet-core if not already there.
7. Restart IIS to pick up the changes.
8. Use the application as you normally would and verify that Contrast sees your application.

Install the agent using command line
Use the command line to access additional options supported by the .NET Core agent for IIS installer.

The .NET Core for IIS agent can be installed using the Windows interface, and uninstalled or repaired
using standard Windows features (including the Programs and Features Control Panel and Powershell).
However, you may want to use the Contrast Windows installer to perform these actions instead for
certain scenarios such as automated scripting.

Use these commands for attended mode:

• Install:contrast-dotnet-core-agent-for-iis-installer.exe
• Uninstall:contrast-dotnet-core-agent-for-iis-installer.exe -uninstall
• Repair:contrast-dotnet-core-agent-for-iis-installer.exe -repair

Use these commands for unattended or silent mode:

• Install:contrast-dotnet-core-agent-for-iis-installer.exe -s
SUPPRESS_RESTARTING_IIS=1

• Uninstall:contrast-dotnet-core-agent-for-iis-installer.exe -uninstall -s
SUPPRESS_RESTARTING_IIS=1

• Repair:contrast-dotnet-core-agent-for-iis-installer.exe -repair -s
SUPPRESS_RESTARTING_IIS=1

The .NET Core agent for IIS installer supports several additional options that are accessible when you
use the command line for installation.

Option Description Example
INSTALLFOLDER This option specifies the install directory for the agent

files.
INSTALLFOLDER=C:Program
Files\Contrast\dotnet-core

Contrast Documentation

Agents 243

Option Description Example
AGENT_EXPLORER_INSTALLFOLDER This option specifies the directory for Agent Explorer

files.
AGENT_EXPLORER_INSTALLFOLDER="C:\
Program Files\Contrast\agent-
explorer"

INSTALL_AGENT_EXPLORER If you don't want to install the Agent Explorer, set the
value for this option to 0.

The default value is 1, which installs the Agent
Explorer.

INSTALL_AGENT_EXPLORER=1

DATAFOLDER This option specifies the default location for agent log
and configuration files.

DATAFOLDER=C:\ProgramData\Contras
t\dotnet-core

SUPPRESS_RESTARTING_IIS If you set the value of this option to 1, the installer does
not restart IIS.

The default value is 0.

NOTE

• Applications do not load the
agent until IIS restarts.

• Setting
SUPPRESS_RESTARTING_IIS
will prevent an auto-upgrade
from running unless IIS does
not have any active workers
when the upgrade runs.

SUPPRESS_RESTARTING_IIS=0

INSTALL_UPGRADE_SERVICE If you don't want to install the agent upgrade service,
set the value of this option to 0.

The default value is 1, which installs the agent upgrade
service.

INSTALL_UPGRADE_SERVICE=1

UPGRADE_SERVICE_INSTALLFOLDER This option specifies the directory for the upgrade
service files.

UPGRADE_SERVICE_INSTALLFOLDER="C:
\Program Files
(x86)\Contrast\upgrade-service"

IMPORTANT
The .NET Core agent for IIS installer automatically restarts IIS when you install the
agent for the first time. You may want to change the configuration of any web server
monitoring tools that raise alarms when IIS restarts.

The .NET Profiling API requires that profiled processes be started with a profiler.
Therefore, the .NET Core agent must restart IIS (and any IIS worker processes) to
attach the Contrast profiler. This process is similar to how other profiling products (for
example, memory or performance profilers) behave.

Install the .NET Core agent in a container

Before you begin

• This topic provides general guidance for installing the Contrast .NET Core agent in a containerized
application, with Docker as an example.

• You should have a basic understanding of how containers and related software work. You may need
to adjust the instructions to meet your specific circumstances.

• If you are using Kubernetes, consider using the Agent Operator (page 494) to configure the agent.

Contrast Documentation

Agents 244

Step 1: Install the agent
Contrast can be added either before or after the application is added to the container image. The
recommended approach is with the use of named multi-stage builds. For example:

FROM mcr.microsoft.com/dotnet/aspnet:6.0

Hidden for brevity...

Copy the required agent files from the official Contrast agent image.
COPY --from=contrast/agent-dotnet-core:latest /contrast /contrast

Where in this example, the latest .NET Core agent is used (check DockerHub for available tags).

Step 2: Configure the agent
Contrast agents accept configuration from multiple sources, with order of precedence documented in
the order of precedence (page 72) section.

A mixed approach is recommended:

• Use a YAML file so that common configuration may be shared between many applications.
• Use environment variables for application-specific configuration values, to override values provided

by a YAML file, or for sensitive keys that are injected during runtime.

YAML file configuration:

When using a YAML file to configure the agent (page 73), the environment
variable CONTRAST_CONFIG_PATH can also be used to indicate where the YAML file is located inside
the container.

For example, given a YAML file called contrast_security.yaml that exists in the Docker build
context:

The environment variable CONTRAST_CONFIG_PATH can also be used to indicate where the YAML file
is located.

agent:
 logger:
 path: /var/tmp
 level: WARN

The YAML file can be added to the container image as follows:

FROM mcr.microsoft.com/dotnet/aspnet:6.0

Hidden for brevity...

Add the Contrast agent to the image.
COPY --from=contrast/agent-dotnet-core:latest /contrast /contrast

Copy the contrast_security.yaml file from Docker build context.
COPY ./contrast_security.yaml /contrast_security.yaml

Finally configure configure the agent to use the YAML file previously \
copied.
ENV CONTRAST_CONFIG_PATH=/contrast_security.yaml

Environment variable configuration:

Contrast Documentation

Agents 245

https://docs.docker.com/develop/develop-images/multistage-build/

To set an application-specific configuration, use environment variables (page 76). Below are some
common configuration options.

Title Usage Environment variable

Application name Specify the application name reported to Contrast. CONTRAST__APPLICATION__NAME

Application
group

Specify the application access group for this application
during onboarding.

NOTE
Application access groups have to be
created first in Contrast.

CONTRAST__APPLICATION__GROUP

Application tags Add labels to an application. CONTRAST__APPLICATION__TAGS

Server name Specify the server name reported to Contrast. CONTRAST__SERVER__NAME

Server
environment

Specify in which environment the application is running.
Valid values for this configuration are: Development, QA and
Production

CONTRAST__SERVER__ENVIRONMENT

Server tag Add labels to the server. CONTRAST__SERVER__TAG

Step 3: Add profiler variables and authentication credentials
To enable instrumentation of your application, the .NET agent requires additional environment
variables (page 234). The CORECLR_ variables load the agent and the CONTRAST_ variables are for
agent authentication to the server.

Using the Dockerfile example from before:

x64

FROM mcr.microsoft.com/dotnet/aspnet:6.0

Hidden for brevity...

COPY --from=contrast/agent-dotnet-core:latest /contrast /contrast

Required variables to load the agent.
ENV CORECLR_PROFILER_PATH_64=/contrast/runtimes/linux-x64/native/
ContrastProfiler.so \
 CORECLR_ENABLE_PROFILING=1 \
 CORECLR_PROFILER={8B2CE134-0948-48CA-A4B2-80DDAD9F5791}

ARM64

FROM mcr.microsoft.com/dotnet/aspnet:6.0

Hidden for brevity...

COPY --from=contrast/agent-dotnet-core:latest /contrast /contrast

Required variables to load the agent.
ENV CORECLR_PROFILER_PATH_64=/contrast/runtimes/linux-
arm64

Contrast Documentation

Agents 246

 /native/ContrastProfiler.so \
 CORECLR_ENABLE_PROFILING=1 \
 CORECLR_PROFILER={8B2CE134-0948-48CA-A4B2-80DDAD9F5791}

Additionally, the following environment variables (page 71) are required for agent authentication to the
server.

CONTRAST__API__URL=https://app.contrastsecurity.com/Contrast
CONTRAST__API__API_KEY={Your API KEY here}
CONTRAST__API__SERVICE_KEY={Your Service key here}
CONTRAST__API__USER_NAME={Your agent username here}

You can get API values (agent keys (page 71)) from Contrast or by downloading a YAML file for
the .NET Core agent.

IMPORTANT
The API_KEY, SERVICE_KEY and USER_NAME keys should be considered sensitive
data and handled accordingly. Contrast recommends injecting these during runtime
from your secrets store (e.g. Kubernetes Secrets).

Step 4: Instrument your application
You can now run the application image with Contrast enabled. Contrast will instrument your application
during startup and begin reporting security vulnerabilities to Contrast. You can verify that Contrast is
running by checking the container.

Agent upgrade service
The Agent Upgrade Service is a background Windows service that helps you keep the .NET Framework
and .NET Core for IIS agents automatically updated to the most recent version on Windows. The Agent
Upgrade Service is included with the .NET Framework Agent Installer and .NET Core Agent for IIS
Installer; the agent installers install two products:

• the corresponding agent, and
• the Agent Upgrade Service.

By default, the Agent Upgrade Service checks for new agent versions released to NuGet when the
service first starts up (when the Windows Server is restarted.) If a new agent version is found, the
Upgrade Service will download the new agent version, verify the installer’s signature, and then finally
execute the installer.

Contrast Documentation

Agents 247

NOTE
When a new agent version installed, IIS will be restarted.

The Agent Upgrade Service is an optional component and is not required for agent Assess and Protect
features.

• De-select the Install the agent upgrade service checkbox when installing the agent if you do not
want to use the Agent Upgrade Service.

• If installing the agent via command line, add INSTALL_UPGRADE_SERVICE=0 argument to not install
the Agent Upgrade Service.

The behavior of the Agent Upgrade Service can be modified via an agent-specific configuration
file in the Contrast data directory. The default location is C:\ProgramData\Contrast\upgrade-
service.

The configuration for upgrading the .NET Core agent is located in the .NET Core YAML file.

enable: true # Set to `true` for the agent to automatically upgrade to \
newer versions.
checks: Startup # Set the frequency with which the agent checks for \
updates. Valid values are `daily` for every 24 hours and on startup, or \
`startup` for *only* when service starts up.
timeout_ms: 60000 # Set the time allocated to execute the downloaded agent \
installer before cancelling.
nuget_repository_url: https://api.nuget.org/v3/index.json # Set the URL of \
the Nuget repository to be used for the .NET Core Agent for IIS Installer

Contrast Documentation

Agents 248

nuget_package_name: Contrast.CoreIIS.Installer # Set the name of the .NET \
Core Agent for IIS Nuget package.
installer_upgrade_code: 82468c04-dfc0-4a4c-9eb9-c4b314c67fdc # Used \
internally to retrieve the current installed agent version from Windows.

NOTE
The Agent Upgrade Service is only included with the agent installer. It is not included
with the manual .NET Core Agent, agent NuGet packages, or Azure App Service site
extensions.

Update the .NET Core agent
Contrast frequently releases new versions of agents, these steps show you how to easily update
the NuGet package or the manual .NET Core agent and keep it updated. To update the agent by
installation:

• .NET Core agent agent for IIS installer: use the Agent upgrade service (page 188).
• Azure App Service: Use the Azure portal.

• Manual installation: use the instructions below to set up your own automation.

Before you begin

• Confirmed your .NET Core application runs properly without the Contrast .NET Core agent.
• Previously installed the Contrast .NET Core agent.
• Defined a policy for how and when to update the agent, based on your change management policy

and the environment where you deploy agents.
• An existing workflow to manage and keep application dependencies updated.

Steps

1. Download the Contrast .NET Core agent to the same installation location by using the Contrast
repository:
• Hosted: Contrast synchronizes .NET Core agent releases with public NuGet repositories.
• On-premises: Contrast does not recommend using newer versions of Contrast agents than those

available from your Contrast instance. Use the same version of the .NET Core agent version you
would otherwise download directly from the Contrast web interface.

2. Get the following API information

Contrast Documentation

Agents 249

CONTRAST_URL=<TeamServer URL e.g. https://app.contrastsecurity.com >
ORG_ID=<YOUR TEAMSERVER ORGANIZATION ID>
AUTH_TOKEN=<YOUR TEAMSERVER AUTHENTICATION TOKEN>
API_KEY=<YOUR TEAMSERVER API KEY>

3. Use one of the following scripts to download Contrast .NET Core agent. Include the script in
the application startup script, automated deployment pipeline, or add the script as a cron job to
automatically update the agent.
• Bash script

CONTRAST_URL=https://app.contrastsecurity.com
ORG_ID=xxxx
AUTH_TOKEN=xxxx
API_KEY=xxxx
curl -X GET $CONTRAST_URL/Contrast/api/ng/$ORG_ID/
agents/default/DOTNET_CORE /-o ./Contrast.NET.Core.zip -
H 'Authorization: $AUTH_TOKEN' -H 'API-Key: $API_KEY' /-
H 'Accept: application/json' -OJ

• Powershell

$ContrastUrl = "https://app.contrastsecurity.com/Contrast"
$UserId = ""
$ServiceKey = ""
$ApiKey = ""
$OrganizationId = ""
$InstallPath = ".\dotnet-core"

Needed if the OS defaults to Tls1.1.
[Net.ServicePointManager]::SecurityProtocol = \
[Net.SecurityProtocolType]::Tls12

New-Item -ItemType Directory $InstallPath

Invoke-WebRequest `
 -Uri "$ContrastUrl/api/ng/$OrganizationId/agents/default/
DOTNET_CORE" `
 -Headers @{
 "API-Key" = $ApiKey
 "Authorization" = \
[Convert]::ToBase64String([System.Text.Encoding]::UTF8.GetBytes("$
{UserId}:${ServiceKey}"))
 } `
 -OutFile "$InstallPath\Contrast.zip"

Invoke-WebRequest -Uri `
 "$ContrastUrl/api/ng/$OrganizationId/agents/external/default/
DOTNET_CORE" `
 -Headers @{
 "Accept" = "text/yaml"
 "API-Key" = $ApiKey
 "Authorization" = \
[Convert]::ToBase64String([System.Text.Encoding]::UTF8.GetBytes("$
{UserId}:${ServiceKey}"))
 } `
 -OutFile "$InstallPath\contrast_security.yaml"

Expand-Archive "$InstallPath\Contrast.zip" -DestinationPath \

Contrast Documentation

Agents 250

$InstallPath
Remove-Item "$InstallPath\Contrast.zip"

4. Unzip the downloaded file and save the contents to the current Contrast agent location. If you do
not know the location, you can look up the environment variables using the command for your
system.
• Windows (64-bit)

echo %CORECLR_PROFILER_PATH_64%CORECLR_PROFILER_PATH_64

• Windows (32-bit)

CORECLR_PROFILER_PATH_32

• Linux (64-bit)

CORECLR_PROFILER_PATH_64

• Powershell

printenv CORECLR_PROFILER_PATH_64

Configure the .NET Core agent
The standard configuration (page 70) for all agents uses this order of precedence (page 72).

Depending on your situation, you can configure the .NET Core agent with:

• Azure App Service (page 251)
• Environment variables (page 252)
• A YAML configuration file (page 252)
• Integrations (page 724)

TIP
Use the Contrast agent configuration editor (page 74) to create or upload a YAML
configuration file, validate YAML and get setting recommendations.

Configure the .NET Core agent for Azure App Service
When using Azure App Service, you can configure the .NET Core agent with:

• The Azure Portal: Configure the .NET Core agent using environment variables (page 252).
Add all settings to the Application Settings section of the Configuration blade using environment
variable syntax.

• Environment variables in a web.config file: Place your overrides using the environment variable
convention in the <environmentVariables> section of <aspNetCore> element.

• A YAML configuration file (page 252): Upload the file to your Azure web application by including it
in your application deployment or using the Kudu console.
In the Configuration\Application Settings blade, add a new application setting
called CONTRAST_CONFIG_PATH with a value that points to this file.
For example, to use the contrast_security.yaml file in the root of your application,
add a new application setting with the key CONTRAST_CONFIG_PATH and value
of D:\Home\site\wwwroot\contrast_security.yaml in Configuration\Application Settings. Application
files in Azure App Service are deployed to D:\home\site\wwwroot.

Contrast Documentation

Agents 251

https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/iis/web-config#set-environment-variables

See also

• Install the .NET Core agent with Azure App Service (page 239)

Configure .NET Core agent with environment variables
You can configure environment variables in several ways:

• Under IIS, the web.config file can be used to configure application environment variables
• Under Azure App services, the Azure platform provides a UI to configure the web site's environment

variables.
• When developing, the launchSettings.json file can be used to configure the environment

variables on launched applications.

TIP
You can convert any of the properties in the .NET Core YAML template (page 252) to
environment variables.

• To change the agent's logging level (agent.logger.level) to "TRACE", add a
setting with key CONTRAST__AGENT__LOGGER__LEVEL and value "TRACE".

• To change the agent's server name (server.name) to "MyServer", add a setting
with key CONTRAST__SERVER__NAME and value "MyServer".

Here are some of the most common settings:

Environment variable Purpose

CONTRAST__APPLICATION__NAME Specify the application name reported to Contrast.

CONTRAST__APPLICATION__GROUP Specify the access group for this application. (You must have already
created access groups (page 818).)

CONTRAST__APPLICATION__SESSION_METADATA Provide metadata which is used to create a new session ID in the
Contrast web interface. Vulnerabilities discovered by the agent are
associated with this new session.

CONTRAST__SERVER__NAME Specify the server name reported to Contrast.

CONTRAST__SERVER__ENVIRONMENT Specify in which environment the application is running (Development,
QA and Production).

See the .NET Core YAML template (page 252) for a description of other available properties.

.NET Core YAML configuration template
Use this template to configure the .NET Core agent using a YAML configuration file. (Learn more about
YAML configuration (page 73).)

Place your YAML file in the default location:

• Windows: C:/ProgramData/contrast/dotnet-core/contrast_security.yaml
• Unix: /etc/contrast/dotnet-core/contrast_security.yaml

==
====
Use the properties in this YAML file to configure a Contrast agent.
Go to https://docs.contrastsecurity.com/en/order-of-precedence.html
to determine the order of precedence for configuration values.
==

Contrast Documentation

Agents 252

https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/iis/web-config#set-environment-variables

====

Use this setting if you want to temporarily disable a Contrast agent.
Set to `true` to enable the agent; set to `false` to disable the agent.
enable: true

==
====
api
Use the properties in this section to connect the agent to the Contrast \
UI.
==
====
api:

 # ********************** REQUIRED **********************
 # Set the URL for the Contrast UI.
 url: https://app.contrastsecurity.com/Contrast

 # ********************** REQUIRED **********************
 # Set the API key needed to communicate with the Contrast UI.
 api_key: NEEDS_TO_BE_SET

 # ********************** REQUIRED **********************
 # Set the service key needed to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 service_key: NEEDS_TO_BE_SET

 # ********************** REQUIRED **********************
 # Set the user name used to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 user_name: NEEDS_TO_BE_SET

 # Set the version of the TLS protocol the agent uses to communicate with \
the
 # Contrast UI. The .NET agent default behavior is \
(SecurityProtocolType.Tls
 # | SecurityProtocolType.Tls11 | SecurityProtocolType.Tls12).
 # tls_versions: tls|tls11|tls12

 # ==
====
 # api.certificate
 # Use the following properties for communication
 # with the Contrast UI using certificates.
 # ==
====
 # certificate:

 # If set to `false`, the agent will ignore the
 # certificate configuration in this section.
 # enable: true

 # Determine the location from which the agent loads a client

Contrast Documentation

Agents 253

 # certificate. Value options include `File` or `Store`.
 # certificate_location: NEEDS_TO_BE_SET

 # Set the absolute path to the client certificate's
 # .CER file for communication with Contrast UI. The
 # `certificate_location` property must be set to `File`.
 # cer_file: NEEDS_TO_BE_SET

 # Specify the name of certificate store to open. The
 # `certificate_location` property must be set to `Store`.
 # Value options include `AuthRoot`, `CertificateAuthority`,
 # `My`, `Root`, `TrustedPeople`, or `TrustedPublisher`.
 # store_name: NEEDS_TO_BE_SET

 # Specify the location of the certificate store. The
 # `certificate_location` property must be set to `Store`.
 # Value options include `CurrentUser` or `LocalMachine`.
 # store_location: NEEDS_TO_BE_SET

 # Specify the type of value the agent uses to find the certificate
 # in the collection of certificates from the certificate store.
 # The `certificate_location` property must be set to `Store`.
 # Value options include `FindByIssuerDistinguishedName`,
 # `FindByIssuerName`, `FindBySerialNumber`,
 # `FindBySubjectDistinguishedName`, `FindBySubjectKeyIdentifier`,
 # `FindBySubjectName`, or `FindByThumbprint`.
 # find_type: NEEDS_TO_BE_SET

 # Specify the value the agent uses in combination with
 # `find_type` to find a certification in the certificate store.
 #
 # Note - The agent will use the first certificate from
 # the certificate store that matches this search criteria.
 #
 # find_value: NEEDS_TO_BE_SET

 # ==
====
 # api.proxy
 # Use the following properties for communication
 # with the Contrast UI over a proxy.
 # ==
====
 # proxy:

 # Set value to `true` for the agent to communicate
 # with the Contrast web interface over a proxy. Set
 # value to `false` if you don't want to use the proxy.
 # enable: NEEDS_TO_BE_SET

 # Set the URL for your Proxy Server. The URL form is `scheme://
host:port`.
 # url: NEEDS_TO_BE_SET

 # Set the proxy user.

Contrast Documentation

Agents 254

 # user: NEEDS_TO_BE_SET

 # Set the proxy password.
 # pass: NEEDS_TO_BE_SET

 # Set the proxy authentication type. Value
 # options are `NTLM`, `Digest`, and `Basic`.
 # auth_type: NEEDS_TO_BE_SET

==
====
agent
Use the properties in this section to control the way and frequency
with which the agent communicates to logs and the Contrast UI.
==
====
agent:

 # ==
====
 # agent.logger
 # Define the following properties to set logging values.
 # If the following properties are not defined, the
 # agent uses the logging values from the Contrast UI.
 # ==
====
 # logger:

 # Set the the log output level. Valid options are
 # `ERROR`, `WARN`, `INFO`, `DEBUG`, and `TRACE`.
 # level: INFO

 # Set to `true` to redirect all logs to
 # `stdout` instead of the file system.
 # stdout: false

 # Set the roll size for log files in megabytes. The agent will
 # attempt to prevent the log file from being larger than this size.
 # roll_size: 100

 # Set the number of backup files to keep. Set to `0` to disable.
 # backups: 10

 # ==
====
 # agent.security_logger
 # Define the following properties to set security
 # logging values. If not defined, the agent uses the
 # security logging (CEF) values from the Contrast UI.
 # ==
====
 # security_logger:

 # Set the log level for security logging. Valid options
 # are `ERROR`, `WARN`, `INFO`, `DEBUG`, and `TRACE`.

Contrast Documentation

Agents 255

 # level: ERROR

 # ==
====
 # agent.security_logger.syslog
 # Define the following properties to set Syslog values. If the \
properties
 # are not defined, the agent uses the Syslog values from the Contrast \
UI.
 # ==
====
 # syslog:

 # Set to `true` to enable Syslog logging.
 # enable: NEEDS_TO_BE_SET

 # Set the IP address of the Syslog server
 # to which the agent should send messages.
 # ip: NEEDS_TO_BE_SET

 # Set the port of the Syslog server to
 # which the agent should send messages.
 # port: NEEDS_TO_BE_SET

 # Set the facility code of the messages the agent sends to Syslog.
 # facility: 19

 # Set the log level of Exploited attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_exploited: ALERT

 # Set the log level of Blocked attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_blocked: NOTICE

 # Set the log level of Blocked At Perimeter
 # attacks. Value options are `ALERT`, `CRITICAL`,
 # `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_blocked_perimeter: NOTICE

 # Set the log level of Probed attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_probed: WARNING

 # Set the log level of Suspicious attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_suspicious: WARNING

 # Set the connection type used for Syslog messages.
 # Value options are `UNENCRYPTED` and `ENCRYPTED`.
 # connection_type: UNENCRYPTED

 # ==
====
 # agent.dotnet

Contrast Documentation

Agents 256

 # The following properties apply to any .NET agent-wide configurations.
 # ==
====
 # dotnet:

 # Set a list of application pool names that the agent does not
 # instrument or analyze. Names must be formatted as a comma-separated
 # list. New after .NET Framework 19.1.3 and .NET Core 4.0.2.
 # app_pool_denylist: NEEDS_TO_BE_SET

 # Set a list of application pool names that the agent instruments or
 # analyzes. If set, other application pools are ignored. Allowlist takes
 # precedence over denylist. Names must be formatted as a comma-separated
 # list. New after .NET Framework 19.1.3 and .NET Core 4.0.2.
 # app_pool_allowlist: NEEDS_TO_BE_SET

 # Set a list of application names that the agent does not
 # analyze. (The applications are still instrumented).
 # Names must be formatted as a comma-separated list.
 # New after .NET Framework 19.1.3 and .NET Core 1.0.0.
 # application_denylist: NEEDS_TO_BE_SET

 # Set a list of application names that the agent analyzes.
 # If set, other applications are not analyzed, but are
 # still instrumented. Allowlist takes precedence over
 # denylist. Names must be formatted as a comma-separated
 # list. New after .NET Framework 19.1.3 and .NET Core 1.0.0.
 # application_allowlist: NEEDS_TO_BE_SET

 # Enable a profiler chaining feature to allow Contrast to
 # work alongside other tools that use the CLR Profiling
 # API. Defaults to `true`. New after .NET Framework 19.1.3
 # (Installed Only) and .NET Core 1.9.3 (Installed Only).
 # enable_chaining: true

 # Indicate that the agent should allow CLR optimizations
 # of JIT-compiled methods. Defaults to `true`. New
 # after .NET Framework 19.1.3 and .NET Core 1.0.0.
 # enable_instrumentation_optimizations: true

 # Indicate that the agent should allow the CLR to inline
 # methods that are not instrumented by Contrast. Defaults to
 # `true`. New after .NET Framework 19.1.3 and .NET Core 1.0.0.
 # enable_jit_inlining: true

 # Indicate that the agent should allow the CLR to perform
 # transparency checks under full trust. Defaults to `false`.
 # New after .NET Framework 19.1.3 and .NET Core 1.0.0.
 # enable_transparency_checks: false

 # Set to display ASCII art to std::out on agent startup. Defaults
 # to `true`. New after .NET Framework 20.6.3 and .NET Core 1.0.0.
 # enable_cat: true

 # Sets the maximum amount of time a Protect regular expression

Contrast Documentation

Agents 257

 # is allowed to run before being cancelled. Set to -1 to never
 # cancel regular expression execution. Defaults to `20_000`.
 # New after .NET Framework 20.4.3 and .NET Core 1.5.0.
 # protect_searchers_single_pattern_deadline_ms: 20_000

 # Sets the maximum amount of time a 'Probe Analysis' Protect
 # regular expression is allowed to run before being cancelled. Set
 # to -1 to never cancel regular expression execution. Defaults to
 # `5_000`. New after .NET Framework 20.7.3 and .NET Core 1.5.11.
 # protect_searchers_probe_analysis_single_pattern_deadline_ms: 5_000

 # Sets the maximum amount of time a Protect rule is
 # allowed to run before being cancelled. Set to -1 to never
 # cancel Protect rule execution. Defaults to `60_000`.
 # New after .NET Framework 20.4.3 and .NET Core 1.5.0.
 # protect_searchers_total_rule_deadline_ms: 60_000

 # Sets the maximum amount of time a 'Probe Analysis' Protect
 # rule is allowed to run before being cancelled. Set to -1 to
 # never cancel Protect rule execution. Defaults to `10_000`.
 # New after .NET Framework 20.7.3 and .NET Core 1.5.11.
 # protect_searchers_probe_analysis_total_rule_deadline_ms: 10_000

 # Sets the maximum duration of time agent log files should be kept
 # since last write before being deleted by the agent. Defaults to
 # `604_800_000`. New after .NET Framework 20.6.1 and .NET Core 1.5.5.
 # log_cleanup_maximum_age_ms: 604_800_000

 # Suppresses gathering process-level metrics (process level metrics are
 # gathered by default), used to identify performance problems. Metric
 # counters may further decrease the stability of already unstable
 # systems and can be disabled (set to true) if issues occur. Defaults
 # to `false`. New after .NET Framework 20.6.6 and .NET Core 1.5.10.
 # suppress_metric_counters: false

 # Enable file based application watching. Set to false if
 # file watching is causing locking issues. Defaults to `true`.
 # New after .NET Framework 20.7.3 and .NET Core 1.5.11.
 # enable_file_based_app_watching: true

==
====
inventory
Use the properties in this section to override the inventory features.
==
====
inventory:

 # Set to `false` to disable inventory features in the agent.
 # enable: true

 # Apply a list of labels to libraries. Labels
 # must be formatted as a comma-delimited list.
 # Example - `label1, label2, label3`
 #

Contrast Documentation

Agents 258

 # tags: NEEDS_TO_BE_SET

 # Specifies the cloud provider from which the agent should gather metadata
 # (such as resource identifiers). Options are `AWS`, `Azure`, or `GCP`.
 #
 # gather_metadata_via: NEEDS_TO_BE_SET

==
====
assess
Use the properties in this section to control Assess.
==
====
assess:

 # Include this property to determine if the Assess
 # feature should be enabled. If this property is not
 # present, the decision is delegated to the Contrast UI.
 # enable: false

 # Control the values captured by Assess vulnerability events. `Full`
 # captures most values by calling ToString on objects, which can
 # provide more info but causes increased memory usage. `Minimal`
 # has better performance as it only captures String type objects
 # as strings and uses type name for other object type values.
 # event_detail: minimal

 # Apply a list of labels to vulnerabilities and preflight
 # messages. Labels must be formatted as a comma-delimited list.
 # Example - `label1, label2, label3`
 #
 # tags: NEEDS_TO_BE_SET

 # Value options are `ALL`, `SOME`, or `NONE`.
 # stacktraces: ALL

 # ==
====
 # assess.sampling
 # Use the following properties to control sampling in the agent.
 # ==
====
 # sampling:

 # Set to `true` to enable sampling.
 # enable: false

 # This property indicates the number of requests
 # to analyze in each window before sampling begins.
 # baseline: 5

 # This property indicates that every *nth*
 # request after the baseline is analyzed.
 # request_frequency: 10

Contrast Documentation

Agents 259

 # This property indicates the duration for which a sample set is valid.
 # window_ms: 180_000

 # ==
====
 # assess.rules
 # Use the following properties to control simple rule configurations.
 # ==
====
 # rules:

 # Define a list of Assess rules to disable in the agent. To view a
 # list of rule names, in Contrast go to user menu > Policy Management >
 # Assess rules. The rules must be formatted as a comma-delimited list.
 #
 # Example - Set `reflected-xss,sql-injection` to disable
 # the reflected-xss rule and the sql-injection rule.
 #
 # disabled_rules: NEEDS_TO_BE_SET

==
====
protect
Use the properties in this section to override Protect features.
==
====
protect:

 # Include this property to determine if the Protect
 # feature should be enabled. If this property is not
 # present, the decision is delegated to the Contrast UI.
 # enable: false

 # ==
====
 # protect.rules
 # Use the following properties to set simple rule configurations.
 # ==
====
 # rules:

 # Define a list of Protect rules to disable in the agent. To view a
 # list of rule names, in Contrast go to user menu > Policy Management >
 # Protect rules. The rules must be formatted as a comma-delimited list.
 # disabled_rules: NEEDS_TO_BE_SET

 # ==
====
 # protect.rules.bot-blocker
 # Use the following selection to configure if the
 # agent blocks bots. Set to `true` to enable blocking.
 # ==
====
 # bot-blocker:

Contrast Documentation

Agents 260

 # Set to `true` for the agent to block known bots.
 # enable: false

 # ==
====
 # protect.rules.sql-injection
 # Use the following settings to configure the sql-injection rule.
 # ==
====
 # sql-injection:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or off.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.sql-injection-semantic-chaining
 # Use the following properties to configure how the
 # sql injection semantic analysis chaining rule works.
 # ==
====
 # sql-injection-semantic-chaining:

 # Set the mode of the rule. Value options
 # are `monitor`, `block` or `off`.
 # mode: off

 # ==
====
 # protect.rules.sql-injection-semantic-dangerous-functions
 # Use the following properties to configure how the sql
 # injection semantic analysis dangerous functions rule works.
 # ==
====
 # sql-injection-semantic-dangerous-functions:

 # Set the mode of the rule. Value options
 # are `monitor`, `block` or `off`.
 # mode: off

 # ==
====
 # protect.rules.sql-injection-semantic-suspicious-unions
 # Use the following properties to configure how the sql
 # injection semantic analysis suspicious unions rule works.
 # ==
====
 # sql-injection-semantic-suspicious-unions:

 # Set the mode of the rule. Value options

Contrast Documentation

Agents 261

 # are `monitor`, `block` or `off`.
 # mode: off

 # ==
====
 # protect.rules.sql-injection-semantic-tautologies
 # Use the following properties to configure how the sql
 # injection semantic analysis tautologies rule works.
 # ==
====
 # sql-injection-semantic-tautologies:

 # Set the mode of the rule. Value options
 # are `monitor`, `block` or `off`.
 # mode: off

 # ==
====
 # protect.rules.cmd-injection
 # Use the following properties to configure
 # how the command injection rule works.
 # ==
====
 # cmd-injection:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # Tell the agent to detect when commands come directly
 # from input. The agent blocks if blocking is enabled.
 # detect_phased_commands: true

 # ==
====
 # protect.rules.cmd-injection-semantic-chained-commands
 # Use the following properties to configure how the
 # 'command injection - chained commands' rule works
 # ==
====
 # cmd-injection-semantic-chained-commands:

 # Set the mode of the rule. Value options
 # are `monitor`, `block`, or `off`.
 # mode: off

 # ==
====
 # protect.rules.cmd-injection-semantic-dangerous-paths
 # Use the following properties to configure how the
 # 'command injection - dangerous paths' rule works

Contrast Documentation

Agents 262

 # ==
====
 # cmd-injection-semantic-dangerous-paths:

 # Set the mode of the rule. Value options
 # are `monitor`, `block`, or `off`.
 # mode: off

 # ==
====
 # protect.rules.cmd-injection-command-backdoors
 # Use the following properties to configure how the
 # 'command injection - command backdoors' rule works
 # ==
====
 # cmd-injection-command-backdoors:

 # Set the mode of the rule. Value options
 # are `monitor`, `block`, or `off`.
 # mode: off

 # ==
====
 # protect.rules.path-traversal-semantic-file-security-bypass
 # Use the following properties to configure how the
 # 'path traversal - file security bypass' rule works
 # ==
====
 # path-traversal-semantic-file-security-bypass:

 # Set the mode of the rule. Value options
 # are `monitor`, `block`, or `off`.
 # mode: off

 # ==
====
 # protect.rules.path-traversal
 # Use the following properties to configure
 # how the path traversal rule works.
 # ==
====
 # path-traversal:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.method-tampering
 # Use the following properties to configure

Contrast Documentation

Agents 263

 # how the method tampering rule works.
 # ==
====
 # method-tampering:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.reflected-xss
 # Use the following properties to configure how
 # the reflected cross-site scripting rule works.
 # ==
====
 # reflected-xss:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.unsafe-file-upload
 # Use the following properties to configure
 # how the unsafe file upload rule works.
 # ==
====
 # unsafe-file-upload:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.xxe
 # Use the following properties to configure
 # how the XML external entity works.
 # ==
====
 # xxe:

Contrast Documentation

Agents 264

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.untrusted-deserialization
 # Use the following properties to configure
 # how the untrusted deserialization rule works.
 # ==
====
 # untrusted-deserialization:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

==
====
application
Use the properties in this section for
the application(s) hosting this agent.
==
====
application:

 # Override the reported application name.
 #
 # Note - On Java systems where multiple, distinct applications may be
 # served by a single process, this configuration causes the agent to \
report
 # all discovered applications as one application with the given name.
 #
 # name: NEEDS_TO_BE_SET

 # Add the name of the application group with which this
 # application should be associated in the Contrast UI.
 # group: NEEDS_TO_BE_SET

 # Add the application code this application should use in the Contrast UI.
 # code: NEEDS_TO_BE_SET

 # Override the reported application version.
 # version: NEEDS_TO_BE_SET

 # Apply labels to an application. Labels must

Contrast Documentation

Agents 265

 # be formatted as a comma-delimited list.
 # Example - `label1,label2,label3`
 #
 # tags: NEEDS_TO_BE_SET

 # Define a set of `key=value` pairs (which conforms to RFC 2253) for
 # specifying user-defined metadata associated with the application. The
 # set must be formatted as a comma-delimited list of `key=value` pairs.
 # Example - `business-unit=accounting, office=Baltimore`
 #
 # metadata: NEEDS_TO_BE_SET

 # Provide the ID of a session which already exists in the Contrast
 # UI. Vulnerabilities discovered by the agent are associated with
 # this session. If an invalid ID is supplied, the agent will be
 # disabled. This option and `application.session_metadata` are
 # mutually exclusive; if both are set, the agent will be disabled.
 # session_id: NEEDS_TO_BE_SET

 # Provide metadata which is used to create a new session ID in the
 # Contrast UI. Vulnerabilities discovered by the agent are associated with
 # this new session. This value should be formatted as `key=value` pairs
 # (conforming to RFC 2253). Available key names for this configuration
 # are branchName, buildNumber, commitHash, committer, gitTag, repository,
 # testRun, and version. This option and `application.session_id` are
 # mutually exclusive; if both are set the agent will be disabled.
 # session_metadata: NEEDS_TO_BE_SET

==
====
server
Use the settings in this section to set metadata for the server
hosting this agent. Contrast recognizes common, supported server
names, paths, types and environments. Doing this may require a new
server or license, and it may affect functionality of some features.
==
====
server:

 # Override the reported server name.
 # name: localhost

 # Set the environment directly to override the default set
 # by the Contrast UI. This allows the user to configure the
 # environment dynamically at startup rather than manually
 # updating the Server in the Contrast UI themselves afterwards.
 #
 # Valid values include `QA`, `PRODUCTION` and `DEVELOPMENT`.
 # For example, `PRODUCTION` registers this Server as
 # running in a `PRODUCTION` environment, regardless of the
 # organization's default environment in the Contrast UI.
 #
 # environment: NEEDS_TO_BE_SET

 # Apply a list of labels to the server. Labels

Contrast Documentation

Agents 266

 # must be formatted as a comma-delimited list.
 # Example - `label1,label2,label3`
 #
 # tags: NEEDS_TO_BE_SET

 # Override the reported server path. New after
 # .NET Framework v21.3.1 and .NET Core v1.8.0.
 # path: NEEDS_TO_BE_SET

==
====
Use the properties in this YAML file to configure a Contrast agent.
Go to https://docs.contrastsecurity.com/en/order-of-precedence.html
to determine the order of precedence for configuration values.
==
====

Use this setting if you want to temporarily disable a Contrast agent.
Set to `true` to enable the agent; set to `false` to disable the agent.
enable: true

==
====
api
Use the properties in this section to connect the agent to the Contrast \
UI.
==
====
api:

 # ********************** REQUIRED **********************
 # Set the URL for the Contrast UI.
 url: https://app.contrastsecurity.com/Contrast

 # ********************** REQUIRED **********************
 # Set the API key needed to communicate with the Contrast UI.
 api_key: NEEDS_TO_BE_SET

 # ********************** REQUIRED **********************
 # Set the service key needed to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 service_key: NEEDS_TO_BE_SET

 # ********************** REQUIRED **********************
 # Set the user name used to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 user_name: NEEDS_TO_BE_SET

 # Set the version of the TLS protocol the agent uses to communicate with \
the
 # Contrast UI. The .NET agent default behavior is \
(SecurityProtocolType.Tls
 # | SecurityProtocolType.Tls11 | SecurityProtocolType.Tls12).
 # tls_versions: tls|tls11|tls12

Contrast Documentation

Agents 267

 # ==
====
 # api.certificate
 # Use the following properties for communication
 # with the Contrast UI using certificates.
 # ==
====
 # certificate:

 # If set to `false`, the agent will ignore the
 # certificate configuration in this section.
 # enable: true

 # Determine the location from which the agent loads a client
 # certificate. Value options include `File` or `Store`.
 # certificate_location: NEEDS_TO_BE_SET

 # Set the absolute path to the client certificate's
 # .CER file for communication with Contrast UI. The
 # `certificate_location` property must be set to `File`.
 # cer_file: NEEDS_TO_BE_SET

 # Specify the name of certificate store to open. The
 # `certificate_location` property must be set to `Store`.
 # Value options include `AuthRoot`, `CertificateAuthority`,
 # `My`, `Root`, `TrustedPeople`, or `TrustedPublisher`.
 # store_name: NEEDS_TO_BE_SET

 # Specify the location of the certificate store. The
 # `certificate_location` property must be set to `Store`.
 # Value options include `CurrentUser` or `LocalMachine`.
 # store_location: NEEDS_TO_BE_SET

 # Specify the type of value the agent uses to find the certificate
 # in the collection of certificates from the certificate store.
 # The `certificate_location` property must be set to `Store`.
 # Value options include `FindByIssuerDistinguishedName`,
 # `FindByIssuerName`, `FindBySerialNumber`,
 # `FindBySubjectDistinguishedName`, `FindBySubjectKeyIdentifier`,
 # `FindBySubjectName`, or `FindByThumbprint`.
 # find_type: NEEDS_TO_BE_SET

 # Specify the value the agent uses in combination with
 # `find_type` to find a certification in the certificate store.
 #
 # Note - The agent will use the first certificate from
 # the certificate store that matches this search criteria.
 #
 # find_value: NEEDS_TO_BE_SET

 # ==
====
 # api.proxy
 # Use the following properties for communication

Contrast Documentation

Agents 268

 # with the Contrast UI over a proxy.
 # ==
====
 # proxy:

 # Set value to `true` for the agent to communicate
 # with the Contrast web interface over a proxy. Set
 # value to `false` if you don't want to use the proxy.
 # enable: NEEDS_TO_BE_SET

 # Set the URL for your Proxy Server. The URL form is `scheme://
host:port`.
 # url: NEEDS_TO_BE_SET

 # Set the proxy user.
 # user: NEEDS_TO_BE_SET

 # Set the proxy password.
 # pass: NEEDS_TO_BE_SET

 # Set the proxy authentication type. Value
 # options are `NTLM`, `Digest`, and `Basic`.
 # auth_type: NEEDS_TO_BE_SET

==
====
agent
Use the properties in this section to control the way and frequency
with which the agent communicates to logs and the Contrast UI.
==
====
agent:

 # ==
====
 # agent.logger
 # Define the following properties to set logging values.
 # If the following properties are not defined, the
 # agent uses the logging values from the Contrast UI.
 # ==
====
 # logger:

 # Set the the log output level. Valid options are
 # `ERROR`, `WARN`, `INFO`, `DEBUG`, and `TRACE`.
 # level: INFO

 # Set to `true` to redirect all logs to
 # `stdout` instead of the file system.
 # stdout: false

 # Set the roll size for log files in megabytes. The agent will
 # attempt to prevent the log file from being larger than this size.
 # roll_size: 100

Contrast Documentation

Agents 269

 # Set the number of backup files to keep. Set to `0` to disable.
 # backups: 10

 # ==
====
 # agent.security_logger
 # Define the following properties to set security
 # logging values. If not defined, the agent uses the
 # security logging (CEF) values from the Contrast UI.
 # ==
====
 # security_logger:

 # Set the log level for security logging. Valid options
 # are `ERROR`, `WARN`, `INFO`, `DEBUG`, and `TRACE`.
 # level: ERROR

 # ==
====
 # agent.security_logger.syslog
 # Define the following properties to set Syslog values. If the \
properties
 # are not defined, the agent uses the Syslog values from the Contrast \
UI.
 # ==
====
 # syslog:

 # Set to `true` to enable Syslog logging.
 # enable: NEEDS_TO_BE_SET

 # Set the IP address of the Syslog server
 # to which the agent should send messages.
 # ip: NEEDS_TO_BE_SET

 # Set the port of the Syslog server to
 # which the agent should send messages.
 # port: NEEDS_TO_BE_SET

 # Set the facility code of the messages the agent sends to Syslog.
 # facility: 19

 # Set the log level of Exploited attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_exploited: ALERT

 # Set the log level of Blocked attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_blocked: NOTICE

 # Set the log level of Blocked At Perimeter
 # attacks. Value options are `ALERT`, `CRITICAL`,
 # `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_blocked_perimeter: NOTICE

Contrast Documentation

Agents 270

 # Set the log level of Probed attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_probed: WARNING

 # Set the log level of Suspicious attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_suspicious: WARNING

 # Set the connection type used for Syslog messages.
 # Value options are `UNENCRYPTED` and `ENCRYPTED`.
 # connection_type: UNENCRYPTED

 # ==
====
 # agent.dotnet
 # The following properties apply to any .NET agent-wide configurations.
 # ==
====
 # dotnet:

 # Set a list of application pool names that the agent does not
 # instrument or analyze. Names must be formatted as a comma-separated
 # list. New after .NET Framework 19.1.3 and .NET Core 4.0.2.
 # app_pool_denylist: NEEDS_TO_BE_SET

 # Set a list of application pool names that the agent instruments or
 # analyzes. If set, other application pools are ignored. Allowlist takes
 # precedence over denylist. Names must be formatted as a comma-separated
 # list. New after .NET Framework 19.1.3 and .NET Core 4.0.2.
 # app_pool_allowlist: NEEDS_TO_BE_SET

 # Set a list of application names that the agent does not
 # analyze. (The applications are still instrumented).
 # Names must be formatted as a comma-separated list.
 # New after .NET Framework 19.1.3 and .NET Core 1.0.0.
 # application_denylist: NEEDS_TO_BE_SET

 # Set a list of application names that the agent analyzes.
 # If set, other applications are not analyzed, but are
 # still instrumented. Allowlist takes precedence over
 # denylist. Names must be formatted as a comma-separated
 # list. New after .NET Framework 19.1.3 and .NET Core 1.0.0.
 # application_allowlist: NEEDS_TO_BE_SET

 # Enable a profiler chaining feature to allow Contrast to
 # work alongside other tools that use the CLR Profiling
 # API. Defaults to `true`. New after .NET Framework 19.1.3
 # (Installed Only) and .NET Core 1.9.3 (Installed Only).
 # enable_chaining: true

 # Indicate that the agent should allow CLR optimizations
 # of JIT-compiled methods. Defaults to `true`. New
 # after .NET Framework 19.1.3 and .NET Core 1.0.0.
 # enable_instrumentation_optimizations: true

Contrast Documentation

Agents 271

 # Indicate that the agent should allow the CLR to inline
 # methods that are not instrumented by Contrast. Defaults to
 # `true`. New after .NET Framework 19.1.3 and .NET Core 1.0.0.
 # enable_jit_inlining: true

 # Indicate that the agent should allow the CLR to perform
 # transparency checks under full trust. Defaults to `false`.
 # New after .NET Framework 19.1.3 and .NET Core 1.0.0.
 # enable_transparency_checks: false

 # Set to display ASCII art to std::out on agent startup. Defaults
 # to `true`. New after .NET Framework 20.6.3 and .NET Core 1.0.0.
 # enable_cat: true

 # Sets the maximum amount of time a Protect regular expression
 # is allowed to run before being cancelled. Set to -1 to never
 # cancel regular expression execution. Defaults to `20_000`.
 # New after .NET Framework 20.4.3 and .NET Core 1.5.0.
 # protect_searchers_single_pattern_deadline_ms: 20_000

 # Sets the maximum amount of time a 'Probe Analysis' Protect
 # regular expression is allowed to run before being cancelled. Set
 # to -1 to never cancel regular expression execution. Defaults to
 # `5_000`. New after .NET Framework 20.7.3 and .NET Core 1.5.11.
 # protect_searchers_probe_analysis_single_pattern_deadline_ms: 5_000

 # Sets the maximum amount of time a Protect rule is
 # allowed to run before being cancelled. Set to -1 to never
 # cancel Protect rule execution. Defaults to `60_000`.
 # New after .NET Framework 20.4.3 and .NET Core 1.5.0.
 # protect_searchers_total_rule_deadline_ms: 60_000

 # Sets the maximum amount of time a 'Probe Analysis' Protect
 # rule is allowed to run before being cancelled. Set to -1 to
 # never cancel Protect rule execution. Defaults to `10_000`.
 # New after .NET Framework 20.7.3 and .NET Core 1.5.11.
 # protect_searchers_probe_analysis_total_rule_deadline_ms: 10_000

 # Sets the maximum duration of time agent log files should be kept
 # since last write before being deleted by the agent. Defaults to
 # `604_800_000`. New after .NET Framework 20.6.1 and .NET Core 1.5.5.
 # log_cleanup_maximum_age_ms: 604_800_000

 # Suppresses gathering process-level metrics (process level metrics are
 # gathered by default), used to identify performance problems. Metric
 # counters may further decrease the stability of already unstable
 # systems and can be disabled (set to true) if issues occur. Defaults
 # to `false`. New after .NET Framework 20.6.6 and .NET Core 1.5.10.
 # suppress_metric_counters: false

 # Enable file based application watching. Set to false if
 # file watching is causing locking issues. Defaults to `true`.
 # New after .NET Framework 20.7.3 and .NET Core 1.5.11.
 # enable_file_based_app_watching: true

Contrast Documentation

Agents 272

==
====
inventory
Use the properties in this section to override the inventory features.
==
====
inventory:

 # Set to `false` to disable inventory features in the agent.
 # enable: true

 # Apply a list of labels to libraries. Labels
 # must be formatted as a comma-delimited list.
 # Example - `label1, label2, label3`
 #
 # tags: NEEDS_TO_BE_SET

 # Specifies the cloud provider from which the agent should gather metadata
 # (such as resource identifiers). Options are `AWS`, `Azure`, or `GCP`.
 #
 # gather_metadata_via: NEEDS_TO_BE_SET

==
====
assess
Use the properties in this section to control Assess.
==
====
assess:

 # Include this property to determine if the Assess
 # feature should be enabled. If this property is not
 # present, the decision is delegated to the Contrast UI.
 # enable: false

 # Control the values captured by Assess vulnerability events. `Full`
 # captures most values by calling ToString on objects, which can
 # provide more info but causes increased memory usage. `Minimal`
 # has better performance as it only captures String type objects
 # as strings and uses type name for other object type values.
 # event_detail: minimal

 # Apply a list of labels to vulnerabilities and preflight
 # messages. Labels must be formatted as a comma-delimited list.
 # Example - `label1, label2, label3`
 #
 # tags: NEEDS_TO_BE_SET

 # Value options are `ALL`, `SOME`, or `NONE`.
 # stacktraces: ALL

 # ==
====
 # assess.sampling
 # Use the following properties to control sampling in the agent.

Contrast Documentation

Agents 273

 # ==
====
 # sampling:

 # Set to `true` to enable sampling.
 # enable: false

 # This property indicates the number of requests
 # to analyze in each window before sampling begins.
 # baseline: 5

 # This property indicates that every *nth*
 # request after the baseline is analyzed.
 # request_frequency: 10

 # This property indicates the duration for which a sample set is valid.
 # window_ms: 180_000

 # ==
====
 # assess.rules
 # Use the following properties to control simple rule configurations.
 # ==
====
 # rules:

 # Define a list of Assess rules to disable in the agent. To view a
 # list of rule names, in Contrast go to user menu > Policy Management >
 # Assess rules. The rules must be formatted as a comma-delimited list.
 #
 # Example - Set `reflected-xss,sql-injection` to disable
 # the reflected-xss rule and the sql-injection rule.
 #
 # disabled_rules: NEEDS_TO_BE_SET

==
====
protect
Use the properties in this section to override Protect features.
==
====
protect:

 # Include this property to determine if the Protect
 # feature should be enabled. If this property is not
 # present, the decision is delegated to the Contrast UI.
 # enable: false

 # ==
====
 # protect.rules
 # Use the following properties to set simple rule configurations.
 # ==
====
 # rules:

Contrast Documentation

Agents 274

 # Define a list of Protect rules to disable in the agent. To view a
 # list of rule names, in Contrast go to user menu > Policy Management >
 # Protect rules. The rules must be formatted as a comma-delimited list.
 # disabled_rules: NEEDS_TO_BE_SET

 # ==
====
 # protect.rules.bot-blocker
 # Use the following selection to configure if the
 # agent blocks bots. Set to `true` to enable blocking.
 # ==
====
 # bot-blocker:

 # Set to `true` for the agent to block known bots.
 # enable: false

 # ==
====
 # protect.rules.sql-injection
 # Use the following settings to configure the sql-injection rule.
 # ==
====
 # sql-injection:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or off.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.sql-injection-semantic-chaining
 # Use the following properties to configure how the
 # sql injection semantic analysis chaining rule works.
 # ==
====
 # sql-injection-semantic-chaining:

 # Set the mode of the rule. Value options
 # are `monitor`, `block` or `off`.
 # mode: off

 # ==
====
 # protect.rules.sql-injection-semantic-dangerous-functions
 # Use the following properties to configure how the sql
 # injection semantic analysis dangerous functions rule works.
 # ==
====
 # sql-injection-semantic-dangerous-functions:

Contrast Documentation

Agents 275

 # Set the mode of the rule. Value options
 # are `monitor`, `block` or `off`.
 # mode: off

 # ==
====
 # protect.rules.sql-injection-semantic-suspicious-unions
 # Use the following properties to configure how the sql
 # injection semantic analysis suspicious unions rule works.
 # ==
====
 # sql-injection-semantic-suspicious-unions:

 # Set the mode of the rule. Value options
 # are `monitor`, `block` or `off`.
 # mode: off

 # ==
====
 # protect.rules.sql-injection-semantic-tautologies
 # Use the following properties to configure how the sql
 # injection semantic analysis tautologies rule works.
 # ==
====
 # sql-injection-semantic-tautologies:

 # Set the mode of the rule. Value options
 # are `monitor`, `block` or `off`.
 # mode: off

 # ==
====
 # protect.rules.cmd-injection
 # Use the following properties to configure
 # how the command injection rule works.
 # ==
====
 # cmd-injection:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # Tell the agent to detect when commands come directly
 # from input. The agent blocks if blocking is enabled.
 # detect_phased_commands: true

 # ==
====
 # protect.rules.cmd-injection-semantic-chained-commands

Contrast Documentation

Agents 276

 # Use the following properties to configure how the
 # 'command injection - chained commands' rule works
 # ==
====
 # cmd-injection-semantic-chained-commands:

 # Set the mode of the rule. Value options
 # are `monitor`, `block`, or `off`.
 # mode: off

 # ==
====
 # protect.rules.cmd-injection-semantic-dangerous-paths
 # Use the following properties to configure how the
 # 'command injection - dangerous paths' rule works
 # ==
====
 # cmd-injection-semantic-dangerous-paths:

 # Set the mode of the rule. Value options
 # are `monitor`, `block`, or `off`.
 # mode: off

 # ==
====
 # protect.rules.cmd-injection-command-backdoors
 # Use the following properties to configure how the
 # 'command injection - command backdoors' rule works
 # ==
====
 # cmd-injection-command-backdoors:

 # Set the mode of the rule. Value options
 # are `monitor`, `block`, or `off`.
 # mode: off

 # ==
====
 # protect.rules.path-traversal-semantic-file-security-bypass
 # Use the following properties to configure how the
 # 'path traversal - file security bypass' rule works
 # ==
====
 # path-traversal-semantic-file-security-bypass:

 # Set the mode of the rule. Value options
 # are `monitor`, `block`, or `off`.
 # mode: off

 # ==
====
 # protect.rules.path-traversal
 # Use the following properties to configure
 # how the path traversal rule works.
 # ==

Contrast Documentation

Agents 277

====
 # path-traversal:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.method-tampering
 # Use the following properties to configure
 # how the method tampering rule works.
 # ==
====
 # method-tampering:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.reflected-xss
 # Use the following properties to configure how
 # the reflected cross-site scripting rule works.
 # ==
====
 # reflected-xss:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.unsafe-file-upload
 # Use the following properties to configure
 # how the unsafe file upload rule works.
 # ==
====
 # unsafe-file-upload:

 # Set the mode of the rule. Value options are

Contrast Documentation

Agents 278

 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.xxe
 # Use the following properties to configure
 # how the XML external entity works.
 # ==
====
 # xxe:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.untrusted-deserialization
 # Use the following properties to configure
 # how the untrusted deserialization rule works.
 # ==
====
 # untrusted-deserialization:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

==
====
application
Use the properties in this section for
the application(s) hosting this agent.
==
====
application:

 # Override the reported application name.
 #
 # Note - On Java systems where multiple, distinct applications may be
 # served by a single process, this configuration causes the agent to \
report

Contrast Documentation

Agents 279

 # all discovered applications as one application with the given name.
 #
 # name: NEEDS_TO_BE_SET

 # Add the name of the application group with which this
 # application should be associated in the Contrast UI.
 # group: NEEDS_TO_BE_SET

 # Add the application code this application should use in the Contrast UI.
 # code: NEEDS_TO_BE_SET

 # Override the reported application version.
 # version: NEEDS_TO_BE_SET

 # Apply labels to an application. Labels must
 # be formatted as a comma-delimited list.
 # Example - `label1,label2,label3`
 #
 # tags: NEEDS_TO_BE_SET

 # Define a set of `key=value` pairs (which conforms to RFC 2253) for
 # specifying user-defined metadata associated with the application. The
 # set must be formatted as a comma-delimited list of `key=value` pairs.
 # Example - `business-unit=accounting, office=Baltimore`
 #
 # metadata: NEEDS_TO_BE_SET

 # Provide the ID of a session which already exists in the Contrast
 # UI. Vulnerabilities discovered by the agent are associated with
 # this session. If an invalid ID is supplied, the agent will be
 # disabled. This option and `application.session_metadata` are
 # mutually exclusive; if both are set, the agent will be disabled.
 # session_id: NEEDS_TO_BE_SET

 # Provide metadata which is used to create a new session ID in the
 # Contrast UI. Vulnerabilities discovered by the agent are associated with
 # this new session. This value should be formatted as `key=value` pairs
 # (conforming to RFC 2253). Available key names for this configuration
 # are branchName, buildNumber, commitHash, committer, gitTag, repository,
 # testRun, and version. This option and `application.session_id` are
 # mutually exclusive; if both are set the agent will be disabled.
 # session_metadata: NEEDS_TO_BE_SET

==
====
server
Use the settings in this section to set metadata for the server
hosting this agent. Contrast recognizes common, supported server
names, paths, types and environments. Doing this may require a new
server or license, and it may affect functionality of some features.
==
====
server:

 # Override the reported server name.

Contrast Documentation

Agents 280

 # name: localhost

 # Set the environment directly to override the default set
 # by the Contrast UI. This allows the user to configure the
 # environment dynamically at startup rather than manually
 # updating the Server in the Contrast UI themselves afterwards.
 #
 # Valid values include `QA`, `PRODUCTION` and `DEVELOPMENT`.
 # For example, `PRODUCTION` registers this Server as
 # running in a `PRODUCTION` environment, regardless of the
 # organization's default environment in the Contrast UI.
 #
 # environment: NEEDS_TO_BE_SET

 # Apply a list of labels to the server. Labels
 # must be formatted as a comma-delimited list.
 # Example - `label1,label2,label3`
 #
 # tags: NEEDS_TO_BE_SET

 # Override the reported server path. New after
 # .NET Framework v21.3.1 and .NET Core v1.8.0.
 # path: NEEDS_TO_BE_SET

.NET Agent Explorer

IMPORTANT
Starting with .NET Core agent 4.0.0 and .NET Framework agent 51.0.0, Agent
Explorer replaces the Contrast Tray application.

The .NET Agent Explorer is an application that displays high-level information about the health of
the .NET Core and .NET Framework agents. Use this application to verify that the agent is working as
expected, especially after you initially install the agent.

Installing an agent also installs this application. If you install both types of agents, only one instance of
Agent Explorer is installed.

Agent Explorer access
After you install a .NET Core or .NET Framework agent, the Agent Explorer icon () displays in the
tray. Right-click the icon to open the application.

Agent Explorer details
The Agent Explorer displays these details:

• Summary

Contrast Documentation

Agents 281

This dashboard shows high level details about your agents, including their stage, whether any of
them have issues, and route coverage.

• Agents

This tab provides details about the health of your .NET Core and .NET Framework agents. The
Configuration section displays a message if Agent Explorer discovers a specific issue that is
occurring.
You can access the agent's configuration (YAML) file directly from the link in the Overview section.
Scroll down to see information about the agent's configuration, advanced information, and session
metadata.

• IIS Express
This tab shows details for web applications running on IIS Express.

Contrast Documentation

Agents 282

• IIS
This tab shows details for the web applications running on the IIS server.

Profiler chaining for the .NET Core agent
You can use profiler chaining to run the .NET Core agent alongside another .NET Core APM profiler.

The Contrast .NET Core agent is tested and proven to be compatible with the following profiling tools,
given the combination of runtime, deployment type, and OS:

Profiling tool Versions tested .NET Core
runtime

Third-party profiler
deployment type

OS

AppDynamics 21.8.1 6.0 Installed, Nuget Package Windows

Dynatrace One Agent 1.253.245 6.0 Installed Windows, Linux

New Relic 8.23.107 6.0 NuGet Package Windows, Linux

Riverbed SteelCentral
Aternity APM

12.9.0 6.0 Installed Windows

Datadog 2.35.0 6.0 Installed, NuGet Package Windows, Linux

NOTE
The agent is likely compatible with other profiling tools if those tools follow the
conventions of the CoreCLR Profiling API and do not make assumptions about the
profiling environment.

Chaining is enabled by default and can be disabled by setting agent.dotnet.enable_chaining to
false.

agent:
 dotnet:
 enable_chaining: false

Automatic (Windows and IIS)
When using the .NET Core installer for IIS, the installer configures chaining automatically for all
hosted .NET Core applications.

1. Install the third-party agent first (recommended), then the Contrast .NET Core agent.
2. Restart the IIS workers (by default, this is done automatically by the agent installer). On restart,

the Contrast .NET Core agent automatically detects the presence of other profiling tools registered
with IIS and configures the environment to load both the Contrast .NET Core agent profiler and the
third-party profiler.

Automatic (Linux)
Under Linux, automatic chaining may be configured by setting the LD_PRELOAD environment variable:

LD_PRELOAD=<path to the extracted Contrast files>/runtimes/linux-x64/native/
ContrastChainLoader.so

For example, if the Contrast agent was extracted to /contrast, then the following would setup
chaining automatically.

LD_PRELOAD=/contrast/runtimes/linux-x64/native/
ContrastChainLoader.so dotnet ./HelloWorld

Contrast Documentation

Agents 283

Some APM profilers already set LD_PRELOAD (e.g. Dynatrace). In this case, ensure the Contrast
module is loaded first - separate LD_PRELOAD are delimited by colons :. For example:

LD_PRELOAD=/contrast/runtimes/linux-x64/native/ContrastChainLoader.so:/
<path to Dynatrace>/liboneagentproc.so dotnet ./HelloWorld

NOTE
When running under Kubernetes, the Contrast Agent Operator (page 510) will
automatically setup chaining and is the preferred route to add agents to existing
Kubernete workloads.

Manual
Chaining may need to be be manually setup, for example, in the following environments:

• Hosted outside of IIS.
• Environments that use the third-party agent's Nuget package (rather than the installed agent).

NOTE
Chaining with the Dynatrace agent is only supported using the automatic options
above.

1. Replace the CLR environment variables for the profiling tool with CONTRAST_CCC_CORECLR
versions. Any of these names should be transformed:

Change this To this

CORECLR_PROFILER CONTRAST_CCC_CORECLR_PROFILER

CORECLR_PROFILER_PATH CONTRAST_CCC_CORECLR_PROFILER_PATH

CORECLR_PROFILER_PATH_32 CONTRAST_CCC_CORECLR_PROFILER_PATH_32

CORECLR_PROFILER_PATH_64 CONTRAST_CCC_CORECLR_PROFILER_PATH_64

2. Then add the agent manually (page 234).

.NET Framework and .NET Core Telemetry

.NET Framework and .NET Core agents use telemetry to collect usage data. Telemetry is collected
when an instrumented application first loads the agent’s sensors and then periodically (every few hours)
afterwards.

Your privacy is important to us (page 956). The telemetry feature doesn't collect application data.
The data is anonymized before being sent securely to Contrast. Then the aggregated data is stored
encrypted and under restricted access control. Any collected data will be deleted after one year.

The telemetry feature collects the following data:

Agent versions Data

.NET Framework later than 2020.8.3

.NET Core later than 1.5.15

Agent version

Operating system and version

Whether the agent is running in a container

Contrast Documentation

Agents 284

Agent versions Data

Whether the agent is running in Azure App Service

Hashed Media Access Control (MAC) address: a cryptographically
(SHA256) anonymous and unique ID for a machine

Kernel version

Process running time

Whether Assess is enabled

Whether Protect is enabled

.NET Framework later than 2020.8.3 .NET
Framework
runtime
version

.NET Core later than 1.5.15 .NET Core
runtime
version

.NET Framework later than 20.9.1

.NET Core later than 1.5.17

Hosted or on-premises Contrast instance

.NET Framework later than 20.9.3

.NET Core later than 1.5.19

CLR Instrumentation Engine (CIE) usage

Application framework

Chained profiler vendor

.NET Framework later than 20.10.1

.NET Core later than 1.5.20

Process hosting mode

CIE Raw Profiler Hook usage

.NET Framework later than 20.10.2

.NET Core later than 1.5.21

Names of configuration settings with non-default values

Names of disabled Assess rules

.NET Framework later than 20.12.2

.NET Core later than 1.7.2

Time elapsed for agent’s profiler component to initialize

Time elapsed for agent’s first request to the Contrast web interface

Time elapsed for agent’s profiler component to initialize

Time elapsed between agent initialization and end of the first request

.NET Framework later than 21.1.1 Metrics on IIS-hosted applications, including:

• Total application count
• Application count that will be analyzed (pass application allow list/

deny list configuration)
• Count of apps hosted on CLR4 application pools
• Count of apps hosted on CLR2 application pools

Metrics on IIS applications pools

• Total count
• Count with agent attached
• Count of CLR4
• Count of CLR2

Minimum number of applications in a single app pool

Maximum number of applications in a single app pool

Median number of applications across all app pools

.NET Framework later than 21.1.2

.NET Core later than 1.7.5

Rule mode (i.e. Monitor vs. Block) for each Protect rule

.NET Framework later than 21.4.2

.NET Core later than 1.8.4

Exceptions thrown and caught within agent sensor code, including log
message, exception type, exception message, and stack trace frames
for System and Contrast methods.

.NET Framework later than 21.7.1

.NET Core later than 1.9.7

• Process Architecture (x86/x64)

OS Architecture (x86/x64)

In Azure App Service, the values of the following environment
variables:

• WEBSITE_PHYSICAL_MEMORY_MB

• WEBSITE_PLATFORM_VERSION

• WEBSITE_SKU

Contrast Documentation

Agents 285

Agent versions Data

.NET Framework later than 21.9.2

.NET Core later than 2.0.1

Description of location where YAML config file was loaded from (i.e.,
path specified by environment variable, default location, application
directory).

To opt-out of the telemetry feature, set the CONTRAST_AGENT_TELEMETRY_OPTOUT environment
variable to 1 or true.

Telemetry data is securely sent to telemetry.dotnet.contrastsecurity.com. You can also opt out of
telemetry by blocking communication at the network level.

Supported Azure functions
Versions

Runtime
version

Language version Supported Not supported

1.x .NET Framework
4.8

• Windows application: supported with Azure .NET
Framework Site Extension

• Docker Linux image
• Linux application

3.x .NET 5 • Windows Application: Supported locally and in Azure
with the .NET Core Site Extension

• Docker Linux Image: Supported locally and in Azure

• Linux application

4.x .NET 6 • Windows Application: Supported locally and in Azure
with the .NET Core Site Extension

• Docker Linux Image: Supported locally and in Azure

• Linux application

NOTE
For all versions, running the Azure Functions application in isolated mode is not
supported by the .NET agent.

Supported triggers

• HTTP
• Service Bus

Configuration
Azure Functions supports three deployment scenarios: Windows applications, Linux applications, and
Docker Linux images. Of those three, only Windows applications and Docker Linux images are
compatible with the agent. Linux application deployment is not supported by the .NET agent.

Windows Application

The Windows application deployment option is fully supported for Azure Functions versions 1, 3, and
4. Locally, the application can reference the Contrast .NET Core Agent NuGet package. On Azure, you
must install the Contrast .NET Core Site Extension. When you deploy the Azure Function application
using a tool (for example, Visual Studio or Core Tools), in a CI/CD pipelilne or using the Azure
Functions portal editor, the site extension will not automatically set the required application settings.
You must specify the application settings manually.

To do this, set the following application settings (Settings > Configuration > Application settings) to
enable the agent to attach:

CORECLR_ENABLE_PROFILING=1
CORECLR_PROFILER={8B2CE134-0948-48CA-A4B2-80DDAD9F5791}

Contrast Documentation

Agents 286

CORECLR_PROFILER_PATH_32=C:\home\SiteExtensions\Contrast.NetCore.Azure.SiteE
xtension\ContrastNetCoreAppService-<version>\runtimes\win-
x86\native\ContrastProfiler.dll
CORECLR_PROFILER_PATH_64=C:\home\SiteExtensions\Contrast.NetCore.Azure.SiteE
xtension\ContrastNetCoreAppService-<version>\runtimes\win-
x64\native\ContrastProfiler.dll

Where <version> is the version of the agent in the form "0.0.0.0". For example, if the agent version is
"2.1.8" the path would be:
C:\home\SiteExtensions\Contrast.NetCore.Azure.SiteExtension\ContrastNetCoreA
ppService-2.1.8.0\runtimes\win-x64\native\ContrastProfiler.dll.

Connection information for Contrast server can be supplied either using application settings or in a
configuration file that is pointed to by an application setting.

Application settings

CONTRAST__API__USER_NAME=my_username
CONTRAST__API__SERVICE_KEY=my_service_key
CONTRAST__API__API_KEY=my_api_key
CONTRAST__API__URL=my_api_url

If Contrast server connection information is supplied via
configuration file, the following application setting must be set:
CONTRAST_CONFIG_PATH=C:\home\site\wwwroot\contrast_security.yaml

Docker Linux image

The custom Linux image deployment option is supported for Azure Functions versions 3 and 4. A
custom Linux image is required and it must contain the application and the Contrast .NET Core Agent
NuGet package. Note that Linux applications, when not run from a custom Linux image, are not
supported by the .NET agent.

The following application settings must be set in order for the agent to attach. These can either be in
the image itself (as environment variables) or set as application settings (Settings > Configuration >
Application settings).

CORECLR_ENABLE_PROFILING=1
CORECLR_PROFILER={8B2CE134-0948-48CA-A4B2-80DDAD9F5791}
CORECLR_PROFILER_PATH=/home/site/wwwroot/contrast/runtimes/linux-x64/native/
ContrastProfiler.so
CORECLR_PROFILER_PATH_64=/home/site/wwwroot/contrast/runtimes/linux-x64/
native/ContrastProfiler.so
CONTRAST_CORECLR_INSTALL_DIRECTORY=/home/site/wwwroot/bin/contrast/

Connection information for Contrast server can be supplied either using application settings/
environment variables or in a configuration file that is pointed to by an application setting/environment
variable.

Application setting/environment variables:

CONTRAST__API__USER_NAME=my_username
CONTRAST__API__SERVICE_KEY=my_service_key
CONTRAST__API__API_KEY=my_api_key
CONTRAST__API__URL=my_api_url

If the Contrast server connection information is supplied via configuration file, the following
application setting/environment variable must be set: CONTRAST_CONFIG_PATH=/home/site/
wwwroot/contrast_security.yaml

Contrast Documentation

Agents 287

Node.js agent
The Contrast Node.js agent analyzes the behavior of Node.js web applications using established
techniques, such as source-to-source compilation, to add Contrast sensors to an application before
execution.

The Contrast Node.js agent follows semantic versioning (major.minor.patch). The agent works best with
these supported technologies (page 288) and these system requirements (page 291).

The Node.js agent rewrites the application code before startup using the Babel compiler. After starting
up the agent patches the required functions for the supported frameworks and modules (page 288).

Once you install the Node.js agent (page 292), there are two primary source code transformations that
it uses to monitor the behavior of your application:

• AST transformation is the process by which the agent creates an abstract syntax tree of a body of
code, manipulates the tree and then creates new source code based on this syntax tree. The agent
goes through this process to handle scenarios in which function hooks won't work. For example,
rewrites allow Contrast to add operator overloading to JavaScript so that it can properly track the flow
of untrusted data.

• Function hooks take over the execution of a given function like child_process.exec, to collect
data about its arguments and its return value, and send this data to the parts of the agent responsible
for analysis. As a result, the agent enables certain functions to be self-reporting.

Contrast service

NOTE
Contrast service is only required for the Node.js agent version 4.X.X and earlier.

The Contrast service (page 491) is an executable which is packaged within the Node.js agent and runs
in a separate process. With versions 4.X.X of the agent the Contrast service starts up automatically with
the agent.

The service enables communication between the Node.js agent and Contrast. Like the agent, it can be
configured (page 492) with environment variables (page 76) or a YAML configuration file (page 73). The
Contrast service uses port 30555 as the default for HTTP communication between the agent and the
service.

You can configure the port and communication protocol between the agent and service. Available
protocols include HTTP, Linux socket (file descriptor), and gRPC. The service can be deployed one-for-
one with the agent, or shared across a group of agents on a single server hosting multiple containers.

Supported technologies for Node.js
This page reflects the supported technologies and capabilities of the latest version available
on npmjs.com unless otherwise specified in the notes.

Contrast Documentation

Agents 288

https://www.npmjs.com/

NOTE
The Contrast Node.js agent may not function with versions of modules tagged as
deprecated on npmjs.com. Deprecated modules present a high security risk and may
negatively impact the function of the agent.

It also does not support applications that use bundlers like webpack, parcel, or
esbuild to package or compress the server-side JavaScript code.

Technology Supported versions Notes

Language versions • JavaScript ECMAScript 5
• JavaScript ECMAScript 6
• ECMAScript modules (ESM)
• TypeScript

Contrast supports even numbered
Node.js versions in "active LTS" or
"maintenance" status.

The Node.js LTS versions support
these features for JavaScript
ECMAScript5 and 6.

TypeScript is only supported if the
agent is configured to point to
the compiled entry point for your
application.

System • Node.js LTS version 16, 18, 20
• Processor support - Apple M1/M2,

Intel/AMD (AMD64)
• Operating System Support - Windows

Server, Windows 10/11, MacOS, Linux
(Debian, CentOS, etc)

• PM2
• System requirements for the Node.js

agent (page 291)

NPM version • >= 8.5.5

Application frameworks • Express 4
• Fastify 3, 4
• Koa 2.3 and later

Database drivers and object-relational
mapping (ORM)

• MarsDB. No longer maintained but
required by the JuiceShop vulnerable
app.

• Mongoose 6.X, 7.X
• MongoDB 2.2.36, 3.3.0 and later, 4.X,

5.X. Compatible with database versions
4.X, 5.X, 6.X.

• MySQL2 2.0.0 and later. Compatible
with MySQL database versions 5.6.51,
5.7.X and 8.0.X.

• MSSQL 6.4.0 and later
• Postgres driver 7.5.0 and later; 8.X
• Sequelize 5.X (this is deprecated by the

maintainer); 6.X
• SQLite3 driver 4.X. Compatible with

database versions 3.26.0 and later. This
is mainly for JuiceShop and demo apps,
SQLite is not a “production” database.

• MongoDB 2.2.36 is only
supported because it is required
by the NodeGoat vulnerable
application.

• SQLite and MarsDB are not
for use in production and are
only supported to enable running
and testing with the JuiceShop
vulnerable application.

Validation Packages/Libraries • Class-validator 0.13.0 and later
• Joi 17 and later
• Validator 13 and later

Templating Engines • Pug 3
• EJS 3.X

Other Packages/Libraries • Express-session 1.15.6 , 1.16.0 and
later

Contrast Documentation

Agents 289

https://nodejs.org/en/docs/es6/
https://nodejs.org/en/docs/es6/
http://expressjs.com/
https://www.fastify.io/
https://koajs.com/
https://www.npmjs.com/package/marsdb
https://mongoosejs.com/
https://www.npmjs.com/package/mongodb
https://www.npmjs.com/package/mysql2
https://www.npmjs.com/package/mssql
https://www.npmjs.com/package/pg
https://www.npmjs.com/package/sequelize
https://www.npmjs.com/package/sqlite3
https://www.npmjs.com/package/class-validator
https://www.npmjs.com/package/joi
https://www.npmjs.com/package/validator
https://www.npmjs.com/package/pug
https://www.npmjs.com/package/ejs
https://www.npmjs.com/package/express-session

Supported technologies for v4 Node.js (Legacy)

NOTE
The Contrast Node.js agent may not function with versions of modules tagged as
deprecated on npmjs.com. Deprecated modules present a high security risk and may
negatively impact the function of the agent.

It also does not support applications that use bundlers like webpack, parcel, or
esbuild to package or compress the server-side JavaScript code.

Language version

• JavaScript ECMAScript 5
• JavaScript ECMAScript 6
• ECMAScript modules (ESM)
• TypeScript

Notes

Contrast supports even numbered Node.js versions in "active LTS" or
"maintenance" status.

The Node.js LTS versions support these features for JavaScript ECMAScript5 and
6.

The Contrast Node.js agent provides limited support for working with user apps that
use ESM.

TypeScript is only supported if the agent is configured to point to the compiled entry
point for your application.

Node.js Long-Term Support (LTS)

All versions in Active and Maintenance
LTS status, currently:

• 12* and 14*
• 16* (only for agent version 4.5.0 and

later)
• 18 (only for agent version 4.25.0 and

later)

Notes

You should always use Node.js LTS versions that are active or in maintenance
status.

*Although the Contrast agent should function when running 12 LTS, 14 LTS, or 16
LTS they reached EOL at the end of April 2022, April 2023 and September 11,
2023, respectively. These EOL versions present serious security risks since they
are no longer patched.

The Node.js agent doesn't guarantee support for Node.js features classified as
Experimental (Stability: 1). It also doesn't instrument the native net module. It only
provides functionality for HTTP(S) application servers built using the supported
application frameworks in this table.

HTTP/2 is supported for the Node.js agent when using the Node.js core HTTP/2 or
spdy library.

For customer applications using HTTP/2 with Contrast Node.js agent, you must
configure the agent to use assess.enable_lazy_tracking: false.

Node.js version status is shown in Node.js Long-Term Support Release Schedule.

• 20 (only for agent version 4.33.0 and
later)

The agent does not support the feature that allows applications to run with the
--experimental-permission flag and with reduced permissions. Reduced
permissions inactivate native modules, and if the agent is instrumented with
reduced permissions, it will immediately crash.

Node package manager (npm)

npm versions:

• >=6.13.7
• >=7.11.0
• >= 8.5.5

The Node.js agent requires access to one of these npm versions to reliably report
libraries to the Contrast UI. Versions 6 or 8 are preferred over version 7.

Application frameworks

Contrast Documentation

Agents 290

https://nodejs.org/en/docs/es6/
https://nodejs.org/en/docs/es6/
https://github.com/nodejs/Release
https://nodejs.org/api/permissions.html#process-based-permissions

• Express 4
• hapi 16*, 17*, 18,* 19*, 20
• Fastify 3
• Koa 2.3 and later
• Kraken 2.2.0 and 2.3.0
• LoopBack 3*, 4
• Restify 8
• Sails 1.2.3 and later

Notes

*Deprecated by the maintainer, these libraries could present a security risk.

Database drivers and object-relational mapping (ORM)

• DynamoDB (Assess only) AWS SDK for
JavaScript: 2.X and 3.X

• MongoDB 2.2.36*, 3.3.0 and later, 4.X.
Compatible with database versions 3.6,
4.X, 5.X)

• MySQL2 2.0.0 and later. Compatible
with MySQL database versions 5.6.51,
5.7.X and 8.0.X.

• Mongoose 5.X, 6.X
• MSSQL 6.4.0 and later
• Postgres driver 7.5.0 and later, 8.X
• RethinkDB driver version 2.4.0 and later
• Sequelize 5.X and 6.X
• SQLite3 driver 4.X. Compatible with

database versions 3.26.0 and later).

Notes

*Deprecated by the maintainer, the agent will still function but these libraries/
versions present a security risk.

Validation modules

• Joi 17 and later
• Validator 13 and later
• Class-validator 0.13.0 and later

Templating engines

• Handlebars 4
• Pug 3
• EJS 2.6.2, 3.0.1
• Mustache 4.x and later

Other technologies

• Express-session 1.15.6 , 1.16.0 and later

Test suite

Node Test Benches When changes are made to the Node.js agent, Contrast runs this battery of
automated tests to ensure that it detects findings in supported technologies
across all supported versions of Node. The Node Test Benches include tests that
exercise the agent with all of our supported frameworks. Each framework within the
monorepo is updated as Contrast adds more third-party library support to the agent.

System requirements for the Node.js agent

IMPORTANT
The Node.js agent now has limited support for running on Macs with the M1/M2 chip.
One limitation is the Node.js agent does not yet support running Alpine based docker
containers on the Apple M1/M2 (ARM64). Running Slim based Docker images is
supported.

This page reflects the system requirements and capabilities of the latest version available
on npmjs.com unless otherwise specified in the notes.

Before installing the Node.js agent confirm you can meet the following requirements:

• There is a deployed application with a package.json file to be analyzed, and the web application
technology is supported by Contrast.

Contrast Documentation

Agents 291

http://expressjs.com/
https://hapi.dev/
https://www.fastify.io/
https://koajs.com/
http://krakenjs.com/
https://loopback.io/
http://restify.com/
https://sailsjs.com/
https://www.npmjs.com/package/@aws-sdk/client-s3
https://www.npmjs.com/package/mongodb
https://www.npmjs.com/package/mysql2
https://mongoosejs.com/
https://www.npmjs.com/package/mssql
https://www.npmjs.com/package/pg
https://www.npmjs.com/package/rethinkdb
https://www.npmjs.com/package/sequelize
https://www.npmjs.com/package/sqlite3
https://www.npmjs.com/package/joi
https://www.npmjs.com/package/validator
https://www.npmjs.com/package/class-validator
https://www.npmjs.com/package/handlebars
https://www.npmjs.com/package/pug
https://www.npmjs.com/package/ejs
https://www.npmjs.com/package/mustache
https://www.npmjs.com/package/express-session
https://github.com/Contrast-Security-oss/nodetestbenches
https://www.npmjs.com/

• The agent has network connectivity with the Contrast server.

Using the Node.js agent requires increasing the application's available CPU and memory due to the
increased processing and analysis of inbound information. Using the Node.js agent will use more
resources than your application on its own. CPU load will also increase but this is heavily influenced by
the specific application architecture and existing CPU usage profile.

If you are using Assess, you should double the available memory in each container compared to what
you would normally use without the Contrast Node.js agent.

Requirement Recommended Notes

CPU • AMD 64, x86_64 and compatible
• Apple M1/M2 ARM64 (limited

support)

Operating
system

• CentOS/RHEL 7.9, 8 and later
• Ubuntu 14.04 LTS, 16.04 LTS,

18.04 LTS, 20.04 LTS, 22.04
LTS

• Debian 9, 10, 11
• Windows
• macOS

Process
managers

• PM2: 4.5.0 and later and 5.1.0
and later

• The Contrast Node.js agent supports running in
both fork and cluster mode.

• The start command used when running the Contrast Node.js
agent must include the full path to the installed @contrast/
agent module. For example:

node --import /Users/michael/Dev/my-app/
node_modules/@contrast/agent app.js

Containers • Distroless containers • The Contrast Node.js agent requires access to npm and /bin/sh
to function correctly. The agent’s functionality will be degraded
and may not report findings or libraries when installed in an
application that runs on a distroless container image that does
not include those programs/packages.

Install the Node.js agent
There are several ways to install the agent depending on your situation, but generally, this is the
process:

1. Get the Node.js agent from npm.
2. Set authentication keys (page 71) .
3. Add a command to the package.json file to enable your application to run with the agent.
4. Run your application with the agent.

For Node LTS 18.19.0 and later, use the --import command to run the agent.

node --import @contrast/agent app-main.js [app arguments]

For Node LTS versions greater than or equal to 16.17.0 and less than 18.19.0, use --loader to
start the application.

node --loader @contrast/agent app-main.js [app arguments]

For Node LTS versions less than 16.17.0 use the legacy method for starting the application. This is
also applicable to applications not using the ESM syntax.

node -r @contrast/agent app-main.js [app arguments]

5. Use your application as you normally would and verify that Contrast sees the application.

To avoid errors, follow these specific instructions depending on how your application is deployed:

• Install manually (page 293)

Contrast Documentation

Agents 292

• Install in a container (page 293)
• Install with IBM Cloud (page 298)

Install Node.js agent manually
To install or update the agent manually:

1. Install the latest version of the agent from npm by running this command from the application's root
directory:

npm install @contrast/agent

Alternatively, if you use yarn, run this command to install the agent:

yarn add @contrast/agent

2. Set authentication keys (page 71) with environment variables (page 76). Make sure your Node.js
application has access to the environment variables at runtime.
Alternatively, set the configuration with YAML configuration (page 73) using this
template (page 308). Make sure the contrast_security.yaml is in the applications root
directory.

3. Add this command to the scripts section of your application's package.json file:

"scripts": {
 "contrast": "node --import @contrast/agent app-
main.js [app arguments]",
 "start": ...,
 "test": ...
}

4. Run your application with the agent:

npm run contrast

TIP
You can change this npm script to include, other runtime configurations (page 306)
such as an alternate configuration file location.

5. Exercise your application by performing either manual or automated testing to ensure your
application is functioning correctly with the agent installed.

6. Verify that your server is registered in Contrast and reports an instance of your application.

Install the Node.js agent using a container
Installing the Node.js agent in a container is essentially the same as the standard installation procedure,
except that the installation occurs in a container and, to follow best practices, you should use
environment variables to configure the Contrast credentials.

Using environment variables is the most secure method for installing the Node.js agent in a container.
Since containers often migrate through QA and production systems, it's a best practice to avoid hard-
coding credentials in the container definition.

Before you begin
This topic provides general guidance for installing the Node.js agent in a containerized application, with
Docker as an example.

You should have a basic understanding of how containers and related software work. You may need to
adjust the instructions to meet your specific circumstances.

Contrast Documentation

Agents 293

https://www.npmjs.com/package/@contrast/agent

Install the agent
Install the Node.js agent using one of these options:

• Add the agent to the application during development. (recommended)
This way, the agent will be included with your application’s package.json.
Use this command to populate the agent into your pipelines and container images.

npm install @contrast/agent

• Add the agent to the Dockerfile.
Add the agent at container build time if you prefer to maintain separate images for the application
(with and without the Contrast agent).
Use this command to add the agent to your existing Dockerfile or into a new Dockerfile that uses your
application's image as a base image.

npm install @contrast/agent

Configure the agent
Follow these instructions when configuring the Node.js agent for an application deployed into
a container like Docker (otherwise, see more general information on configuring the Node.js
agent (page 306)). Configuration for the Node.js agent follows this order of precedence (page 72).

• Use environment variables to set application-specific configuration. These can be ENV statements
in the Dockerfile or they can be passed to the Docker run command with the -e option. See a list of
environment variables (page 307) commonly used to set application-specific values. You can also
refer to the Contrast agent configuration editor (page 74) to view a full list of variables.
For example, you could use this command to build your container:

docker build -t my-app-image

And then, use these commands when you run the container:

docker run -p 3000:3000 --name my-app-instance \
-e "CONTRAST__API__URL=your-ts-url" \
-e "CONTRAST__API__API_KEY=your-api-key" \
-e "CONTRAST__API__SERVICE_KEY=your-service-key" \
-e "CONTRAST__API__USER_NAME=your-user-name" \
my-app-image

The process to set environment variables when using a cloud provider typically involves using a
secrets manager and then linking the values of those secrets to the environment variable.

Run and verify

1. If you want to use the Node.js agent rewriter CLI (currently only available in the version 4.X
agent), add a RUN instruction and provide the command to invoke the contrast-transpile
executable. Then provide your application's entry point.

RUN npx -p @contrast/agent --no contrast-transpile index.js

It is important to use the -p @contrast/agent --no options to ensure the npx command is the
one from Contrast Security and not from a nefarious person attempting a supply chain attack.
-p is the shorthand for --package, which tells npx to only use the command in the @contrast/
agent package.
--no is the new option name for the deprecated --no-install option that tells npx to not
attempt an install from npm if the command binary is not found.
The expectation is that the Contrast agent has already been correctly installed along with the npx
binaries before attempting to run the npx command.

Contrast Documentation

Agents 294

2. You must preload the Contrast agent when you launch your application. Normally, you do this in the
Dockerfile’s CMD statement, but you can also use an npm script defined in the package.json.
For example, if you normally start your application with:

CMD [“node”, “app”]

Then you can use this command to run the application with Contrast:

CMD [“node”, “--import”, “@contrast/agent”, “app”]

3. When the agent starts, it will try to connect to Contrast with authentication keys (page 71) in the
YAML configuration file.

TIP
To protect the agent credentials, use the Docker secret and pass them as
environment variables during deployment time. For example:

docker run -e CONTRAST__API_ -
e CONTRAST__API__API_KEY=<value> -
e CONTRAST__API__SERVICE_KEY=<value> -
e CONTRAST__API__USER_NAME=<value> -
e CONTRAST__SERVER__ENVIRONMENT=<value> image_with_contrast

4. Verify that Contrast is running by checking the activity in the container log.
For example, log activity might look like this:

@contrast/agent 2.16.8--------------------------------------
2020-07-20T19:05:14.407Z INFO contrast-service: BUILD {"progname": \
"Contrast Service", "version": "2.8.1", "buildTime": ""}
2020-07-20T19:05:14.407Z INFO Building timer for orphan request cleanup \
{"progname": "Contrast Service", "cleanupMs": 5000}
2020-07-20T19:05:14.408Z INFO Building timer for orphan app cleanup \
{"progname": "Contrast Service", "time": 5000}
2020-07-20T19:05:14.450Z INFO Creating New Application Server \
{"progname": "Contrast Service", "uuid": "96299b72-f867-4354-
b9c9-1eb23511cb8a", "serverName": "bc1bd6e5cd3a", "clientId": "1", \
"pid": 1}
2020-07-20T19:05:14.450Z WARN Failed to initialize secure client, \
falling back to insecure client {"progname": "Contrast Service"}
2020-07-20T19:05:15.473Z INFO setting new server features for \
context{"progname": "Contrast Service", "uuid": "96299b72-f867-4354-
b9c9-1eb23511cb8a", "serverName": "bc1bd6e5cd3a"}
2020-07-20T19:05:15.474Z ERROR Error setting up CEF syslog {"progname": \
"Contrast Service", "err": "open /juice-shop/security.log: permission \
denied"}
2020-07-20T19:05:15.475Z INFO starting event scanner {"progname": \
"Contrast Service", "report": {}}
2020-07-20T19:05:15.486Z INFO Creating new application {"progname": \
"Contrast Service", "uuid": "96299b72-f867-4354-
b9c9-1eb23511cb8a", "serverName": "bc1bd6e5cd3a", "appName": "juiceshop-
guide", "language": "Node", "clientId": "1", "pid": 1}
2020-07-20T19:05:15.486Z INFO AppCreate: creating and initializing new \
application {"progname": "Contrast Service", "uuid": "96299b72-f867-4354-
b9c9-1eb23511cb8a", "server_name": "bc1bd6e5cd3a", "app_name": "juiceshop
-guide", "app_lang": "Node", "client_id": "1", "pid": 1}
2020-07-20T19:05:15.921Z INFO setting new application settings \

Contrast Documentation

Agents 295

{"progname": "Contrast Service", "uuid": "96299b72-f867-4354-
b9c9-1eb23511cb8a", "serverName": "bc1bd6e5cd3a", "appName": "juiceshop-
guide", "language": "Node"}
2020-07-20T19:05:15.922Z INFO Setting session id on app context: \
{"progname": "Contrast Service", "uuid": "96299b72-f867-4354-
b9c9-1eb23511cb8a", "clientid": "1", "appname": "juiceshop-
guide", "applang": "Node", "apppath": "/juice-shop/
package.json", "sessionid": "cd0b271e66974162bf5fcca8b32e37b1"}
Entering main at /juice-shop/appinfo: All dependencies in ./
package.json are satisfied (OK)...

NOTE
You also can install the agent when creating the Docker image (page 296) or use a
distroless Node.js container (page 297) for installation in containers.

See also
Contrast Support Portal Node.js agent with Kubernetes

Contrast Support Portal AWS Fargate and Contrast agents

Install the agent when creating the Docker image
Another option for installing the Contrast agent for a Node.js app is to run the npm install command
as part of the Docker image creation instead of changing the package.json file in the source code
repository.

This may be more desirable if you only want to modify the Docker file to be able to run a security test
with the agent.

Example:

FROM node:18 as installer
COPY . /juice-shop
WORKDIR /juice-shop
RUN npm i -g typescript ts-node
RUN npm install --omit=dev --unsafe-perm
RUN npm install @contrast/agent@4.x
RUN npm dedupe

Neeed to explicitly set Assess mode
ENV CONTRAST__APPLICATION__NAME=juice-assess-docker-slim
ENV CONTRAST__ASSESS__ENABLE=true
ENV CONTRAST__AGENT__LOGGER__STDOUT=true
ENV CONTRAST__AGENT__LOGGER__PATH=/dev/null
ENV DEBUG="contrast:*"

ENV CONTRAST__AGENT__NODE__REWRITE_CACHE__PATH="/juice-shop/rewrite_cache"

RUN npx contrast-transpile build/app.js

RUN rm -rf frontend/node_modules
RUN rm -rf frontend/.angular
RUN rm -rf frontend/src/assets

Contrast Documentation

Agents 296

https://support.contrastsecurity.com/hc/en-us/articles/360060235971-Node-js-Agent-with-Kubernetes
https://support.contrastsecurity.com/hc/en-us/articles/360056537312-AWS-Fargate-and-Contrast-agents

RUN mkdir logs
RUN chgrp -R 0 ftp/ frontend/dist/ logs/ data/ i18n/
RUN chmod -R g=u ftp/ frontend/dist/ logs/ data/ i18n/
#RUN rm data/chatbot/botDefaultTrainingData.json || true
#RUN rm ftp/legal.md || true
#RUN rm i18n/*.json || true

FROM node:18-slim
ARG BUILD_DATE
ARG VCS_REF

WORKDIR /juice-shop
COPY --from=installer /juice-shop .

EXPOSE 3000
The following environment variables were added
ENV CONTRAST__APPLICATION__NAME=juice-assess-docker-slim
ENV CONTRAST__AGENT__SERVICE__GRPC=true
ENV CONTRAST__AGENT__LOGGER__STDOUT=true
ENV CONTRAST__AGENT__LOGGER__PATH=/dev/null
ENV DEBUG="contrast:*"

ENV CONTRAST__AGENT__NODE__REWRITE_CACHE__PATH="/juice-shop/rewrite_cache"

This explicitly turns on Assess mode
ENV CONTRAST__ASSESS__ENABLE=true
ENV CONTRAST__ASSESS__ENABLE_LAZY_TRACKING=false
ENV CONTRAST__AGENT__NODE__APP_ROOT=/juice-shop

CMD ["node", "--import", "@contrast/agent", "build/app.js"]

Distroless containers
If using a distroless Node.js container then there is no npm or shell installed in the container
image. You must use the NODE_OPTIONS environment variable to run the agent as a required module.

However, be careful when using NODE_OPTIONS since this will run the agent with all node or npm
commands and may result in unintended execution resulting in longer start-up times.

Example:

FROM node:18 as installer
COPY . /juice-shop
WORKDIR /juice-shop
RUN npm i -g typescript ts-node
RUN npm install --omit=dev --unsafe-perm
install the latest agent
RUN npm install @contrast/agent

RUN npm dedupe

RUN rm -rf frontend/node_modules
RUN rm -rf frontend/.angular
RUN rm -rf frontend/src/assets
RUN mkdir logs
RUN chown -R 65532 logs
RUN chgrp -R 0 ftp/ frontend/dist/ logs/ data/ i18n/

Contrast Documentation

Agents 297

RUN chmod -R g=u ftp/ frontend/dist/ logs/ data/ i18n/
RUN rm data/chatbot/botDefaultTrainingData.json || true
RUN rm ftp/legal.md || true
RUN rm i18n/*.json || true

FROM gcr.io/distroless/nodejs:18
ARG BUILD_DATE
ARG VCS_REF
LABEL maintainer="Bjoern Kimminich <bjoern.kimminich@owasp.org>" \
 org.opencontainers.image.title="OWASP Juice Shop" \
 org.opencontainers.image.description="Probably the most modern and \
sophisticated insecure web application" \
 org.opencontainers.image.authors="Bjoern Kimminich \
<bjoern.kimminich@owasp.org>" \
 org.opencontainers.image.vendor="Open Web Application Security \
Project" \
 org.opencontainers.image.documentation="https://help.owasp-juice.shop" \
 org.opencontainers.image.licenses="MIT" \
 org.opencontainers.image.version="14.5.1" \
 org.opencontainers.image.url="https://owasp-juice.shop" \
 org.opencontainers.image.source="https://github.com/juice-shop/juice-
shop" \
 org.opencontainers.image.revision=$VCS_REF \
 org.opencontainers.image.created=$BUILD_DATE
WORKDIR /juice-shop
COPY --from=installer --chown=65532:0 /juice-shop .
USER 65532
EXPOSE 3000

ENV NODE_OPTIONS "--import @contrast/agent"
CMD ["/juice-shop/build/app.js"]

Install Node.js with IBM Cloud

1. Install the latest LTS (Long Term Support) version of Node.js.
2. To install from npm, run this command from the app root directory:

npm install @contrast/agent

Alternatively, if you use yarn, run this command to install the agent:

yarn add @contrast/agent

3. Configure the Node.js (page 306) using a YAML configuration file to set the authentication
keys (page 71) and any application-specific configuration.
You can use this sample contrast_security.yaml file, but replace <URL>, <UserName>, <APIKey>
and <ServiceKey> with your values, and set <ServerName> to the name of the IBM cloud
server to which this application will report. (This way you will be able to identify the server when
you view it in Contrast.)

 contrast:
 url: <URL>
 user_name: <UserName>
 api_key: <APIKey>
 service_key: <ServiceKey>
 server:
 name: <ServerName>

Contrast Documentation

Agents 298

http://nodejs.org/
https://www.npmjs.com/

4. Go to your application's root directory npm install @contrast/agent . Copy your Contrast
YAML file to your application's root directory or use environmental variables to set the required
Contrast API credentials and configuration settings.

5. Add this command to the "scripts": section of your application's package.json file:

"ibmcloud-with-contrast": "CONTRAST_CONFIG_PATH=[the full path location \
of your YAML file] node --import @contrast/agent index.js",

6. Since IBM Cloud runs the start script by default, you must change the start command to point to
the ibmcloud-with-contrast line given in the previous step. Run the agent using:

"start":"npm run ibmcloud-with-contrast"

Now the scripts section of the package.json should look like the following:

"scripts": {
"bluemix-with-contrast": "CONTRAST_CONFIG_PATH=[the full path location \
of your YAML file] node --import @contrast/agent index.js",
"start":"npm run bluemix-with-contrast”
},

7. Push the application to IBM Cloud using:

cf push <application-name> -t 180

8. Run the agent with:

npm start

9. Exercise your application by performing either manual or automated testing to ensure your
application is functioning correctly with the agent installed.

10. Verify that your server is registered in Contrast and reports an instance of your application.

Install Node.js agent with VMware Tanzu
You can access a variety of VMware Tanzu (formerly Pivotal Cloud Foundry) integrations for your
applications using the default Node.js buildpack.

To use the buildpack on its own as a low-level integration, you can create a user-provided service and
bind it to your application. With the service broker, you can define multiple service plans and generate
service instances you can bind to your applications.

Use the Contrast service broker tile (page 300) to automate the BOSH deployment and configuration of
the Contrast service broker (page 302).

IMPORTANT
The Contrast VMware Tanzu integration does not download the Node.js agent and
modify your application startup. You must still download and install the Node.js agent
manually (page 293).

You can configure the agent through the Contrast service broker tile provided with the
integration or you can use automatic configuration through user-provided services.

Buildpacks
To install the Node.js agent in a VMware Tanzu environment, your application must use one of these
buildpacks:

Contrast Documentation

Agents 299

• For tile support: NodeJS Buildpack version 1.6.52 and later
• For user-provided service support: NodeJS Buildpack version 1.6.56 and later

If you are using a buildpack that does not include Contrast Security framework support, you can add it.
To do this, you must make changes to your forked buildpack. If you are using the offline version of the
buildpack, you cannot override the version of the agent currently in use by an application. The buildpack
bundles the dependencies.

The Contrast Security agent framework downloads the latest Contrast agent and creates a
configuration file. The buildpack's detect script prints tags to standard output.

Configuration
The detect script confirms the existence of a single, bound Contrast service. A Contrast service exists
if the VCAP_SERVICES payload contains a service name, label, or tag with contrast-security as a
substring.

To bind Contrast with a user-provided service, you must have a name or tag with contrast-
security in it. The credential payload must also contain the standard YAML properties (page 73).

This example creates a user-provided service and binds it to an application:

cf create-user-provided-service contrast-security-service -
p "teamserver_url, username, api_key, service_key"
cf bind-service spring-music contrast-security-service
cf restage spring-music

NOTE
The teamserver_url should be only protocol and hostname. Do not include /
Contrast/ or /Contrast/api.

See also
Add Contrast service broker tile for VMware Tanzu (page 300)

Add Contrast service broker for VMware Tanzu (page 302) to use the service broker without the tile.

Add the Contrast service broker tile for Node.js
With a service broker, VMware Tanzu (formerly Pivotal Cloud Foundry) applications can easily bind
to and consume services from the Apps Manager or the command line. You can deploy the Contrast
service broker as a Node.js application on VMware Tanzu, and use one or more Contrast accounts. The
broker exposes the Contrast service on the VMware Tanzu marketplace so you can create a service
instance.

When you add a tile, it creates one organization: the contrast-security-service-broker-org. Use this
organization to deploy the Contrast service broker application. This requires 512MB of memory.

Before you begin
Before you add the Contrast service broker tile, you must have:

• Pivotal Apps Manager and Ops Manager
• An active Contrast account
• The default Node.js buildpack for any application using Contrast. If you have a custom buildpack, you

must copy the Contrast framework support and configuration into it.

Contrast Documentation

Agents 300

https://github.com/cloudfoundry/nodejs-buildpack
https://github.com/cloudfoundry/nodejs-buildpack

Steps
To add the Contrast service broker tile for Node.js:

1. Download the Contrast service broker tile from the VMware Tanzu Network.
2. Select Import a Product and then select the contrast-security-service-broker-#.#.#.pivotal tile you

downloaded.

NOTE
If the file you downloaded has a ZIP extension rename it to contrast-security-
service-broker-#.#.#.pivotal.

3. To add a service plan select Service Plans in the Contrast service broker tile and select Add.
The tile requires some configuration before you can deploy it. The service broker does not include
service plans by default. You must add at least one before you can deploy the Contrast service
broker tile.

4. Complete these configuration parameters in the service plan:
• TeamServer: The URL for your Contrast application instance
• TeamServer Service Key: Organization service key (page 71)
• TeamServer API Key: Organization API key (page 71)
• Organization UUID: Organization ID (page 71) to which the application will belong
• Username: Your Contrast username
• Plan Name: Name of the plan as it will appear in Apps Manager
• Proxy Host: The hostname of a proxy for the service broker to communicate with Contrast
• Proxy Port: The proxy port
• Proxy Username: The proxy username if it requires authentication
• Plan Password: The proxy password

5. After you define the service plan, select Save. If you want some applications to belong to different
organizations, define the other plans you will need.

6. Select Apply Changes in the dashboard. This may take some time to finish.
7. Now, use the Cloud Foundry CLI to bind your application.
8. Clone the project to a local directory. For example: Node/pcf/node-hello-world.
9. Update the applications package.json to add the Contrast Node agent as a dependency. For

example: "@contrast/agent": "^5".
10. Update the start script in package.json to instrument with the agent. For example: "start":

"node --import @contrast/agent app.js".
11. Push the application to VMwareTanzu. For example, from the Node/pcf directory, run:

cf push myAppNodeBroker -p node-hello-world \
 -b 'https://github.com/cloudfoundry/nodejs-buildpack.git' \
 -t 180

12. Then run the following:

cf service-access

Example output:

Getting service access as admin...
broker: contrast-security-service-broker
 service plan access orgs
 contrast-security apptwo all

13. Then run the following:

cf create-service contrast-security apptwo contrast

Example output:

Contrast Documentation

Agents 301

https://network.pivotal.io/products/contrast-security-service-broker/

Creating service instance contrast in org system / space apps as admin...
OK

14. Then run the following:

cf services

Example output (notice there are currently no bound apps):

Getting services in org system / space apps as admin...

name service plan bound apps last operation \
broker upgrade available
contrast contrast-security apptwo create succeeded \
contrast-security-service-broker

15. Run the following to bind the sample app to the service:

cf bind-service myAppNodeBroker contrast

Example output:

Binding service contrast to app myAppNodeBroker in org system / space \
apps as admin...
OK

16. Run the following again to confirm the app is now bound to the service:

cf services

Example output:

Getting services in org system / space apps as admin...

name service plan bound apps last \
operation broker upgrade available
contrast contrast-security apptwo myAppNodeBroker create \
succeeded contrast-security-service-broker

17. Run the following command to restage the application now that it is bound to the service:

cf restage myAppNodeBroker

18. Go to Contrast to view the application.

See also
Add Contrast service broker (page 302)

Add the Contrast service broker for Node.js
Use the Contrast service broker to easily bind services to an application in VMware Tanzu (Pivotal
Cloud Foundry) and use the Contrast Node.js agent.

Steps
To set up VMware Tanzu:

1. Contact Support.
2. Once you have a service broker source code, deploy the service broker application:

cf push contrast-security-service-broker

The service broker now appears in PCF.
3. Configure plans with the CONTRAST_SERVICE_PLANS environment variable (the service broker

does not offer any plans by default).

Contrast Documentation

Agents 302

https://support.contrastsecurity.com/hc/requests/new?ticket_form_id=360000011243

You can also use the Pivotal Ops Manager to set the environment variables. If you are using IBM
Cloud, you can select the application, select Runtime and then Environment Variables to set the
value.
Example: This example shows how to set the value in the command line.

cf set-env contrast-security-service-broker CONTRAST_SERVICE_PLANS
 " {
 "ServicePlan1": {
 "name":"ServicePlan1",
 "teamserver_url":"https://yourteamserverurl.com",
 "username":"your_username",
 "org_uuid":"00000000-1111-2222-3333-000000000000",
 "api_key":"your_api_key",
 "service_key":"your_service_key"
 },
 "AnotherServicePlan":{
 "name":"AnotherServicePlan",
 "teamserver_url":"https://yourteamserverurl.com",
 "username":"your_username",
 "org_uuid":"00000000-1111-2222-3333-000000000001",
 "api_key":"your_api_key",
 "service_key":"some_other_service_key"
 }
 } "

To run the agent on IBM Cloud, you must use single quotes to set
the CONTRAST_SERVICE_PLANS environment variable. Example:

 cf set-env contrast-security-service-broker CONTRAST_SERVICE_PLANS
 " {
 'ServicePlan1': {
 'name':'ServicePlan1',
 'teamserver_url':'https://yourteamserverurl.com',
 'username':'your_username',
 'org_uuid':'00000000-1111-2222-3333-000000000000',
 'api_key':'your_api_key',
 'service_key':'your_service_key'
 },
 'AnotherServicePlan':{
 'name':'AnotherServicePlan',
 'teamserver_url':'https://yourteamserverurl.com',
 'username':'your_username',
 'org_uuid':'00000000-1111-2222-3333-000000000000',
 'api_key':'your_api_key',
 'service_key':'some_other_service_key'
 }
 } "

4. Restage your application with a command similar to this example:

cf restage contrast-security-service-broker

5. Set an environment variable for a username and a password:

cf set-env contrast-security-service-
broker SECURITY_USER_NAME aSecureUsername
cf set-env contrast-security-service-
broker SECURITY_USER_PASSWORD aSecurePassword

Contrast Documentation

Agents 303

6. Create a service broker instance. Define at least one service plan for this. You must use the same
username and password created in the previous step.

cf create-service-broker contrast-security-service-
broker USER_NAME PASSWORD
<URL of your application>

On IBM Cloud, add --space-scoped at the end of the command. For example:

cf create-service-broker contrast-security-service-
broker USER_NAME PASSWORD
<URL of your application> --space-scoped

7. All service brokers start as private. Make it public with:

cf enable-service-access contrast-security-service-broker

8. Once the service broker is working, create a service instance and bind it to the application. To
create a service instance, run the following command:

cf create-service contrast-security-service-
broker ServicePlan1 <name_of_service>

9. Bind the service broker to your application by running the following command:

cf bind-service <app_name> <name_of_service>

You should now see the agent start up with your application. You will also see your application in
Contrast.

See also
Add Contrast service broker tile (page 300)

Update the Node.js agent
The most reliable and effective way to automatically update the Contrast Node.js agent is to use the
Node.js npm package manager to install and download the latest version available.

Because npm manages all dependencies for your Node.js application, it should already be available
and part of your build environment. How frequently you update the Contrast Node.js agent and where
you get updates depends on your organization’s preferences and your Contrast implementation: hosted
(SaaS) or on-premises (EOP).

You can either update the agent automatically or manually.

Before you begin
Before you begin, you should have:

• Some familiarity with DevOps practices and Node’s npm package manager.
• Access to the npm repository for the Contrast agent.
• Confirmed that your Node.js application runs properly without the Contrast Node.js agent.
• Previously successfully installed the Contrast Node.js agent.
• Defined a policy for how and when to update the agent, based on your change management policy

and the environment where you deploy agents.

IMPORTANT
Unless Contrast Support advises you to do so, do not use a version of the Contrast
Node.js agent that is ahead of the version available from your Contrast instance.

Contrast Documentation

Agents 304

Steps

1. You will install the Node.js agent from the npm public (or private) repository. Depending on your
Contrast installation, you can use one or both sources to get the latest Contrast Node.js agent:
• Hosted (SaaS) installations: You can get the latest version of the agent from npm. If your

organization prefers to validate agents before using them, you can also use a private npm
repository with approved versions only.

• On-premises (EOP) installations: Many organizations that use on-premises installations do
not immediately update core software or agents when Contrast releases new software. Public
repositories (like npm) typically host new versions of the agent that are not designed or tested
to work with older versions of Contrast. On-premises users should source agent updates from a
private npm repository where you only store versions of the agent that match your on-premises
Contrast installation.

2. Install the agent and use scripts for automatic updates using the best method for you:
• Use package.json: This file specifies which dependencies will automatically resolve every

time your Node.js application builds with artifacts from npm (public or private). Include the
Contrast Node.js agent here to easily keep every new build of your application aligned with the
latest version of the agent. For example:

{
 "name": "sample_application",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "start": "nodemon",
 "contrast": "node --import @contrast/agent index.js"
 },
 "keywords": [],
 "author": "",
 "license": "ISC",
 "dependencies": {
 "express": "^4.17.1",
 "@contrast/agent": "latest",
 },
 "devDependencies": {
 "nodemon": "^1.19.2"
 }
}

Then use the $ npm update command whenever you build your application. This will
automatically download, and add or update, the Contrast Node.js agent from npm to the Node.js
application.

• Install and update manually using command line: For some organizations, the
package.json file must be consistent across environments, or they do not plan to install the
Contrast Node.js agent into all environments. In these cases, install the agent manually. You can
manually update agents as part of a Node.js build process.
Use this command to manually retrieve and add or update the Contrast Node.js agent from npm
(public or private) to the Node.js application:

$ npm install @contrast/agent

3. After installing with either method, you will see output like this:

$ npm install @contrast/agent

> grpc@1.24.4 install /Users/<aUserName>/Documents/test-apps/juice-shop/

Contrast Documentation

Agents 305

node_modules/grpc> node-pre-gyp install --fallback-to-build --
library=static_library

node-pre-gyp WARN Using request for node-pre-gyp https download[grpc] \
Success: "/Users/<aUserName>/Documents/test-apps/juice-shop/node_modules/
grpc/src/node/extension_binary/node-v72-darwin-x64-unknown/
grpc_node.node" is installed via remotenpm WARN jest-config@26.6.1 \
requires a peer of ts-node@>=9.0.0 but none is installed. You must \
install peer dependencies yourself.npm WARN jsdom@16.4.0 requires a \
peer of canvas@^2.5.0 but none is installed. You must install peer \
dependencies yourself.npm WARN ws@7.3.1 requires a peer of \
bufferutil@^4.0.1 but none is installed. You must install peer \
dependencies yourself.npm WARN ws@7.3.1 requires a peer of utf-8-
validate@^5.0.2 but none is installed. You must install peer \
dependencies yourself.

+ @contrast/agent@3.4.0added 19 packages from 43 contributors, updated \
5 packages and audited 1995 packages in 14.904sfound 19 vulnerabilities \
(5 low, 7 moderate, 4 high, 3 critical)
 run `npm audit fix` to fix them, or `npm audit` for details

4. To check whether the installation/update succeeded, run the following command and look for this
output:

$ npm list | grep contrast
��� @contrast/agent@3.4.0
� ��� @contrast/distringuish-prebuilt@2.0.0
� ��� @contrast/escodegen@1.16.0
� ��� @contrast/esprima@4.1.1
� ��� @contrast/estraverse@5.1.0
� ��� @contrast/flat@4.2.0
� ��� @contrast/fn-inspect@2.3.0
� ��� @contrast/heapdump@1.0.0
� ��� @contrast/protobuf-api@2.2.3
� ��� @contrast/require-hook@1.1.2
� ��� @contrast/synchronous-source-maps@1.1.0

See also

• Node.js supported technologies (page 290)
• Install Node.js (page 292)

Configure the Node.js agent
The standard configuration (page 48) for all agents uses this order of precedence (page 72).

There are several ways to configure the Node.js agent, but generally, you should:

• Use a YAML configuration file to set configuration values that are common for all applications
in an organization or container (for example, to redirect logging or proxy configuration). This
template (page 308) shows all valid configuration options for the Node.js agent. Learn more about
YAML configuration (page 73) in general.

• Use environment variables (page 307) for agent authentication keys and application-specific
configuration values. Learn more about environment variables in general (page 76).

Contrast Documentation

Agents 306

TIP
Use the Contrast agent configuration editor (page 74) to create or upload a YAML
configuration file, validate YAML, and get setting recommendations. The editor also
provides the correct environment variables, if desired.

Environment variables
Use environment variables for application-specific configuration values (like configuring server
environment, application names or agent logging). You can also use environment variables to set any
other valid properties for the Node.js agent.

You can see a full list of valid properties in the Node.js YAML template (page 308), but here are some
common examples as environment variables:

Environment variable Description

CONTRAST__API__SERVICE_KEY Set the service key needed to communicate with Contrast.

CONTRAST__API__API_KEY Set the API key needed to communicate with Contrast.

CONTRAST__API__USER_NAME Set the user name needed to communicate with Contrast.

CONTRAST__API__URL Set the URL for the Contrast web interface.

CONTRAST__APPLICATION__NAME Override the reported application name.

CONTRAST_CONFIG_PATH When set, supersedes the default location of the YAML configuration file.
(Unlike other environment variables, this one cannot be set as a YAML
property, and contains only single underscores.)

CONTRAST__SERVER__PATH Override the reported server path.

CONTRAST__SERVER__NAME Provides a consistent server name for cases where containerized apps
generate many server records. This could be the microservice name or
app name.

CONTRAST__AGENT__DIAGNOSTICS__ENABLE Creates configuration and system files at startup to help track diagnostic
and troubleshooting information. Default is true.

CONTRAST__AGENT__LOGGER__APPEND When set to false, creates a new log file on startup instead of
appending and rolling daily. Default is true.

CONTRAST__AGENT__LOGGER__LEVEL Logging level: FATAL, ERROR, WARN, INFO, DEBUG or TRACE.
Default is ERROR.

CONTRAST__AGENT__LOGGER__PATH Where Contrast will put its debug log. Default is node-contrast.log.

CONTRAST__AGENT__LOGGER__STDOUT When set to false, suppresses output to stdout. Default is true.

If you want to redirect logging for the Node.js, contact Support for assistance.

NOTE
For legacy v4 of the agent:

For the Node.js agent you must manually configure DEBUG. INFO-level statements
aren't logged to the console unless the environment variable DEBUG is set to include
the Contrast namespace: DEBUG=contrast:*. This could be useful in environments
where you don't have access to the file system (like Docker or ECS).

If you want to redirect logging for the Node.js, see more examples on the npm site or
contact Support for assistance.

Contrast Documentation

Agents 307

https://support.contrastsecurity.com/hc/
https://www.npmjs.com/package/debug
https://support.contrastsecurity.com/hc/

Node.js YAML template
Use this template to configure the Node.js agent using a YAML configuration file. (Learn more about
YAML configuration (page 73).)

Place your YAML file in the default location: /etc/contrast/contrast_security.yaml

==
====
Use the properties in this YAML file to configure a Contrast agent.
Go to https://docs.contrastsecurity.com/en/order-of-precedence.html
to determine the order of precedence for configuration values.
==
====

Use this setting if you want to temporarily disable a Contrast agent.
Set to `true` to enable the agent; set to `false` to disable the agent.
enable: true

==
====
api
Use the properties in this section to connect the agent to the Contrast \
UI.
==
====
api:

 # ********************** REQUIRED **********************
 # Set the URL for the Contrast UI.
 url: https://app.contrastsecurity.com/Contrast

 # ********************** REQUIRED **********************
 # Set the API key needed to communicate with the Contrast UI.
 api_key: NEEDS_TO_BE_SET

 # ********************** REQUIRED **********************
 # Set the service key needed to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 service_key: NEEDS_TO_BE_SET

 # ********************** REQUIRED **********************
 # Set the user name used to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 user_name: NEEDS_TO_BE_SET

 # Set the default request timeout.
 # timeout_ms: NEEDS_TO_BE_SET

 # ==
====
 # api.certificate
 # Use the following properties for communication
 # with the Contrast UI using certificates.
 # ==
====

Contrast Documentation

Agents 308

 # certificate:

 # If set to `false`, the agent will ignore the
 # certificate configuration in this section.
 # enable: true

 # Set the absolute or relative path to a CA for communication
 # with the Contrast UI using a self-signed certificate.
 # ca_file: NEEDS_TO_BE_SET

 # Set the absolute or relative path to the Certificate
 # PEM file for communication with the Contrast UI.
 # cert_file: NEEDS_TO_BE_SET

 # Set the absolute or relative path to the Key PEM
 # file for communication with the Contrast UI.
 # key_file: NEEDS_TO_BE_SET

 # If the Key file requires a password, it can be set here or in
 # the matching ENV value (`CONTRAST__CERTIFICATE__KEY_PASSWORD`).
 # key_password: NEEDS_TO_BE_SET

 # ==
====
 # api.proxy
 # Use the following properties for communication
 # with the Contrast UI over a proxy.
 # ==
====
 # proxy:

 # Set value to `true` for the agent to communicate
 # with the Contrast web interface over a proxy. Set
 # value to `false` if you don't want to use the proxy.
 # enable: NEEDS_TO_BE_SET

 # Set the URL for your Proxy Server. The URL form is `scheme://
host:port`.
 # url: NEEDS_TO_BE_SET

==
====
agent
Use the properties in this section to control the way and frequency
with which the agent communicates to logs and the Contrast UI.
==
====
agent:

 # Set to limit the length of Error stack traces to a specified number.
 # stack_trace_limit: 10

 # ==
====
 # agent.diagnostics

Contrast Documentation

Agents 309

 # Use the properties in this section to specify the information the agent
 # should collect and report in order to diagnose problems in the agent.
 #
 # ==
====
 # diagnostics:

 # Set to `false` to disable agent diagnostics
 # enable: true

 # Set the directory in which to write diagnostic files.
 # Defaults to the application's current working directory.
 # report_path: ./

 # ==
====
 # agent.effective_config
 # None
 # ==
====
 # effective_config:

 # ==
====
 # agent.effective_config.reporting
 # None
 # ==
====
 # reporting:

 # Defaults to `true`. Controls whether configuration
 # setting reports are sent to the Contrast web interface.
 # enable: true

 # ==
====
 # agent.logger
 # Define the following properties to set logging values.
 # If the following properties are not defined, the
 # agent uses the logging values from the Contrast UI.
 # ==
====
 # logger:

 # Enable diagnostic logging by setting a path to a log file.
 # While diagnostic logging hurts performance, it generates
 # useful information for debugging Contrast. The value set here
 # is the location to which the agent saves log output. If no
 # log file exists at this location, the agent creates a file.
 #
 # Example - `/opt/Contrast/contrast.log` creates a log in the
 # `/opt/Contrast` directory, and rotates it automatically as needed.
 #
 # path: ./contrast_agent.log

Contrast Documentation

Agents 310

 # Set the the log output level. Valid options are
 # `ERROR`, `WARN`, `INFO`, `DEBUG`, and `TRACE`.
 # level: INFO

 # Set to `false` for the agent to always create a
 # new log file instead of appending and rolling.
 # append: true

 # Set to `false` to suppress log output to `stdout`.
 # stdout: true

 # Set the roll size for log files in megabytes. The agent will
 # attempt to prevent the log file from being larger than this size.
 # This feature is only available in agent version >=4.0.0
 # roll_size: 100M

 # Set the number of backup files to keep. Set to `0` to disable.
 # This feature is only available in agent version >=4.0.0
 # backups: 10

 # ==
====
 # agent.security_logger
 # Define the following properties to set security
 # logging values. If not defined, the agent uses the
 # security logging (CEF) values from the Contrast UI.
 # ==
====
 # security_logger:

 # Set the file to which the agent logs security events.
 # path: ./contrast/security.log

 # Set the log level for security logging. Valid options
 # are `ERROR`, `WARN`, `INFO`, `DEBUG`, and `TRACE`.
 # level: ERROR

 # Set to `true` to log output to `stdout` as well as the configured \
file.
 # stdout: false

 # ==
====
 # agent.security_logger.syslog
 # Define the following properties to set Syslog values. If the \
properties
 # are not defined, the agent uses the Syslog values from the Contrast \
UI.
 # ==
====
 # syslog:

 # Set to `true` to enable Syslog logging.
 # enable: NEEDS_TO_BE_SET

Contrast Documentation

Agents 311

 # Set the IP address of the Syslog server
 # to which the agent should send messages.
 # ip: NEEDS_TO_BE_SET

 # Set the port of the Syslog server to
 # which the agent should send messages.
 # port: NEEDS_TO_BE_SET

 # Set the facility code of the messages the agent sends to Syslog.
 # facility: 19

 # Set the log level of Exploited attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_exploited: ALERT

 # Set the log level of Blocked attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_blocked: NOTICE

 # Set the log level of Blocked At Perimeter
 # attacks. Value options are `ALERT`, `CRITICAL`,
 # `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_blocked_perimeter: NOTICE

 # Set the log level of Probed attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_probed: WARNING

 # Set the log level of Suspicious attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_suspicious: WARNING

 # ==
====
 # agent.service
 # The following properties are used by the Contrast Service.
 # ==
====
 # service:

 # Set to `false` to disallow the service to be started, and
 # effectively disable the agent, if read by the service. If the
 # agent reads this property, it disallows service auto-start.
 # enable: true

 # Set to `true` to enable listening for gRPC connections.
 # The `socket`, `host` and `port` fields will be used for
 # configuring the gRPC server in place of the legacy RPC server.
 # grpc: false

 # If this property is defined, the service is
 # listening on a Unix socket at the defined path.
 # socket: /tmp/service.sock

 # ********************** REQUIRED **********************

Contrast Documentation

Agents 312

 # Set the the hostname or IP address of the Contrast
 # service to which the Contrast agent should report.
 host: localhost

 # ********************** REQUIRED **********************
 # Set the the port of the Contrast service
 # to which the Contrast agent should report.
 port: 30555

 # ==
====
 # agent.service.teamserver_retry
 # The following properties are used by the Teamserver HTTP client
 # to configure failed request retrying in the Contrast service.
 # ==
====
 # teamserver_retry:

 # Enable retrying HTTP requests to the Teamserver endpoint.
 # enable: true

 # How long to wait between retries in milliseconds.
 # interval_ms: 5000

 # How many times to retry HTTP requests to Teamserver before giving \
up.
 # max_attempts: 3

 # ==
====
 # agent.service.logger
 # The following properties are used by the logger in the
 # Contrast service. If the properties are not defined, the
 # service uses the logging values from the Contrast UI.
 # ==
====
 # logger:

 # Set the location to which the Contrast service saves log output.
 # If no log file exists at this location, the service creates one.
 #
 # Example - `/opt/Contrast/contrast_service.log` will
 # create a log in the `/opt/Contrast` directory.
 #
 # path: ./contrast_service.log

 # Set the the log output level. Options are `OFF`, `FATAL`,
 # `ERROR`, `WARN`, `INFO`, `DEBUG`, `TRACE`, and `ALL`.
 # level: ERROR

 # Override the name of the process used in logs.
 # progname: Contrast Service

 # Set to `true` to send log output to `stdout`.
 # stdout: false

Contrast Documentation

Agents 313

 # ==
====
 # agent.heap_dump
 # The following properties are used to trigger heap dumps from within
 # the agent to snapshot the behavior of instrumented applications.
 # ==
====
 # heap_dump:

 # Set to `true` for the agent to automatically
 # take heap dumps of the instrumented application.
 # enable: false

 # Set the location to which to save the heap dump files. If relative,
 # the path is determined based on the process' working directory.
 # path: contrast_heap_dumps

 # Set the amount of time to wait, in milliseconds,
 # after agent startup to begin taking heap dumps.
 # delay_ms: 10_000

 # Set the amount of time to wait, in milliseconds, between each heap \
dump.
 # window_ms: 10_000

 # Set the number of heap dumps to take before disabling this feature.
 # count: 5

 # ==
====
 # agent.node
 # The following properties apply to any Node configurations.
 # ==
====
 # node:

 # Set the directory containing the application's `package.json` file.
 # app_root: NEEDS_TO_BE_SET

 # ==
====
 # agent.node.rewrite_cache
 # Use the following properties to set up rewrite caching in the agent.
 # ==
====
 # rewrite_cache:

 # Set to `true` to enable rewrite caching.
 # enable: false

 # Set the location of the rewrite cache source.
 # path: NEEDS_TO_BE_SET

 # ==

Contrast Documentation

Agents 314

====
 # agent.node.library_usage
 # Configuration for Node.js library usage reporting
 # ==
====
 # library_usage:

 # Set to `true` to have Contrast report
 # libraries that npm has marked extraneous.
 # read_extraneous_libraries: false

 # ==
====
 # agent.node.library_usage.reporting
 # Use the following properties to set
 # up enhanced library usage reporting.
 # ==
====
 # reporting:

 # Set to `false` to disable enhanced library usage features, i.e.
 # scanning for composition of dependencies, reporting library usage.
 # enable: true

 # Set the interval (in milliseconds) for
 # collecting code events for library usage.
 # interval_ms: 1

==
====
inventory
Use the properties in this section to override the inventory features.
==
====
inventory:

 # Set to `false` to disable library analysis.
 # analyze_libraries: true

 # Apply a list of labels to libraries. Labels
 # must be formatted as a comma-delimited list.
 # Example - `label1, label2, label3`
 #
 # tags: NEEDS_TO_BE_SET

==
====
assess
Use the properties in this section to control Assess.
==
====
assess:

 # Include this property to determine if the Assess
 # feature should be enabled. If this property is not

Contrast Documentation

Agents 315

 # present, the decision is delegated to the Contrast UI.
 # enable: false

 # Apply a list of labels to vulnerabilities and preflight
 # messages. Labels must be formatted as a comma-delimited list.
 # Example - `label1, label2, label3`
 #
 # tags: NEEDS_TO_BE_SET

 # Value options are `ALL`, `SOME`, or `NONE`.
 # stacktraces: ALL

 # Set to `true` to trust incoming strings when they pass custom
 # validators (Mongoose, Joi, validator, fastify-static).
 # This feature is only available in agent version 4.10.0 and later
 # trust_custom_validators: false

 # Enables the serve-static module as a path-traversal
 # sanitizer. Express uses serve-static in a safe way
 # but manual setup of serve-static can be vulnerable.
 #
 # Even with Express there is a possibility for "traversing-down" the \
served
 # folder or user misconfiguration if not configured with an absolute path
 #
 # This feature is only available in agent version 4.31.0 and later
 # enable_sanitizer_serve_static: false

 # When set to `true`, string tracking will occur lazily as user-controlled
 # values are accessed by application code. When `false`, tracking will
 # occur at the time of input parsing and will be limited to 250 values.
 # This feature is only available in agent version 4.18.0 and later
 # enable_lazy_tracking: true

 # ==
====
 # assess.sampling
 # Use the following properties to control sampling in the agent.
 # ==
====
 # sampling:

 # Set to `true` to enable sampling.
 # enable: false

 # This property indicates the number of requests
 # to analyze in each window before sampling begins.
 # baseline: 5

==
====
protect
Use the properties in this section to override Protect features.
==
====

Contrast Documentation

Agents 316

protect:

 # Include this property to determine if the Protect
 # feature should be enabled. If this property is not
 # present, the decision is delegated to the Contrast UI.
 # enable: false

 # ==
====
 # protect.probe_analysis
 # Use the settings in this section to
 # control the behavior of probe analysis.
 # Support for this option is limited to Node agent versions >= 5
 # ==
====
 # probe_analysis:

 # Set to `false` to disable probe analysis.
 # enable: true

 # ==
====
 # protect.rules
 # Use the following properties to set simple rule configurations.
 # ==
====
 # rules:

 # Define a list of Protect rules to disable in the agent. To view a
 # list of rule names, in Contrast go to user menu > Policy Management >
 # Protect rules. The rules must be formatted as a comma-delimited list.
 # disabled_rules: NEEDS_TO_BE_SET

 # ==
====
 # protect.rules.bot-blocker
 # Use the following selection to configure if the
 # agent blocks bots. Set to `true` to enable blocking.
 # ==
====
 # bot-blocker:

 # Set to `true` for the agent to block known bots.
 # enable: false

 # ==
====
 # protect.rules.sql-injection
 # Use the following settings to configure the sql-injection rule.
 # ==
====
 # sql-injection:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or off.

Contrast Documentation

Agents 317

 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.cmd-injection
 # Use the following properties to configure
 # how the command injection rule works.
 # ==
====
 # cmd-injection:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.cmd-injection-semantic-chained-commands
 # Use the following properties to configure how the
 # 'command injection - chained commands' rule works
 # ==
====
 # cmd-injection-semantic-chained-commands:

 # Set the mode of the rule. Value options
 # are `monitor`, `block`, or `off`.
 # mode: off

 # ==
====
 # protect.rules.cmd-injection-semantic-dangerous-paths
 # Use the following properties to configure how the
 # 'command injection - dangerous paths' rule works
 # ==
====
 # cmd-injection-semantic-dangerous-paths:

 # Set the mode of the rule. Value options
 # are `monitor`, `block`, or `off`.
 # mode: off

 # ==
====
 # protect.rules.cmd-injection-command-backdoors
 # Use the following properties to configure how the
 # 'command injection - command backdoors' rule works
 # ==

Contrast Documentation

Agents 318

====
 # cmd-injection-command-backdoors:

 # Set the mode of the rule. Value options
 # are `monitor`, `block`, or `off`.
 # mode: off

 # ==
====
 # protect.rules.path-traversal-semantic-file-security-bypass
 # Use the following properties to configure how the
 # 'path traversal - file security bypass' rule works
 # ==
====
 # path-traversal-semantic-file-security-bypass:

 # Set the mode of the rule. Value options
 # are `monitor`, `block`, or `off`.
 # mode: off

 # ==
====
 # protect.rules.path-traversal
 # Use the following properties to configure
 # how the path traversal rule works.
 # ==
====
 # path-traversal:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.method-tampering
 # Use the following properties to configure
 # how the method tampering rule works.
 # ==
====
 # method-tampering:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==

Contrast Documentation

Agents 319

====
 # protect.rules.reflected-xss
 # Use the following properties to configure how
 # the reflected cross-site scripting rule works.
 # ==
====
 # reflected-xss:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.unsafe-file-upload
 # Use the following properties to configure
 # how the unsafe file upload rule works.
 # ==
====
 # unsafe-file-upload:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.xxe
 # Use the following properties to configure
 # how the XML external entity works.
 # ==
====
 # xxe:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.untrusted-deserialization
 # Use the following properties to configure
 # how the untrusted deserialization rule works.

Contrast Documentation

Agents 320

 # ==
====
 # untrusted-deserialization:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.ssjs-injection
 # Use the following properties to configure
 # how the SSJS Injection rule works.
 # ==
====
 # ssjs-injection:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.nosql-injection
 # Use the following properties to configure
 # how the NOSQL Injection rule works.
 # ==
====
 # nosql-injection:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.nosql-injection-mongo
 # Use the following properties to configure
 # how the NOSQL Injection rule works.
 # ==
====
 # nosql-injection-mongo:

Contrast Documentation

Agents 321

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

==
====
application
Use the properties in this section for
the application(s) hosting this agent.
==
====
application:

 # Override the reported application name.
 #
 # Note - On Java systems where multiple, distinct applications may be
 # served by a single process, this configuration causes the agent to \
report
 # all discovered applications as one application with the given name.
 #
 # name: NEEDS_TO_BE_SET

 # Override the reported application path.
 # path: NEEDS_TO_BE_SET

 # Add the name of the application group with which this
 # application should be associated in the Contrast UI.
 # group: NEEDS_TO_BE_SET

 # Add the application code this application should use in the Contrast UI.
 # code: NEEDS_TO_BE_SET

 # Override the reported application version.
 # version: NEEDS_TO_BE_SET

 # Pass arguments to the underlying application.
 # args: NEEDS_TO_BE_SET

 # Apply labels to an application. Labels must
 # be formatted as a comma-delimited list.
 # Example - `label1,label2,label3`
 #
 # tags: NEEDS_TO_BE_SET

 # Define a set of `key=value` pairs (which conforms to RFC 2253) for
 # specifying user-defined metadata associated with the application. The
 # set must be formatted as a comma-delimited list of `key=value` pairs.
 # Example - `business-unit=accounting, office=Baltimore`
 #
 # metadata: NEEDS_TO_BE_SET

Contrast Documentation

Agents 322

 # Provide the ID of a session which already exists in the Contrast
 # UI. Vulnerabilities discovered by the agent are associated with
 # this session. If an invalid ID is supplied, the agent will be
 # disabled. This option and `application.session_metadata` are
 # mutually exclusive; if both are set, the agent will be disabled.
 # session_id: NEEDS_TO_BE_SET

 # Provide metadata which is used to create a new session ID in the
 # Contrast UI. Vulnerabilities discovered by the agent are associated with
 # this new session. This value should be formatted as `key=value` pairs
 # (conforming to RFC 2253). Available key names for this configuration
 # are branchName, buildNumber, commitHash, committer, gitTag, repository,
 # testRun, and version. This option and `application.session_id` are
 # mutually exclusive; if both are set the agent will be disabled.
 # session_metadata: NEEDS_TO_BE_SET

==
====
server
Use the settings in this section to set metadata for the server
hosting this agent. Contrast recognizes common, supported server
names, paths, types and environments. Doing this may require a new
server or license, and it may affect functionality of some features.
==
====
server:

 # Override the reported server name.
 # name: localhost

 # Override the reported server path.
 # path: NEEDS_TO_BE_SET

 # Override the reported server type.
 # type: NEEDS_TO_BE_SET

 # Set the environment directly to override the default set
 # by the Contrast UI. This allows the user to configure the
 # environment dynamically at startup rather than manually
 # updating the Server in the Contrast UI themselves afterwards.
 #
 # Valid values include `QA`, `PRODUCTION` and `DEVELOPMENT`.
 # For example, `PRODUCTION` registers this Server as
 # running in a `PRODUCTION` environment, regardless of the
 # organization's default environment in the Contrast UI.
 #
 # environment: NEEDS_TO_BE_SET

 # Apply a list of labels to the server. Labels
 # must be formatted as a comma-delimited list.
 # Example - `label1,label2,label3`
 #
 # tags: NEEDS_TO_BE_SET

Contrast Documentation

Agents 323

==
====
Use the properties in this YAML file to configure a Contrast agent.
Go to https://docs.contrastsecurity.com/en/order-of-precedence.html
to determine the order of precedence for configuration values.
==
====

Use this setting if you want to temporarily disable a Contrast agent.
Set to `true` to enable the agent; set to `false` to disable the agent.
enable: true

==
====
api
Use the properties in this section to connect the agent to the Contrast \
UI.
==
====
api:

 # ********************** REQUIRED **********************
 # Set the URL for the Contrast UI.
 url: https://app.contrastsecurity.com/Contrast

 # ********************** REQUIRED **********************
 # Set the API key needed to communicate with the Contrast UI.
 api_key: NEEDS_TO_BE_SET

 # ********************** REQUIRED **********************
 # Set the service key needed to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 service_key: NEEDS_TO_BE_SET

 # ********************** REQUIRED **********************
 # Set the user name used to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 user_name: NEEDS_TO_BE_SET

 # Set the default request timeout.
 # timeout_ms: NEEDS_TO_BE_SET

 # ==
====
 # api.certificate
 # Use the following properties for communication
 # with the Contrast UI using certificates.
 # ==
====
 # certificate:

 # If set to `false`, the agent will ignore the
 # certificate configuration in this section.
 # enable: true

Contrast Documentation

Agents 324

 # Set the absolute or relative path to a CA for communication
 # with the Contrast UI using a self-signed certificate.
 # ca_file: NEEDS_TO_BE_SET

 # Set the absolute or relative path to the Certificate
 # PEM file for communication with the Contrast UI.
 # cert_file: NEEDS_TO_BE_SET

 # Set the absolute or relative path to the Key PEM
 # file for communication with the Contrast UI.
 # key_file: NEEDS_TO_BE_SET

 # If the Key file requires a password, it can be set here or in
 # the matching ENV value (`CONTRAST__CERTIFICATE__KEY_PASSWORD`).
 # key_password: NEEDS_TO_BE_SET

 # ==
====
 # api.proxy
 # Use the following properties for communication
 # with the Contrast UI over a proxy.
 # ==
====
 # proxy:

 # Set value to `true` for the agent to communicate
 # with the Contrast web interface over a proxy. Set
 # value to `false` if you don't want to use the proxy.
 # enable: NEEDS_TO_BE_SET

 # Set the URL for your Proxy Server. The URL form is `scheme://
host:port`.
 # url: NEEDS_TO_BE_SET

==
====
agent
Use the properties in this section to control the way and frequency
with which the agent communicates to logs and the Contrast UI.
==
====
agent:

 # Set to limit the length of Error stack traces to a specified number.
 # stack_trace_limit: 10

 # ==
====
 # agent.diagnostics
 # Use the properties in this section to specify the information the agent
 # should collect and report in order to diagnose problems in the agent.
 #
 # ==
====

Contrast Documentation

Agents 325

 # diagnostics:

 # Set to `false` to disable agent diagnostics
 # enable: true

 # Set the directory in which to write diagnostic files.
 # Defaults to the application's current working directory.
 # report_path: ./

 # ==
====
 # agent.effective_config
 # None
 # ==
====
 # effective_config:

 # ==
====
 # agent.effective_config.reporting
 # None
 # ==
====
 # reporting:

 # Defaults to `true`. Controls whether configuration
 # setting reports are sent to the Contrast web interface.
 # enable: true

 # ==
====
 # agent.logger
 # Define the following properties to set logging values.
 # If the following properties are not defined, the
 # agent uses the logging values from the Contrast UI.
 # ==
====
 # logger:

 # Enable diagnostic logging by setting a path to a log file.
 # While diagnostic logging hurts performance, it generates
 # useful information for debugging Contrast. The value set here
 # is the location to which the agent saves log output. If no
 # log file exists at this location, the agent creates a file.
 #
 # Example - `/opt/Contrast/contrast.log` creates a log in the
 # `/opt/Contrast` directory, and rotates it automatically as needed.
 #
 # path: ./contrast_agent.log

 # Set the the log output level. Valid options are
 # `ERROR`, `WARN`, `INFO`, `DEBUG`, and `TRACE`.
 # level: INFO

 # Set to `false` for the agent to always create a

Contrast Documentation

Agents 326

 # new log file instead of appending and rolling.
 # append: true

 # Set to `false` to suppress log output to `stdout`.
 # stdout: true

 # Set the roll size for log files in megabytes. The agent will
 # attempt to prevent the log file from being larger than this size.
 # This feature is only available in agent version >=4.0.0
 # roll_size: 100M

 # Set the number of backup files to keep. Set to `0` to disable.
 # This feature is only available in agent version >=4.0.0
 # backups: 10

 # ==
====
 # agent.security_logger
 # Define the following properties to set security
 # logging values. If not defined, the agent uses the
 # security logging (CEF) values from the Contrast UI.
 # ==
====
 # security_logger:

 # Set the file to which the agent logs security events.
 # path: ./contrast/security.log

 # Set the log level for security logging. Valid options
 # are `ERROR`, `WARN`, `INFO`, `DEBUG`, and `TRACE`.
 # level: ERROR

 # Set to `true` to log output to `stdout` as well as the configured \
file.
 # stdout: false

 # ==
====
 # agent.security_logger.syslog
 # Define the following properties to set Syslog values. If the \
properties
 # are not defined, the agent uses the Syslog values from the Contrast \
UI.
 # ==
====
 # syslog:

 # Set to `true` to enable Syslog logging.
 # enable: NEEDS_TO_BE_SET

 # Set the IP address of the Syslog server
 # to which the agent should send messages.
 # ip: NEEDS_TO_BE_SET

 # Set the port of the Syslog server to

Contrast Documentation

Agents 327

 # which the agent should send messages.
 # port: NEEDS_TO_BE_SET

 # Set the facility code of the messages the agent sends to Syslog.
 # facility: 19

 # Set the log level of Exploited attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_exploited: ALERT

 # Set the log level of Blocked attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_blocked: NOTICE

 # Set the log level of Blocked At Perimeter
 # attacks. Value options are `ALERT`, `CRITICAL`,
 # `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_blocked_perimeter: NOTICE

 # Set the log level of Probed attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_probed: WARNING

 # Set the log level of Suspicious attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_suspicious: WARNING

 # ==
====
 # agent.service
 # The following properties are used by the Contrast Service.
 # ==
====
 # service:

 # Set to `false` to disallow the service to be started, and
 # effectively disable the agent, if read by the service. If the
 # agent reads this property, it disallows service auto-start.
 # enable: true

 # Set to `true` to enable listening for gRPC connections.
 # The `socket`, `host` and `port` fields will be used for
 # configuring the gRPC server in place of the legacy RPC server.
 # grpc: false

 # If this property is defined, the service is
 # listening on a Unix socket at the defined path.
 # socket: /tmp/service.sock

 # ********************** REQUIRED **********************
 # Set the the hostname or IP address of the Contrast
 # service to which the Contrast agent should report.
 host: localhost

 # ********************** REQUIRED **********************

Contrast Documentation

Agents 328

 # Set the the port of the Contrast service
 # to which the Contrast agent should report.
 port: 30555

 # ==
====
 # agent.service.teamserver_retry
 # The following properties are used by the Teamserver HTTP client
 # to configure failed request retrying in the Contrast service.
 # ==
====
 # teamserver_retry:

 # Enable retrying HTTP requests to the Teamserver endpoint.
 # enable: true

 # How long to wait between retries in milliseconds.
 # interval_ms: 5000

 # How many times to retry HTTP requests to Teamserver before giving \
up.
 # max_attempts: 3

 # ==
====
 # agent.service.logger
 # The following properties are used by the logger in the
 # Contrast service. If the properties are not defined, the
 # service uses the logging values from the Contrast UI.
 # ==
====
 # logger:

 # Set the location to which the Contrast service saves log output.
 # If no log file exists at this location, the service creates one.
 #
 # Example - `/opt/Contrast/contrast_service.log` will
 # create a log in the `/opt/Contrast` directory.
 #
 # path: ./contrast_service.log

 # Set the the log output level. Options are `OFF`, `FATAL`,
 # `ERROR`, `WARN`, `INFO`, `DEBUG`, `TRACE`, and `ALL`.
 # level: ERROR

 # Override the name of the process used in logs.
 # progname: Contrast Service

 # Set to `true` to send log output to `stdout`.
 # stdout: false

 # ==
====
 # agent.heap_dump
 # The following properties are used to trigger heap dumps from within

Contrast Documentation

Agents 329

 # the agent to snapshot the behavior of instrumented applications.
 # ==
====
 # heap_dump:

 # Set to `true` for the agent to automatically
 # take heap dumps of the instrumented application.
 # enable: false

 # Set the location to which to save the heap dump files. If relative,
 # the path is determined based on the process' working directory.
 # path: contrast_heap_dumps

 # Set the amount of time to wait, in milliseconds,
 # after agent startup to begin taking heap dumps.
 # delay_ms: 10_000

 # Set the amount of time to wait, in milliseconds, between each heap \
dump.
 # window_ms: 10_000

 # Set the number of heap dumps to take before disabling this feature.
 # count: 5

 # ==
====
 # agent.node
 # The following properties apply to any Node configurations.
 # ==
====
 # node:

 # Set the directory containing the application's `package.json` file.
 # app_root: NEEDS_TO_BE_SET

 # ==
====
 # agent.node.rewrite_cache
 # Use the following properties to set up rewrite caching in the agent.
 # ==
====
 # rewrite_cache:

 # Set to `true` to enable rewrite caching.
 # enable: false

 # Set the location of the rewrite cache source.
 # path: NEEDS_TO_BE_SET

 # ==
====
 # agent.node.library_usage
 # Configuration for Node.js library usage reporting
 # ==
====

Contrast Documentation

Agents 330

 # library_usage:

 # Set to `true` to have Contrast report
 # libraries that npm has marked extraneous.
 # read_extraneous_libraries: false

 # ==
====
 # agent.node.library_usage.reporting
 # Use the following properties to set
 # up enhanced library usage reporting.
 # ==
====
 # reporting:

 # Set to `false` to disable enhanced library usage features, i.e.
 # scanning for composition of dependencies, reporting library usage.
 # enable: true

 # Set the interval (in milliseconds) for
 # collecting code events for library usage.
 # interval_ms: 1

==
====
inventory
Use the properties in this section to override the inventory features.
==
====
inventory:

 # Set to `false` to disable library analysis.
 # analyze_libraries: true

 # Apply a list of labels to libraries. Labels
 # must be formatted as a comma-delimited list.
 # Example - `label1, label2, label3`
 #
 # tags: NEEDS_TO_BE_SET

==
====
assess
Use the properties in this section to control Assess.
==
====
assess:

 # Include this property to determine if the Assess
 # feature should be enabled. If this property is not
 # present, the decision is delegated to the Contrast UI.
 # enable: false

 # Apply a list of labels to vulnerabilities and preflight
 # messages. Labels must be formatted as a comma-delimited list.

Contrast Documentation

Agents 331

 # Example - `label1, label2, label3`
 #
 # tags: NEEDS_TO_BE_SET

 # Value options are `ALL`, `SOME`, or `NONE`.
 # stacktraces: ALL

 # Set to `true` to trust incoming strings when they pass custom
 # validators (Mongoose, Joi, validator, fastify-static).
 # This feature is only available in agent version 4.10.0 and later
 # trust_custom_validators: false

 # Enables the serve-static module as a path-traversal
 # sanitizer. Express uses serve-static in a safe way
 # but manual setup of serve-static can be vulnerable.
 #
 # Even with Express there is a possibility for "traversing-down" the \
served
 # folder or user misconfiguration if not configured with an absolute path
 #
 # This feature is only available in agent version 4.31.0 and later
 # enable_sanitizer_serve_static: false

 # When set to `true`, string tracking will occur lazily as user-controlled
 # values are accessed by application code. When `false`, tracking will
 # occur at the time of input parsing and will be limited to 250 values.
 # This feature is only available in agent version 4.18.0 and later
 # enable_lazy_tracking: true

 # ==
====
 # assess.sampling
 # Use the following properties to control sampling in the agent.
 # ==
====
 # sampling:

 # Set to `true` to enable sampling.
 # enable: false

 # This property indicates the number of requests
 # to analyze in each window before sampling begins.
 # baseline: 5

==
====
protect
Use the properties in this section to override Protect features.
==
====
protect:

 # Include this property to determine if the Protect
 # feature should be enabled. If this property is not
 # present, the decision is delegated to the Contrast UI.

Contrast Documentation

Agents 332

 # enable: false

 # ==
====
 # protect.probe_analysis
 # Use the settings in this section to
 # control the behavior of probe analysis.
 # Support for this option is limited to Node agent versions >= 5
 # ==
====
 # probe_analysis:

 # Set to `false` to disable probe analysis.
 # enable: true

 # ==
====
 # protect.rules
 # Use the following properties to set simple rule configurations.
 # ==
====
 # rules:

 # Define a list of Protect rules to disable in the agent. To view a
 # list of rule names, in Contrast go to user menu > Policy Management >
 # Protect rules. The rules must be formatted as a comma-delimited list.
 # disabled_rules: NEEDS_TO_BE_SET

 # ==
====
 # protect.rules.bot-blocker
 # Use the following selection to configure if the
 # agent blocks bots. Set to `true` to enable blocking.
 # ==
====
 # bot-blocker:

 # Set to `true` for the agent to block known bots.
 # enable: false

 # ==
====
 # protect.rules.sql-injection
 # Use the following settings to configure the sql-injection rule.
 # ==
====
 # sql-injection:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or off.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

Contrast Documentation

Agents 333

 # ==
====
 # protect.rules.cmd-injection
 # Use the following properties to configure
 # how the command injection rule works.
 # ==
====
 # cmd-injection:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.cmd-injection-semantic-chained-commands
 # Use the following properties to configure how the
 # 'command injection - chained commands' rule works
 # ==
====
 # cmd-injection-semantic-chained-commands:

 # Set the mode of the rule. Value options
 # are `monitor`, `block`, or `off`.
 # mode: off

 # ==
====
 # protect.rules.cmd-injection-semantic-dangerous-paths
 # Use the following properties to configure how the
 # 'command injection - dangerous paths' rule works
 # ==
====
 # cmd-injection-semantic-dangerous-paths:

 # Set the mode of the rule. Value options
 # are `monitor`, `block`, or `off`.
 # mode: off

 # ==
====
 # protect.rules.cmd-injection-command-backdoors
 # Use the following properties to configure how the
 # 'command injection - command backdoors' rule works
 # ==
====
 # cmd-injection-command-backdoors:

 # Set the mode of the rule. Value options
 # are `monitor`, `block`, or `off`.

Contrast Documentation

Agents 334

 # mode: off

 # ==
====
 # protect.rules.path-traversal-semantic-file-security-bypass
 # Use the following properties to configure how the
 # 'path traversal - file security bypass' rule works
 # ==
====
 # path-traversal-semantic-file-security-bypass:

 # Set the mode of the rule. Value options
 # are `monitor`, `block`, or `off`.
 # mode: off

 # ==
====
 # protect.rules.path-traversal
 # Use the following properties to configure
 # how the path traversal rule works.
 # ==
====
 # path-traversal:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.method-tampering
 # Use the following properties to configure
 # how the method tampering rule works.
 # ==
====
 # method-tampering:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.reflected-xss
 # Use the following properties to configure how
 # the reflected cross-site scripting rule works.
 # ==

Contrast Documentation

Agents 335

====
 # reflected-xss:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.unsafe-file-upload
 # Use the following properties to configure
 # how the unsafe file upload rule works.
 # ==
====
 # unsafe-file-upload:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.xxe
 # Use the following properties to configure
 # how the XML external entity works.
 # ==
====
 # xxe:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.untrusted-deserialization
 # Use the following properties to configure
 # how the untrusted deserialization rule works.
 # ==
====
 # untrusted-deserialization:

 # Set the mode of the rule. Value options are

Contrast Documentation

Agents 336

 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.ssjs-injection
 # Use the following properties to configure
 # how the SSJS Injection rule works.
 # ==
====
 # ssjs-injection:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.nosql-injection
 # Use the following properties to configure
 # how the NOSQL Injection rule works.
 # ==
====
 # nosql-injection:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.nosql-injection-mongo
 # Use the following properties to configure
 # how the NOSQL Injection rule works.
 # ==
====
 # nosql-injection-mongo:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.

Contrast Documentation

Agents 337

 #
 # mode: off

==
====
application
Use the properties in this section for
the application(s) hosting this agent.
==
====
application:

 # Override the reported application name.
 #
 # Note - On Java systems where multiple, distinct applications may be
 # served by a single process, this configuration causes the agent to \
report
 # all discovered applications as one application with the given name.
 #
 # name: NEEDS_TO_BE_SET

 # Override the reported application path.
 # path: NEEDS_TO_BE_SET

 # Add the name of the application group with which this
 # application should be associated in the Contrast UI.
 # group: NEEDS_TO_BE_SET

 # Add the application code this application should use in the Contrast UI.
 # code: NEEDS_TO_BE_SET

 # Override the reported application version.
 # version: NEEDS_TO_BE_SET

 # Pass arguments to the underlying application.
 # args: NEEDS_TO_BE_SET

 # Apply labels to an application. Labels must
 # be formatted as a comma-delimited list.
 # Example - `label1,label2,label3`
 #
 # tags: NEEDS_TO_BE_SET

 # Define a set of `key=value` pairs (which conforms to RFC 2253) for
 # specifying user-defined metadata associated with the application. The
 # set must be formatted as a comma-delimited list of `key=value` pairs.
 # Example - `business-unit=accounting, office=Baltimore`
 #
 # metadata: NEEDS_TO_BE_SET

 # Provide the ID of a session which already exists in the Contrast
 # UI. Vulnerabilities discovered by the agent are associated with
 # this session. If an invalid ID is supplied, the agent will be
 # disabled. This option and `application.session_metadata` are
 # mutually exclusive; if both are set, the agent will be disabled.

Contrast Documentation

Agents 338

 # session_id: NEEDS_TO_BE_SET

 # Provide metadata which is used to create a new session ID in the
 # Contrast UI. Vulnerabilities discovered by the agent are associated with
 # this new session. This value should be formatted as `key=value` pairs
 # (conforming to RFC 2253). Available key names for this configuration
 # are branchName, buildNumber, commitHash, committer, gitTag, repository,
 # testRun, and version. This option and `application.session_id` are
 # mutually exclusive; if both are set the agent will be disabled.
 # session_metadata: NEEDS_TO_BE_SET

==
====
server
Use the settings in this section to set metadata for the server
hosting this agent. Contrast recognizes common, supported server
names, paths, types and environments. Doing this may require a new
server or license, and it may affect functionality of some features.
==
====
server:

 # Override the reported server name.
 # name: localhost

 # Override the reported server path.
 # path: NEEDS_TO_BE_SET

 # Override the reported server type.
 # type: NEEDS_TO_BE_SET

 # Set the environment directly to override the default set
 # by the Contrast UI. This allows the user to configure the
 # environment dynamically at startup rather than manually
 # updating the Server in the Contrast UI themselves afterwards.
 #
 # Valid values include `QA`, `PRODUCTION` and `DEVELOPMENT`.
 # For example, `PRODUCTION` registers this Server as
 # running in a `PRODUCTION` environment, regardless of the
 # organization's default environment in the Contrast UI.
 #
 # environment: NEEDS_TO_BE_SET

 # Apply a list of labels to the server. Labels
 # must be formatted as a comma-delimited list.
 # Example - `label1,label2,label3`
 #
 # tags: NEEDS_TO_BE_SET

Reduce container startup time
When you start your instrumented application, Contrast applies source transformations to both your
application and the dependency code your application loads. This code rewriting increases startup time
when running applications with the agent.

Contrast Documentation

Agents 339

Starting with version 4.X, the Node.js agent includes a command line utility you can use to pre-compile
applications before starting them. When started with Contrast, the pre-compiled application loads the
rewritten files from disk and significantly improves startup time.

Use the rewriter

1. In the Node.js agent's configuration file (contrast_security.yaml):
• Enable rewrite caching and specify the path of the cache location.
• Specify the logging level.

NOTE
You can override the YAML configuration settings by invoking the rewriter
with the CLI arguments or environment variables (page 307). For example, to
prevent any logging to stdout or to disk you could use these overrides:

npx -p @contrast/agent --no contrast-transpile index.js --
agent.logger.stdout false --agent.logger.path /dev/null;

It is important to use the -p @contrast/agent --no options to ensure
the npx command is the one from Contrast Security and not from a nefarious
person attempting a supply chain attack.

• -p is the shorthand for --package, which tells npx to only use the command
in the @contrast/agent package.

• --no is the new option name for the deprecated --no-install option that
tells npx to not attempt an install from npm if the command binary is not
found.
The expectation is that the Contrast agent has already been correctly installed
along with the npx binaries before attempting to run the npx command.

• You must also explicitly enable Protect or Assess.
For example:

agent:
 logger:
 level: info
 path: ./node-contrast
 node:
 rewrite_cache:
 enable: true
 path: ./rewrite_cache
assess:
 enable: true
protect:
 enable: false

2. Invoke the executable and provide it with your application's entry point (for example, index.js).
For example:

npx -p @contrast/agent --no contrast-transpile index.js --
agent.logger.level trace;
...
trace: 2021-07-12T18:31:15.128Z 2934603 contrast:rewrite -
 successfully rewrote code for /path/to/app/index.js
trace: 2021-07-12T18:31:15.186Z 2934603 contrast:rewrite -
 successfully rewrote code for /path/to/app/node_modules/koa/lib/

Contrast Documentation

Agents 340

application.js
trace: 2021-07-12T18:31:15.251Z 2934603 contrast:rewrite -
 successfully rewrote code for /path/to/app/node_modules/koa-router/lib/
router.js
trace: 2021-07-12T18:31:15.314Z 2934603 contrast:rewrite -
 successfully rewrote code for /path/to/app/node_modules/@koa/router/lib/
router.js
...
info: 2021-07-12T18:31:41.608Z 2946030 contrast:cli-rewriter -
 rewriting complete [26.625s]

NOTE
The Node.js agent rewriter CLI currently only supports pre-compiling applications
to run with Assess enabled. The agent transpiles code differently depending
on whether Protect or Assess are enabled. Protect requires fewer source
transformations than Assess and does not cause the same startup delays.

3. Once rewriting completes, start your application with Contrast as you usually would. (for example,
node --import @contrast/agent index.js).

Use the Node.js agent with ESM
The Contrast Node.js agent provides full support for using ECMAScript modules (ESM) in Node.js
server-side applications. ESM is the official standard format to package JavaScript client-side code.

There are two ways to run the Contrast Node.js agent if you are using ESM server-side applications.

• To explicitly assert that the code you're running is ESM and should be run as such, use the MJS
file extension. Learn more about determining a module system wiith file extensions in the Node.js
documentation.
When you use an MJS extension, Node.js knows that you've written ESM and will parse your
JavaScript as such. The same is true for CJS; Node.js knows that a CJS file extension should run as
CommonJS, and will parse your JavaScript as CommonJS.

• Otherwise, you can get your Node.js applications to run as ESM rather than CommonJS by including
"type": "module" in your package.json, like this:

"main": "index.js",
"type": "module",

This specifically tells Node.js to parse your JS files under this package.json as ESM. Otherwise,
by default (or when you use "type": "commonjs"), Node.js will parse your JS files as CommonJS.

When instrumenting an application that uses ESM (or a combination of both ESM and CJS), the way
to start the application with the agent depends on the Node.js engine version and if your application is
using ESM code or modules.

• For Node LTS versions greater than or equal to 18.19.0
Use --import to start the application:

node --import @contrast/agent app-main.mjs [app arguments]

• For Node LTS versions greater than or equal to 16.17.0 and less than 18.19.0.
Use --loader to start the application:

node --loader @contrast/agent app-main.mjs [app arguments]

• For Node LTS versions less than 16.17.0. This is also applicable to applications not using the
ESM syntax.

Contrast Documentation

Agents 341

https://tc39.es/ecma262/#sec-modules
https://nodejs.org/api/packages.html#packages_determining_module_system

Use the legacy method for starting the application:

node -r @contrast/agent app-main.js [app arguments]

Transpilers, compilers, source maps and the Node.js agent
The Node.js agent supports applications written in languages that compile JavaScript, such TypeScript.
Although the Node.js agent only instruments JavaScript, you can also use TypeScript if you configure
the transpiler to compile your application into JavaScript.

NOTE
The source may not correspond directly with the resulting JavaScript. As a result,
reported metadata (like vulnerability line-of-code and filename) references
the compiled result, not the source.

Some languages, like TypeScript, require you to pre-compile your code before runtime. In these cases,
the Node.js agent must point to the compiled entry point for your application.

To do this, set up the Node.js agent using the --import option:

scripts: {
 "test": "...",
 "start": "...",
 "contrast": "node --import @contrast/agent /path/to/transpiled/
entrypoint.js"
}

Source maps
With a source map, you can see the corresponding line numbers between the TypeScript source and
the transpiled JavaScript.

To use source maps, you must enable the Babel re-writer and rewrite caching in your YAML
configuration:

agent:
 node:
 rewrite_cache:
 enable: true
 path: ./cache
 enable_babel: true

When enabled, the agent looks for source maps (MAP files) in the same directory as the source
that’s being loaded (for example, if the file /home/app/index.js is loaded, then Contrast looks for /
home/app/index.js.map).

If you do not already have source maps then it needs to be recompiled using the necessary flags to
produce source maps. This is different for every transpiler, so check the options for your transpiler.
For example, for TypeScript, append the --source-map flag to the TypeScript compiler (tsc) or add
the ”sourceMap”: true entry to the ”compilerOptions” section in tsconfig.json.

Node.js telemetry
The Node.js agent uses telemetry to collect usage data. Telemetry is collected when an instrumented
application first loads the agent’s sensors. Currently, data is only sent at startup. In the future, the agent
will be able to send errors and metrics when the instrumented app is running and being exercised.

Contrast Documentation

Agents 342

Your privacy is important to us (page 956). The telemetry feature does not collect application data.
The data is anonymized before being sent securely to Contrast. Then the aggregated data is stored
encrypted and under restricted access control. Any collected data will be deleted after one year.

The telemetry feature collects the following data:

Agent versions Data

@contrast/agent 4.12.0 and later Agent version

Operating system and version

Node.js version

Is the app running in a container (Y/N)

To opt-out of the telemetry feature, set the CONTRAST_AGENT_TELEMETRY_OPTOUT environment
variable to 1 or true.

Telemetry data is securely sent to http://telemetry.nodejs.contrastsecurity.com. You can also opt-out of
telemetry by blocking communication at the network level.

PHP agent
The Contrast PHP agent analyzes PHP web applications at runtime for library usage and vulnerability
detection. The PHP agent is implemented as a PHP extension.

NOTE
The PHP agent currently supports Assess and SCA only.

As a next step, you can:

• Install the PHP agent (page 344)
• View PHP agent system requirements (page 343)
• View PHP agent supported technologies (page 343)

PHP agent supported technologies
We support the following technologies for this agent.

Technology Supported versions Notes

Language version • 7.4, 8.0, 8.1, 8.2, 8.3 The agent depends on the mbstring and curl extensions.

Support only for NTS versions of PHP.

Application frameworks • Laravel
• Symfony
• Drupal 8, 9

Servers • Apache Other servers using mod_php or php-fpm may work but are not currently
supported.

Package manager • Composer Supported by SCA analysis.

PHP agent system requirements
Before installing the PHP agent, your system must meet the following requirements:

Requirement Version

Runtime system • 64-bit Linux

Contrast Documentation

Agents 343

http://telemetry.nodejs.contrastsecurity.com

Requirement Version

Operating systems • CentOS 7, 8
• RHEL 7, 8, 9
• Debian (Ubuntu) 18.4 and higher

Processor architecture • AMD64

Install the PHP agent
A basic installation of the PHP agent looks like this:

1. Install the agent package.
2. Download the contrast_security.yaml and place it in the proper path.
3. Configure the PHP interpreter to enable the Contrast agent extension.
4. Exercise and test your application.
5. Verify that Contrast sees your application.

For specific installation instructions, select one of the following options:

• Install PHP with Debian (page 344)
• Install PHP with RPM (page 345)

Install PHP agent with Debian

Steps
To install the PHP agent:

1. Install the agent package from https://pkg.contrastsecurity.com. This command
registers our package repository in your system:

curl \
 https://pkg.contrastsecurity.com/api/gpg/key/public | sudo apt-key add -

echo "deb https://pkg.contrastsecurity.com/debian-public/ $(sed -rne 's/
^VERSION_CODENAME=(.*)$/\1/p' /etc/*ease) contrast" \
 | sudo tee /etc/apt/sources.list.d/contrast.list

echo "deb https://pkg.contrastsecurity.com/debian-public/ all contrast" \
 | sudo tee -a /etc/apt/sources.list.d/contrast.list

2. Once complete, use this command to install the agent:

sudo apt-get update && sudo apt-get install contrast-php-agent

NOTE
Once PHP is configured to use the extension, it will be used whenever the
interpreter is executed. This step should be delayed until immediately before the
application itself is run. This will prevent any unexpected behavior when running
artisan or other PHP commands.

3. Locate the PHP configuration file, called php.ini and on many systems it can be found
under /usr/local/etc/php/.
If the php-config command is available, it can be used to find the configuration file path using
php-config --ini-path. If no configuration file yet exists under that path, it will need to be
created.

4. Edit your PHP configuration file:

Contrast Documentation

Agents 344

echo "extension=/usr/local/lib/contrast/php/contrast.so" >> `php-
config --ini-path`/php.ini

5. Configure the PHP agent (page 346) using the PHP YAML template (page 346) or environment
variables.

6. Start your application in the normal way.
7. Exercise and test your application.
8. Verify that the PHP agent is running by checking the Contrast UI and/or looking for PHP agent log

output (depending on configuration).

Notes

• It is possible to use the agent with the PHP CLI by adding a flag to the command line:

php -d extension=/usr/local/lib/contrast/php/contrast.so

• Library analysis and route discovery is currently performed on the first request to the application. For
this reason we expect the first request to be considerably slower than subsequent requests.

• The agent has not been tested with third-party PHP extensions. The behavior of the agent when any
other third-party extensions (including xdebug, APMs, etc.) is undefined.

• The agent may not work properly when preloading is enabled. Disabling preloading when using the
agent is recommended.

• By default the agent assumes that the server’s working directory when it runs the PHP application is
the same as the top level directory of the application source tree. The agent uses this path to perform
library analysis and route discovery. If this is not the case, you will need to use the application.path
setting in the configuration to set the top-level working directory of your application.

Install PHP agent with Red Hat Package Manager (RPM)

Steps
To install the PHP agent:

1. Install the agent package from https://pkg.contrastsecurity.com. Use this script
in your shell to configure your RPM-based system for our package repository. You may
need sudo permissions.

tee /etc/yum.repos.d/contrast.repo <<-"EOF"
[contrast]
name=Contrast centos-$releasever repo
baseurl=https://pkg.contrastsecurity.com/rpm-public/redhat-$releasever/
gpgcheck=0
enabled=1
EOF

2. Once complete, use this command to install the agent and service:

sudo yum install contrast-php-agent

NOTE
Once PHP is configured to use the extension, it will be used whenever the
interpreter is executed. This step should be delayed until immediately before the
application itself is run. This will prevent any unexpected behavior when running
artisan or other PHP commands.

3. Locate the PHP configuration file, called php.ini and on many systems it can be found
under /usr/local/etc/php/.

Contrast Documentation

Agents 345

If the php-config command is available, it can be used to find the configuration file path using
php-config --ini-path. If no configuration file yet exists under that path, it will need to be
created.

4. Edit your PHP configuration file:

echo "extension=/usr/local/lib/contrast/php/contrast.so" >> `php-
config --ini-path`/php.ini

5. Configure the PHP agent (page 346) using the PHP YAML template (page 346) or environment
variables.

6. Start your application in the normal way.
7. Exercise and test your application.
8. Verify that the PHP agent is running by checking the Contrast UI and/or looking for PHP agent log

output (depending on configuration).

Notes

• It is possible to use the agent with the PHP CLI by adding a flag to the command line:

php -d extension=/usr/local/lib/contrast/php/contrast.so

• Library analysis and route discovery is currently performed on the first request to the application. For
this reason we expect the first request to be considerably slower than subsequent requests.

• The agent has not been tested with third-party PHP extensions. The behavior of the agent when any
other third-party extensions (including xdebug, APMs, etc.) is undefined.

• The agent may not work properly when preloading is enabled. Disabling preloading when using the
agent is recommended.

• By default the agent assumes that the server’s working directory when it runs the PHP application is
the same as the top level directory of the application source tree. The agent uses this path to perform
library analysis and route discovery. If this is not the case, you will need to use the application.path
setting in the configuration to set the top-level working directory of your application.

Configure the PHP agent
The standard configuration (page 70) for all agents uses this order of precedence (page 72).

You may use a YAML configuration file or environment variables to configure the agent when running
your application:

• You can create your own YAML configuration file or use this YAML template (page 346) that contains
all valid properties for the PHP agent,

• or you can use environment variables (page 76) to configure your build.

TIP
Use the Contrast agent configuration editor (page 74) to create or upload a YAML
configuration file, validate YAML and get setting recommendations.

PHP YAML template
Use this template to configure the PHP agent using a YAML configuration file. (Learn more about YAML
configuration (page 73).)

Place your YAML file in the working directory of your application or in the default location: /etc/
contrast/contrast_security.yaml

Contrast Documentation

Agents 346

==
====
Use the properties in this YAML file to configure a Contrast agent.
Go to https://docs.contrastsecurity.com/en/order-of-precedence.html
to determine the order of precedence for configuration values.
==
====

Use this setting if you want to temporarily disable a Contrast agent.
Set to `true` to enable the agent; set to `false` to disable the agent.
enable: true

==
====
api
Use the properties in this section to connect the agent to the Contrast \
UI.
==
====
api:

 # ********************** REQUIRED **********************
 # Set the URL for the Contrast UI.
 url: https://app.contrastsecurity.com/Contrast

 # ********************** REQUIRED **********************
 # Set the API key needed to communicate with the Contrast UI.
 api_key: NEEDS_TO_BE_SET

 # ********************** REQUIRED **********************
 # Set the service key needed to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 service_key: NEEDS_TO_BE_SET

 # ********************** REQUIRED **********************
 # Set the user name used to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 user_name: NEEDS_TO_BE_SET

 # ==
====
 # api.certificate
 # Use the following properties for communication
 # with the Contrast UI using certificates.
 # ==
====
 # certificate:

 # If set to `false`, the agent will ignore the
 # certificate configuration in this section.
 # enable: true

 # Set the absolute or relative path to a CA for communication
 # with the Contrast UI using a self-signed certificate.

Contrast Documentation

Agents 347

 # ca_file: NEEDS_TO_BE_SET

 # ==
====
 # api.proxy
 # Use the following properties for communication
 # with the Contrast UI over a proxy.
 # ==
====
 # proxy:

 # Set value to `true` for the agent to communicate
 # with the Contrast web interface over a proxy. Set
 # value to `false` if you don't want to use the proxy.
 # enable: NEEDS_TO_BE_SET

 # Set the proxy host. It must be set with port and scheme.
 # host: localhost

 # Set the proxy port. It must be set with host and scheme.
 # port: 1234

 # Set the proxy scheme (e.g., `http` or
 # `https`). It must be set with host and port.
 # scheme: http

 # Set the URL for your Proxy Server. The URL form is `scheme://
host:port`.
 # url: NEEDS_TO_BE_SET

 # Set the proxy user.
 # user: NEEDS_TO_BE_SET

 # Set the proxy password.
 # pass: NEEDS_TO_BE_SET

==
====
agent
Use the properties in this section to control the way and frequency
with which the agent communicates to logs and the Contrast UI.
==
====
agent:

 # ==
====
 # agent.logger
 # Define the following properties to set logging values.
 # If the following properties are not defined, the
 # agent uses the logging values from the Contrast UI.
 # ==
====
 # logger:

Contrast Documentation

Agents 348

 # Enable diagnostic logging by setting a path to a log file.
 # While diagnostic logging hurts performance, it generates
 # useful information for debugging Contrast. The value set here
 # is the location to which the agent saves log output. If no
 # log file exists at this location, the agent creates a file.
 #
 # Example - `/opt/Contrast/contrast.log` creates a log in the
 # `/opt/Contrast` directory, and rotates it automatically as needed.
 #
 # path: ./contrast_agent.log

 # Set the the log output level. Valid options are
 # `ERROR`, `WARN`, `INFO`, `DEBUG`, and `TRACE`.
 # level: INFO

 # Set to `true` to redirect all logs to
 # `stdout` instead of the file system.
 # stdout: false

 # ==
====
 # agent.security_logger
 # Define the following properties to set security
 # logging values. If not defined, the agent uses the
 # security logging (CEF) values from the Contrast UI.
 # ==
====
 # security_logger:

 # Set the file to which the agent logs security events.
 # path: ./contrast/security.log

 # Set the log level for security logging. Valid options
 # are `ERROR`, `WARN`, `INFO`, `DEBUG`, and `TRACE`.
 # level: ERROR

 # ==
====
 # agent.go
 # The following properties apply to any Go agent-wide configurations.
 # ==
====
 # go:

 # ==
====
 # agent.go.preview
 # Enable opt-in Go agent features.
 # ==
====
 # preview:

 # Enable Assess gRPC sources.
 # grpc: false

Contrast Documentation

Agents 349

 # ==
====
 # agent.go.profile
 # Enable Go agent self-profiling features.
 # ==
====
 # profile:

 # Enable CPU profiling for running application.
 # cpu: false

 # Enable memory profiling for running application.
 # mem: false

==
====
inventory
Use the properties in this section to override the inventory features.
==
====
inventory:

 # Set to `false` to disable inventory features in the agent.
 # enable: true

 # Set to `false` to disable library analysis.
 # analyze_libraries: true

==
====
assess
Use the properties in this section to control Assess.
==
====
assess:

 # Include this property to determine if the Assess
 # feature should be enabled. If this property is not
 # present, the decision is delegated to the Contrast UI.
 # enable: false

 # Apply a list of labels to vulnerabilities and preflight
 # messages. Labels must be formatted as a comma-delimited list.
 # Example - `label1, label2, label3`
 #
 # tags: NEEDS_TO_BE_SET

 # ==
====
 # assess.rules
 # Use the following properties to control simple rule configurations.
 # ==
====
 # rules:

Contrast Documentation

Agents 350

 # Define a list of Assess rules to disable in the agent. To view a
 # list of rule names, in Contrast go to user menu > Policy Management >
 # Assess rules. The rules must be formatted as a comma-delimited list.
 #
 # Example - Set `reflected-xss,sql-injection` to disable
 # the reflected-xss rule and the sql-injection rule.
 #
 # disabled_rules: NEEDS_TO_BE_SET

==
====
protect
Use the properties in this section to override Protect features.
==
====
protect:

 # Include this property to determine if the Protect
 # feature should be enabled. If this property is not
 # present, the decision is delegated to the Contrast UI.
 # enable: false

 # ==
====
 # protect.probe_analysis
 # Use the settings in this section to
 # control the behavior of probe analysis.
 # ==
====
 # probe_analysis:

 # Set to `false` to disable probe analysis.
 # enable: true

==
====
application
Use the properties in this section for
the application(s) hosting this agent.
==
====
application:

 # Override the reported application name.
 #
 # Note - On Java systems where multiple, distinct applications may be
 # served by a single process, this configuration causes the agent to \
report
 # all discovered applications as one application with the given name.
 #
 # name: NEEDS_TO_BE_SET

 # Override the reported application path.
 # path: NEEDS_TO_BE_SET

Contrast Documentation

Agents 351

 # Add the name of the application group with which this
 # application should be associated in the Contrast UI.
 # group: NEEDS_TO_BE_SET

 # Add the application code this application should use in the Contrast UI.
 # code: NEEDS_TO_BE_SET

 # Override the reported application version.
 # version: NEEDS_TO_BE_SET

 # Apply labels to an application. Labels must
 # be formatted as a comma-delimited list.
 # Example - `label1,label2,label3`
 #
 # tags: NEEDS_TO_BE_SET

 # Define a set of `key=value` pairs (which conforms to RFC 2253) for
 # specifying user-defined metadata associated with the application. The
 # set must be formatted as a comma-delimited list of `key=value` pairs.
 # Example - `business-unit=accounting, office=Baltimore`
 #
 # metadata: NEEDS_TO_BE_SET

 # Provide the ID of a session which already exists in the Contrast
 # UI. Vulnerabilities discovered by the agent are associated with
 # this session. If an invalid ID is supplied, the agent will be
 # disabled. This option and `application.session_metadata` are
 # mutually exclusive; if both are set, the agent will be disabled.
 # session_id: NEEDS_TO_BE_SET

 # Provide metadata which is used to create a new session ID in the
 # Contrast UI. Vulnerabilities discovered by the agent are associated with
 # this new session. This value should be formatted as `key=value` pairs
 # (conforming to RFC 2253). Available key names for this configuration
 # are branchName, buildNumber, commitHash, committer, gitTag, repository,
 # testRun, and version. This option and `application.session_id` are
 # mutually exclusive; if both are set the agent will be disabled.
 # session_metadata: NEEDS_TO_BE_SET

==
====
server
Use the settings in this section to set metadata for the server
hosting this agent. Contrast recognizes common, supported server
names, paths, types and environments. Doing this may require a new
server or license, and it may affect functionality of some features.
==
====
server:

 # Override the reported server name.
 # name: localhost

 # Override the reported server path.
 # path: NEEDS_TO_BE_SET

Contrast Documentation

Agents 352

 # Override the reported server type.
 # type: NEEDS_TO_BE_SET

 # Set the environment directly to override the default set
 # by the Contrast UI. This allows the user to configure the
 # environment dynamically at startup rather than manually
 # updating the Server in the Contrast UI themselves afterwards.
 #
 # Valid values include `QA`, `PRODUCTION` and `DEVELOPMENT`.
 # For example, `PRODUCTION` registers this Server as
 # running in a `PRODUCTION` environment, regardless of the
 # organization's default environment in the Contrast UI.
 #
 # environment: NEEDS_TO_BE_SET

 # Apply a list of labels to the server. Labels
 # must be formatted as a comma-delimited list.
 # Example - `label1,label2,label3`
 #
 # tags: NEEDS_TO_BE_SET

==
====
Use the properties in this YAML file to configure a Contrast agent.
Go to https://docs.contrastsecurity.com/en/order-of-precedence.html
to determine the order of precedence for configuration values.
==
====

Use this setting if you want to temporarily disable a Contrast agent.
Set to `true` to enable the agent; set to `false` to disable the agent.
enable: true

==
====
api
Use the properties in this section to connect the agent to the Contrast \
UI.
==
====
api:

 # ********************** REQUIRED **********************
 # Set the URL for the Contrast UI.
 url: https://app.contrastsecurity.com/Contrast

 # ********************** REQUIRED **********************
 # Set the API key needed to communicate with the Contrast UI.
 api_key: NEEDS_TO_BE_SET

 # ********************** REQUIRED **********************
 # Set the service key needed to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.

Contrast Documentation

Agents 353

 service_key: NEEDS_TO_BE_SET

 # ********************** REQUIRED **********************
 # Set the user name used to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 user_name: NEEDS_TO_BE_SET

 # ==
====
 # api.certificate
 # Use the following properties for communication
 # with the Contrast UI using certificates.
 # ==
====
 # certificate:

 # If set to `false`, the agent will ignore the
 # certificate configuration in this section.
 # enable: true

 # Set the absolute or relative path to a CA for communication
 # with the Contrast UI using a self-signed certificate.
 # ca_file: NEEDS_TO_BE_SET

 # ==
====
 # api.proxy
 # Use the following properties for communication
 # with the Contrast UI over a proxy.
 # ==
====
 # proxy:

 # Set value to `true` for the agent to communicate
 # with the Contrast web interface over a proxy. Set
 # value to `false` if you don't want to use the proxy.
 # enable: NEEDS_TO_BE_SET

 # Set the proxy host. It must be set with port and scheme.
 # host: localhost

 # Set the proxy port. It must be set with host and scheme.
 # port: 1234

 # Set the proxy scheme (e.g., `http` or
 # `https`). It must be set with host and port.
 # scheme: http

 # Set the URL for your Proxy Server. The URL form is `scheme://
host:port`.
 # url: NEEDS_TO_BE_SET

 # Set the proxy user.
 # user: NEEDS_TO_BE_SET

Contrast Documentation

Agents 354

 # Set the proxy password.
 # pass: NEEDS_TO_BE_SET

==
====
agent
Use the properties in this section to control the way and frequency
with which the agent communicates to logs and the Contrast UI.
==
====
agent:

 # ==
====
 # agent.logger
 # Define the following properties to set logging values.
 # If the following properties are not defined, the
 # agent uses the logging values from the Contrast UI.
 # ==
====
 # logger:

 # Enable diagnostic logging by setting a path to a log file.
 # While diagnostic logging hurts performance, it generates
 # useful information for debugging Contrast. The value set here
 # is the location to which the agent saves log output. If no
 # log file exists at this location, the agent creates a file.
 #
 # Example - `/opt/Contrast/contrast.log` creates a log in the
 # `/opt/Contrast` directory, and rotates it automatically as needed.
 #
 # path: ./contrast_agent.log

 # Set the the log output level. Valid options are
 # `ERROR`, `WARN`, `INFO`, `DEBUG`, and `TRACE`.
 # level: INFO

 # Set to `true` to redirect all logs to
 # `stdout` instead of the file system.
 # stdout: false

 # ==
====
 # agent.security_logger
 # Define the following properties to set security
 # logging values. If not defined, the agent uses the
 # security logging (CEF) values from the Contrast UI.
 # ==
====
 # security_logger:

 # Set the file to which the agent logs security events.
 # path: ./contrast/security.log

 # Set the log level for security logging. Valid options

Contrast Documentation

Agents 355

 # are `ERROR`, `WARN`, `INFO`, `DEBUG`, and `TRACE`.
 # level: ERROR

 # ==
====
 # agent.go
 # The following properties apply to any Go agent-wide configurations.
 # ==
====
 # go:

 # ==
====
 # agent.go.preview
 # Enable opt-in Go agent features.
 # ==
====
 # preview:

 # Enable Assess gRPC sources.
 # grpc: false

 # ==
====
 # agent.go.profile
 # Enable Go agent self-profiling features.
 # ==
====
 # profile:

 # Enable CPU profiling for running application.
 # cpu: false

 # Enable memory profiling for running application.
 # mem: false

==
====
inventory
Use the properties in this section to override the inventory features.
==
====
inventory:

 # Set to `false` to disable inventory features in the agent.
 # enable: true

 # Set to `false` to disable library analysis.
 # analyze_libraries: true

==
====
assess
Use the properties in this section to control Assess.
==

Contrast Documentation

Agents 356

====
assess:

 # Include this property to determine if the Assess
 # feature should be enabled. If this property is not
 # present, the decision is delegated to the Contrast UI.
 # enable: false

 # Apply a list of labels to vulnerabilities and preflight
 # messages. Labels must be formatted as a comma-delimited list.
 # Example - `label1, label2, label3`
 #
 # tags: NEEDS_TO_BE_SET

 # ==
====
 # assess.rules
 # Use the following properties to control simple rule configurations.
 # ==
====
 # rules:

 # Define a list of Assess rules to disable in the agent. To view a
 # list of rule names, in Contrast go to user menu > Policy Management >
 # Assess rules. The rules must be formatted as a comma-delimited list.
 #
 # Example - Set `reflected-xss,sql-injection` to disable
 # the reflected-xss rule and the sql-injection rule.
 #
 # disabled_rules: NEEDS_TO_BE_SET

==
====
protect
Use the properties in this section to override Protect features.
==
====
protect:

 # Include this property to determine if the Protect
 # feature should be enabled. If this property is not
 # present, the decision is delegated to the Contrast UI.
 # enable: false

 # ==
====
 # protect.probe_analysis
 # Use the settings in this section to
 # control the behavior of probe analysis.
 # ==
====
 # probe_analysis:

 # Set to `false` to disable probe analysis.
 # enable: true

Contrast Documentation

Agents 357

==
====
application
Use the properties in this section for
the application(s) hosting this agent.
==
====
application:

 # Override the reported application name.
 #
 # Note - On Java systems where multiple, distinct applications may be
 # served by a single process, this configuration causes the agent to \
report
 # all discovered applications as one application with the given name.
 #
 # name: NEEDS_TO_BE_SET

 # Override the reported application path.
 # path: NEEDS_TO_BE_SET

 # Add the name of the application group with which this
 # application should be associated in the Contrast UI.
 # group: NEEDS_TO_BE_SET

 # Add the application code this application should use in the Contrast UI.
 # code: NEEDS_TO_BE_SET

 # Override the reported application version.
 # version: NEEDS_TO_BE_SET

 # Apply labels to an application. Labels must
 # be formatted as a comma-delimited list.
 # Example - `label1,label2,label3`
 #
 # tags: NEEDS_TO_BE_SET

 # Define a set of `key=value` pairs (which conforms to RFC 2253) for
 # specifying user-defined metadata associated with the application. The
 # set must be formatted as a comma-delimited list of `key=value` pairs.
 # Example - `business-unit=accounting, office=Baltimore`
 #
 # metadata: NEEDS_TO_BE_SET

 # Provide the ID of a session which already exists in the Contrast
 # UI. Vulnerabilities discovered by the agent are associated with
 # this session. If an invalid ID is supplied, the agent will be
 # disabled. This option and `application.session_metadata` are
 # mutually exclusive; if both are set, the agent will be disabled.
 # session_id: NEEDS_TO_BE_SET

 # Provide metadata which is used to create a new session ID in the
 # Contrast UI. Vulnerabilities discovered by the agent are associated with
 # this new session. This value should be formatted as `key=value` pairs

Contrast Documentation

Agents 358

 # (conforming to RFC 2253). Available key names for this configuration
 # are branchName, buildNumber, commitHash, committer, gitTag, repository,
 # testRun, and version. This option and `application.session_id` are
 # mutually exclusive; if both are set the agent will be disabled.
 # session_metadata: NEEDS_TO_BE_SET

==
====
server
Use the settings in this section to set metadata for the server
hosting this agent. Contrast recognizes common, supported server
names, paths, types and environments. Doing this may require a new
server or license, and it may affect functionality of some features.
==
====
server:

 # Override the reported server name.
 # name: localhost

 # Override the reported server path.
 # path: NEEDS_TO_BE_SET

 # Override the reported server type.
 # type: NEEDS_TO_BE_SET

 # Set the environment directly to override the default set
 # by the Contrast UI. This allows the user to configure the
 # environment dynamically at startup rather than manually
 # updating the Server in the Contrast UI themselves afterwards.
 #
 # Valid values include `QA`, `PRODUCTION` and `DEVELOPMENT`.
 # For example, `PRODUCTION` registers this Server as
 # running in a `PRODUCTION` environment, regardless of the
 # organization's default environment in the Contrast UI.
 #
 # environment: NEEDS_TO_BE_SET

 # Apply a list of labels to the server. Labels
 # must be formatted as a comma-delimited list.
 # Example - `label1,label2,label3`
 #
 # tags: NEEDS_TO_BE_SET

Python agent
The Python agent enables interactive application security testing (IAST) and runtime application
self-protection (RASP) for Python applications. It provides support for the most popular Python
web application frameworks and also strives to be compatible with any other Python application or
framework that conforms to either the WSGI or ASGI standards.

In Assess (IAST), the agent identifies vulnerable dataflow paths and other issues during the normal
execution of your application. It reports these findings to your organization in Contrast where you can
then remediate the vulnerabilities before deploying the application in a live environment.

Contrast Documentation

Agents 359

https://en.wikipedia.org/wiki/Web_Server_Gateway_Interface
https://en.wikipedia.org/wiki/Asynchronous_Server_Gateway_Interface

In Protect (RASP), the Python agent inspects HTTP requests to identify potentially harmful input
vectors. During the request, the agent inspects database queries, file writes, and other potentially
damaging actions resulting from the request. At the end of the request, the agent inspects the rendered
output for successful attacks and can block a successful attack from being forwarded to the application
user. Instead, the agent natively processes all the analysis internally, reaping many benefits including
performance gains.

NOTE
The Python agent supports Assess, Protect, and SCA.

As a next step, you can:

• Install the agent (page 361)
• View supported technologies for the Python agent (page 360)

Supported technologies for the Python agent
We support the following technologies for this agent.

Technology Supported versions Notes

Language
version

• 3.12.X: First supported agent was 5.27.0
• 3.11.X: First supported agent was 5.19.0
• 3.10.X: First supported agent was 5.2.0
• 3.9.X: First supported agent was 4.2.0
• 3.8.X: First supported agent was 2.8.0

Contrast supports Python Long-Term Support (LTS)
versions in bugfix and security status. Support for
Python versions is shifted as the working group shifts its
LTS window.

Not supported:

• 3.6.X, 3.5X, and 2.7.X: Last supported agent was
4.14.3

• 3.7.X: Last supported agent was 5.27.0

Application
frameworks

• Aiohttp 3.7 - 3.9
• Bottle: 0.12
• Django: 3.2 - 5.0
• Django Rest Framework: 3.12 - 3.15
• Falcon: 3.0 - 3.1
• FastAPI: 0.71 - 0.108
• Flask: 1.1 - 3.0
• Pyramid: 1.10 - 2.0
• Quart: 0.15 - 0.19

The Python agent is meant to be WSGI-compatible. It
may be compatible with other WSGI applications as long
as the guidelines are followed.

The Agent is also compatible with frameworks that
provide ASGI interfaces including Django, FastAPI, and
Quart.

FastAPI and Starlette (on which FastAPI depends) are
relatively new libraries that are undergoing continuous
development changes, which may break Contrast
support. FastAPI states that development moves quickly.
Contrast will maintain support up to the stated version
and update documentation when new support is
released.

Micro/patch versions are omitted for simplicity, but we
encourage and only explicitly test the latest patch within
each minor version series. For example, 3.2 refers to the
latest 3.2.x version of the package available on PyPI.

Processor
architecture

The agent is tested on:

• x86_64
• arm64

It may work on other architectures but it is not officially
supported.

Web servers • Gunicorn 0.16.1 –21.2.X
• uWSGI 2.0.14 - 2.0.X
• Uvicorn: 0.14.X - 0.23.X

Contrast Documentation

Agents 360

https://devguide.python.org/versions/#versions
https://devguide.python.org/versions/#versions
https://docs.aiohttp.org/en/stable/
https://bottlepy.org/docs/dev/
https://www.djangoproject.com/
https://www.django-rest-framework.org/
https://falcon.readthedocs.io/en/stable/api/app.html#asgi-app
https://fastapi.tiangolo.com/
https://flask.palletsprojects.com/
https://trypyramid.com/
https://pgjones.gitlab.io/quart/
https://fastapi.tiangolo.com/deployment/versions/
https://gunicorn.org/
https://uwsgi-docs.readthedocs.io/en/latest/#
https://www.uvicorn.org/

Technology Supported versions Notes

Databases • Mongo (pymongo)
• MySQL (PyMySQL and mysql-connector)
• PostgreSQL (psycopg2)
• SQLite3 (sqlite3 and pysqlite2)

Object-
relational
mapping
databases
(ORM)

• Flask-SQLAlchemy
• SQLAlchemy

System requirements for the Python agent
Before installing the Python agent, your system must meet the following requirements:

• There is a deployed application to be analyzed and the web application technology is supported by
Contrast.

• The application can be restarted.
• The web server has network connectivity with Contrast.
• The web server has network connectivity with PyPI or the agent manually installed.
• The server meets the minimum requirements shown in this table.

Requirement Versions Notes

Operating
system

• 64-bit OSX
• 64-bit Linux

Starting with version 2.3.0 of the agent, the package installation step requires the
compilation of C extensions. This process is automatic, but it requires that certain
software is installed in the target environment:

• Required: gcc, make, automake and autoconf. The package names may
be different on different platforms. Installing your platform's version of build-
essential or installing system headers may be necessary. If running an agent
on Alpine OS, libtool is required.

Install the Python agent
The Python agent is installed as a standard Python package.

In earlier versions (before version 5.19.0), the Python Agent uses the Contrast Service to communicate
its results. By default, the service is started automatically when your application starts. Configuring the
agent to communicate with a standalone Contrast service (page 491) that runs independently is also
possible.

In version 5.19.0 and later, the Python Agent does not use the Contrast Service.

Install the agent with PyPi (page 361) or update the Python agent (page 362).

Install the Python agent with PyPI
To install the Python agent with PyPI:

1. Install the agent using pip.

 pip install contrast-agent

TIP
If you have a requirements.txt file, you can add contrast-agent to that
file, and install with pip install -r requirements.txt.

2. Configure the agent. (page 363)
3. Verify that autoconf is installed on the system where you will run the agent.
4. Start and exercise your application using the Contrast Runner (page 413).

Contrast Documentation

Agents 361

https://www.mongodb.com/
https://docs.mongodb.com/drivers/pymongo/
https://www.mysql.com/
https://pymysql.readthedocs.io/en/latest/
https://dev.mysql.com/doc/connector-python/en/
https://www.postgresql.org/
https://www.psycopg.org/docs/
https://www.sqlite.org/index.html
https://docs.python.org/3/library/sqlite3.html
https://pypi.org/project/pysqlite/
https://pypi.org/project/Flask-SQLAlchemy/
https://www.sqlalchemy.org/
https://pypi.org/project/contrast-agent/

5. Verify that your server is registered in Contrast and that it reports an instance of your application.

Python update agent
The most reliable and effective way to automatically update the Contrast Python agent is to use the
Python pip package installer to install and download the latest version available. Because pip
manages all dependencies for your Python application, it should already be available and part of your
build environment. How frequently you update the Contrast Python agent and where you get updates
depends on your organization’s preferences and your Contrast implementation: hosted or on-premises.

The main steps are:

1. Choose a source for the Contrast Python agent.
2. Install the agent.
3. Use scripts for automatic updates.

Before you begin

• Access to the PyPI repository for the Contrast agent.
• Confirmed that your Python application runs properly without the Contrast Python agent.
• Previously successfully installed the Contrast Python agent.
• Defined a policy for how and when to update the agent, based on your change management policy

and the environment where you deploy agents.

Install the agent and use scripts for automatic updates

1. Choose a source for the Python agent:
• PyPI public (or private) repository

2. Specify the Contrast Python agent as a dependency in requirements.txt.
requirements.txt is the file where you specify which dependencies you want to automatically
resolve every time your Python application builds with artifacts from PyPI (public or private).
Include the Contrast Python agent here to easily keep every new build of your application aligned
with the latest version of the agent. Do not specify a version for contrast-agent, and it will retrieve
the latest version.

3. After you update requirements.txt, use the following command when you build your
application. This will automatically download and add or update the Contrast Python agent from
PyPI to the Python application:

$ pip install -U -r requirements.txt

Install and update manually
For some organizations, the requirements.txt file must be consistent across environments, or they do
not plan to install the Contrast Python agent into all environments. In these cases, install the agent
manually. You can manually update agents as part of a Python build process.

1. Choose a source for the Python agent:
• PyPI public (or private) repository

2. Use the following command to manually retrieve and add or update the Contrast Python agent from
PyPI (public or private) to the Python application:

$ pip install -U contrast-agent

See also

• Python supported technologies (page 360)
• Install Python (page 361)

Contrast Documentation

Agents 362

Configure the Python agent
The standard configuration (page 70) for all agents uses this order of precedence (page 72).

As of version 5.24.0 of the agent, the Contrast Runner (page 413) is the recommended way to use
the Python Agent for most supported frameworks. Manual middleware configuration (page 384) is still
supported for backward compatibility and may continue to be necessary for certain frameworks and
applications.

Contrast Service Configuration (before version 5.19.0 only)
In earlier versions (before version 5.19.0), the Python agent launches an executable on startup that also
needs access to the configuration files. Since the service is generally launched by the Python agent
process, it has access to the same configuration file as the agent. However, if the service is started
independently, it will attempt to use the same order of precedence (page 72) for its configuration file.

In other words, the service can share the application's configuration file, if (as is usually the case) the
service's working directory is also the base directory of the application. Both the agent and the service
use the /etc/contrast/contrast_security.yaml path.

TIP
Use the Contrast agent configuration editor (page 74) to create or upload a YAML
configuration file, validate YAML, and get setting recommendations.

Python YAML template
Use this template to configure the Python agent using a YAML configuration file. (Learn more about
YAML configuration (page 73).)

Place your YAML file in the default location: /etc/contrast/contrast_security.yaml

NOTE
The agent.service section of the YAML configuration file only applies to earlier
versions of Python (before version 5.19.0).

==
====
Use the properties in this YAML file to configure a Contrast agent.
Go to https://docs.contrastsecurity.com/en/order-of-precedence.html
to determine the order of precedence for configuration values.
==
====

Use this setting if you want to temporarily disable a Contrast agent.
Set to `true` to enable the agent; set to `false` to disable the agent.
enable: true

==

Contrast Documentation

Agents 363

====
api
Use the properties in this section to connect the agent to the Contrast \
UI.
==
====
api:

 # ********************** REQUIRED **********************
 # Set the URL for the Contrast UI.
 url: https://app.contrastsecurity.com/Contrast

 # ********************** REQUIRED **********************
 # Set the API key needed to communicate with the Contrast UI.
 api_key: NEEDS_TO_BE_SET

 # ********************** REQUIRED **********************
 # Set the service key needed to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 service_key: NEEDS_TO_BE_SET

 # ********************** REQUIRED **********************
 # Set the user name used to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 user_name: NEEDS_TO_BE_SET

 # ==
====
 # api.certificate
 # Use the following properties for communication
 # with the Contrast UI using certificates.
 # ==
====
 # certificate:

 # If set to `false`, the agent will ignore the
 # certificate configuration in this section.
 # enable: true

 # Set the absolute or relative path to a CA for communication
 # with the Contrast UI using a self-signed certificate.
 # ca_file: NEEDS_TO_BE_SET

 # Set the absolute or relative path to the Certificate
 # PEM file for communication with the Contrast UI.
 # cert_file: NEEDS_TO_BE_SET

 # Set the absolute or relative path to the Key PEM
 # file for communication with the Contrast UI.
 # key_file: NEEDS_TO_BE_SET

 # ==
====
 # api.proxy
 # Use the following properties for communication

Contrast Documentation

Agents 364

 # with the Contrast UI over a proxy.
 # ==
====
 # proxy:

 # Set value to `true` for the agent to communicate with
 # the Contrast web interface over a proxy. Set value to
 # `false` if you don't want to use the proxy. If no value is
 # indicated, the presence of a valid **contrast.proxy.host**
 # and **contrast.proxy.port** will enable the proxy.
 # enable: NEEDS_TO_BE_SET

 # Set the URL for your Proxy Server. The URL form is `scheme://
host:port`.
 # url: NEEDS_TO_BE_SET

==
====
agent
Use the properties in this section to control the way and frequency
with which the agent communicates to logs and the Contrast UI.
==
====
agent:

 # ==
====
 # agent.logger
 # Define the following properties to set logging values.
 # If the following properties are not defined, the
 # agent uses the logging values from the Contrast UI.
 # ==
====
 # logger:

 # Enable diagnostic logging by setting a path to a log file.
 # While diagnostic logging hurts performance, it generates
 # useful information for debugging Contrast. The value set here
 # is the location to which the agent saves log output. If no
 # log file exists at this location, the agent creates a file.
 #
 # Example - `/opt/Contrast/contrast.log` creates a log in the
 # `/opt/Contrast` directory, and rotates it automatically as needed.
 #
 # path: ./contrast_agent.log

 # Set the the log output level. Valid options are
 # `ERROR`, `WARN`, `INFO`, `DEBUG`, and `TRACE`.
 # level: INFO

 # Override the name of the process the agents uses in logs.
 # progname: Contrast Agent

 # Set to `true` to redirect all logs to
 # `stdout` instead of the file system.

Contrast Documentation

Agents 365

 # stdout: false

 # Set to `true` to redirect all logs to `stderr` instead
 # of the file system. Overriden by `stdout` configuration.
 # stderr: false

 # ==
====
 # agent.security_logger
 # Define the following properties to set security
 # logging values. If not defined, the agent uses the
 # security logging (CEF) values from the Contrast UI.
 # ==
====
 # security_logger:

 # Set the file to which the agent logs security events.
 # path: ./contrast/security.log

 # Set the log level for security logging. Valid options
 # are `ERROR`, `WARN`, `INFO`, `DEBUG`, and `TRACE`.
 # level: ERROR

 # Change the Contrast security logger from a file-sized based rolling
 # scheme to a date-based rolling scheme. At midnight server time,
 # the log from the previous day is renamed to *file_name.yyyy-MM-dd*.
 # Note - this scheme does not have a size limit; manual log
 # pruning will be required. This flag must be set to use the
 # backups and size flags. Value options are `true` or `false`.
 # roll_daily: NEEDS_TO_BE_SET

 # Specify the file size cap (in MB) of each log file.
 # roll_size: NEEDS_TO_BE_SET

 # Specify the number of backup logs that the agent will create before
 # Contrast cleans up the oldest file. A value of `0` means that no \
backups
 # are created, and the log is truncated when it reaches its size cap.
 #
 # Note - this property must be used with
 # `agent.security_logger.roll_daily=false`; otherwise,
 # Contrast continues to log daily and disregard this limit.
 #
 # backups: NEEDS_TO_BE_SET

 # ==
====
 # agent.security_logger.syslog
 # Define the following properties to set Syslog values. If the \
properties
 # are not defined, the agent uses the Syslog values from the Contrast \
UI.
 # ==
====
 # syslog:

Contrast Documentation

Agents 366

 # Set to `true` to enable Syslog logging.
 # enable: NEEDS_TO_BE_SET

 # Set the IP address of the Syslog server
 # to which the agent should send messages.
 # ip: NEEDS_TO_BE_SET

 # Set the port of the Syslog server to
 # which the agent should send messages.
 # port: NEEDS_TO_BE_SET

 # Set the facility code of the messages the agent sends to Syslog.
 # facility: 19

 # Set the log level of Exploited attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_exploited: ALERT

 # Set the log level of Blocked attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_blocked: NOTICE

 # Set the log level of Blocked At Perimeter
 # attacks. Value options are `ALERT`, `CRITICAL`,
 # `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_blocked_perimeter: NOTICE

 # Set the log level of Probed attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_probed: WARNING

 # Set the log level of Suspicious attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_suspicious: WARNING

 # ==
====
 # agent.python
 # The following properties apply to any Python agent-wide configurations.
 # ==
====
 # python:

 # Allow the agent to dump `cProfile` data to file for each request.
 # enable_profiler: false

==
====
inventory
Use the properties in this section to override the inventory features.
==
====
inventory:

Contrast Documentation

Agents 367

 # Set to `false` to disable inventory features in the agent.
 # enable: true

 # Set to `false` to disable library analysis.
 # analyze_libraries: true

 # Apply a list of labels to libraries. Labels
 # must be formatted as a comma-delimited list.
 # Example - `label1, label2, label3`
 #
 # tags: NEEDS_TO_BE_SET

==
====
assess
Use the properties in this section to control Assess.
==
====
assess:

 # Include this property to determine if the Assess
 # feature should be enabled. If this property is not
 # present, the decision is delegated to the Contrast UI.
 # enable: false

 # Apply a list of labels to vulnerabilities and preflight
 # messages. Labels must be formatted as a comma-delimited list.
 # Example - `label1, label2, label3`
 #
 # tags: NEEDS_TO_BE_SET

 # Value options are `ALL`, `SOME`, or `NONE`.
 # stacktraces: ALL

 # ==
====
 # assess.sampling
 # Use the following properties to control sampling in the agent.
 # ==
====
 # sampling:

 # Set to `true` to enable sampling.
 # enable: false

 # This property indicates the number of requests
 # to analyze in each window before sampling begins.
 # baseline: 5

 # This property indicates that every *nth*
 # request after the baseline is analyzed.
 # request_frequency: 10

 # This property indicates the duration for which a sample set is valid.
 # window_ms: 180_000

Contrast Documentation

Agents 368

 # ==
====
 # assess.rules
 # Use the following properties to control simple rule configurations.
 # ==
====
 # rules:

 # Define a list of Assess rules to disable in the agent. To view a
 # list of rule names, in Contrast go to user menu > Policy Management >
 # Assess rules. The rules must be formatted as a comma-delimited list.
 #
 # Example - Set `reflected-xss,sql-injection` to disable
 # the reflected-xss rule and the sql-injection rule.
 #
 # disabled_rules: NEEDS_TO_BE_SET

==
====
protect
Use the properties in this section to override Protect features.
==
====
protect:

 # Include this property to determine if the Protect
 # feature should be enabled. If this property is not
 # present, the decision is delegated to the Contrast UI.
 # enable: false

 # ==
====
 # protect.rules
 # Use the following properties to set simple rule configurations.
 # ==
====
 # rules:

 # Define a list of Protect rules to disable in the agent. To view a
 # list of rule names, in Contrast go to user menu > Policy Management >
 # Protect rules. The rules must be formatted as a comma-delimited list.
 # disabled_rules: NEEDS_TO_BE_SET

 # ==
====
 # protect.rules.bot-blocker
 # Use the following selection to configure if the
 # agent blocks bots. Set to `true` to enable blocking.
 # ==
====
 # bot-blocker:

 # Set to `true` for the agent to block known bots.
 # enable: false

Contrast Documentation

Agents 369

 # ==
====
 # protect.rules.sql-injection
 # Use the following settings to configure the sql-injection rule.
 # ==
====
 # sql-injection:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or off.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.cmd-injection
 # Use the following properties to configure
 # how the command injection rule works.
 # ==
====
 # cmd-injection:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.path-traversal
 # Use the following properties to configure
 # how the path traversal rule works.
 # ==
====
 # path-traversal:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # Detect when custom code attempts to access sensitive
 # system files. The agent blocks if blocking is enabled.
 # detect_custom_code_accessing_system_files: true

Contrast Documentation

Agents 370

 # Detect when users attempt to bypass filters by
 # using "::$DATA" channels or null bytes in file
 # names. The agent blocks if blocking is enabled.
 # detect_common_file_exploits: true

 # ==
====
 # protect.rules.method-tampering
 # Use the following properties to configure
 # how the method tampering rule works.
 # ==
====
 # method-tampering:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.reflected-xss
 # Use the following properties to configure how
 # the reflected cross-site scripting rule works.
 # ==
====
 # reflected-xss:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.xxe
 # Use the following properties to configure
 # how the XML external entity works.
 # ==
====
 # xxe:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

Contrast Documentation

Agents 371

==
====
application
Use the properties in this section for
the application(s) hosting this agent.
==
====
application:

 # Override the reported application name.
 #
 # Note - On Java systems where multiple, distinct applications may be
 # served by a single process, this configuration causes the agent to \
report
 # all discovered applications as one application with the given name.
 #
 # name: NEEDS_TO_BE_SET

 # Override the reported application path.
 # path: NEEDS_TO_BE_SET

 # Add the name of the application group with which this
 # application should be associated in the Contrast UI.
 # group: NEEDS_TO_BE_SET

 # Add the application code this application should use in the Contrast UI.
 # code: NEEDS_TO_BE_SET

 # Override the reported application version.
 # version: NEEDS_TO_BE_SET

 # Apply labels to an application. Labels must
 # be formatted as a comma-delimited list.
 # Example - `label1,label2,label3`
 #
 # tags: NEEDS_TO_BE_SET

 # Define a set of `key=value` pairs (which conforms to RFC 2253) for
 # specifying user-defined metadata associated with the application. The
 # set must be formatted as a comma-delimited list of `key=value` pairs.
 # Example - `business-unit=accounting, office=Baltimore`
 #
 # metadata: NEEDS_TO_BE_SET

 # Provide the ID of a session which already exists in the Contrast
 # UI. Vulnerabilities discovered by the agent are associated with
 # this session. If an invalid ID is supplied, the agent will be
 # disabled. This option and `application.session_metadata` are
 # mutually exclusive; if both are set, the agent will be disabled.
 # session_id: NEEDS_TO_BE_SET

 # Provide metadata which is used to create a new session ID in the
 # Contrast UI. Vulnerabilities discovered by the agent are associated with
 # this new session. This value should be formatted as `key=value` pairs

Contrast Documentation

Agents 372

 # (conforming to RFC 2253). Available key names for this configuration
 # are branchName, buildNumber, commitHash, committer, gitTag, repository,
 # testRun, and version. This option and `application.session_id` are
 # mutually exclusive; if both are set the agent will be disabled.
 # session_metadata: NEEDS_TO_BE_SET

==
====
server
Use the settings in this section to set metadata for the server
hosting this agent. Contrast recognizes common, supported server
names, paths, types and environments. Doing this may require a new
server or license, and it may affect functionality of some features.
==
====
server:

 # Override the reported server name.
 # name: localhost

 # Override the reported server path.
 # path: NEEDS_TO_BE_SET

 # Override the reported server type.
 # type: NEEDS_TO_BE_SET

 # Set the environment directly to override the default set
 # by the Contrast UI. This allows the user to configure the
 # environment dynamically at startup rather than manually
 # updating the Server in the Contrast UI themselves afterwards.
 #
 # Valid values include `QA`, `PRODUCTION` and `DEVELOPMENT`.
 # For example, `PRODUCTION` registers this Server as
 # running in a `PRODUCTION` environment, regardless of the
 # organization's default environment in the Contrast UI.
 #
 # environment: NEEDS_TO_BE_SET

 # Apply a list of labels to the server. Labels
 # must be formatted as a comma-delimited list.
 # Example - `label1,label2,label3`
 #
 # tags: NEEDS_TO_BE_SET

==
====
Use the properties in this YAML file to configure a Contrast agent.
Go to https://docs.contrastsecurity.com/en/order-of-precedence.html
to determine the order of precedence for configuration values.
==
====

Use this setting if you want to temporarily disable a Contrast agent.
Set to `true` to enable the agent; set to `false` to disable the agent.

Contrast Documentation

Agents 373

enable: true

==
====
api
Use the properties in this section to connect the agent to the Contrast \
UI.
==
====
api:

 # ********************** REQUIRED **********************
 # Set the URL for the Contrast UI.
 url: https://app.contrastsecurity.com/Contrast

 # ********************** REQUIRED **********************
 # Set the API key needed to communicate with the Contrast UI.
 api_key: NEEDS_TO_BE_SET

 # ********************** REQUIRED **********************
 # Set the service key needed to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 service_key: NEEDS_TO_BE_SET

 # ********************** REQUIRED **********************
 # Set the user name used to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 user_name: NEEDS_TO_BE_SET

 # ==
====
 # api.certificate
 # Use the following properties for communication
 # with the Contrast UI using certificates.
 # ==
====
 # certificate:

 # If set to `false`, the agent will ignore the
 # certificate configuration in this section.
 # enable: true

 # Set the absolute or relative path to a CA for communication
 # with the Contrast UI using a self-signed certificate.
 # ca_file: NEEDS_TO_BE_SET

 # Set the absolute or relative path to the Certificate
 # PEM file for communication with the Contrast UI.
 # cert_file: NEEDS_TO_BE_SET

 # Set the absolute or relative path to the Key PEM
 # file for communication with the Contrast UI.
 # key_file: NEEDS_TO_BE_SET

 # ==

Contrast Documentation

Agents 374

====
 # api.proxy
 # Use the following properties for communication
 # with the Contrast UI over a proxy.
 # ==
====
 # proxy:

 # Set value to `true` for the agent to communicate with
 # the Contrast web interface over a proxy. Set value to
 # `false` if you don't want to use the proxy. If no value is
 # indicated, the presence of a valid **contrast.proxy.host**
 # and **contrast.proxy.port** will enable the proxy.
 # enable: NEEDS_TO_BE_SET

 # Set the URL for your Proxy Server. The URL form is `scheme://
host:port`.
 # url: NEEDS_TO_BE_SET

==
====
agent
Use the properties in this section to control the way and frequency
with which the agent communicates to logs and the Contrast UI.
==
====
agent:

 # ==
====
 # agent.logger
 # Define the following properties to set logging values.
 # If the following properties are not defined, the
 # agent uses the logging values from the Contrast UI.
 # ==
====
 # logger:

 # Enable diagnostic logging by setting a path to a log file.
 # While diagnostic logging hurts performance, it generates
 # useful information for debugging Contrast. The value set here
 # is the location to which the agent saves log output. If no
 # log file exists at this location, the agent creates a file.
 #
 # Example - `/opt/Contrast/contrast.log` creates a log in the
 # `/opt/Contrast` directory, and rotates it automatically as needed.
 #
 # path: ./contrast_agent.log

 # Set the the log output level. Valid options are
 # `ERROR`, `WARN`, `INFO`, `DEBUG`, and `TRACE`.
 # level: INFO

 # Override the name of the process the agents uses in logs.
 # progname: Contrast Agent

Contrast Documentation

Agents 375

 # Set to `true` to redirect all logs to
 # `stdout` instead of the file system.
 # stdout: false

 # Set to `true` to redirect all logs to `stderr` instead
 # of the file system. Overriden by `stdout` configuration.
 # stderr: false

 # ==
====
 # agent.security_logger
 # Define the following properties to set security
 # logging values. If not defined, the agent uses the
 # security logging (CEF) values from the Contrast UI.
 # ==
====
 # security_logger:

 # Set the file to which the agent logs security events.
 # path: ./contrast/security.log

 # Set the log level for security logging. Valid options
 # are `ERROR`, `WARN`, `INFO`, `DEBUG`, and `TRACE`.
 # level: ERROR

 # Change the Contrast security logger from a file-sized based rolling
 # scheme to a date-based rolling scheme. At midnight server time,
 # the log from the previous day is renamed to *file_name.yyyy-MM-dd*.
 # Note - this scheme does not have a size limit; manual log
 # pruning will be required. This flag must be set to use the
 # backups and size flags. Value options are `true` or `false`.
 # roll_daily: NEEDS_TO_BE_SET

 # Specify the file size cap (in MB) of each log file.
 # roll_size: NEEDS_TO_BE_SET

 # Specify the number of backup logs that the agent will create before
 # Contrast cleans up the oldest file. A value of `0` means that no \
backups
 # are created, and the log is truncated when it reaches its size cap.
 #
 # Note - this property must be used with
 # `agent.security_logger.roll_daily=false`; otherwise,
 # Contrast continues to log daily and disregard this limit.
 #
 # backups: NEEDS_TO_BE_SET

 # ==
====
 # agent.security_logger.syslog
 # Define the following properties to set Syslog values. If the \
properties
 # are not defined, the agent uses the Syslog values from the Contrast \
UI.

Contrast Documentation

Agents 376

 # ==
====
 # syslog:

 # Set to `true` to enable Syslog logging.
 # enable: NEEDS_TO_BE_SET

 # Set the IP address of the Syslog server
 # to which the agent should send messages.
 # ip: NEEDS_TO_BE_SET

 # Set the port of the Syslog server to
 # which the agent should send messages.
 # port: NEEDS_TO_BE_SET

 # Set the facility code of the messages the agent sends to Syslog.
 # facility: 19

 # Set the log level of Exploited attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_exploited: ALERT

 # Set the log level of Blocked attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_blocked: NOTICE

 # Set the log level of Blocked At Perimeter
 # attacks. Value options are `ALERT`, `CRITICAL`,
 # `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_blocked_perimeter: NOTICE

 # Set the log level of Probed attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_probed: WARNING

 # Set the log level of Suspicious attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_suspicious: WARNING

 # ==
====
 # agent.python
 # The following properties apply to any Python agent-wide configurations.
 # ==
====
 # python:

 # Allow the agent to dump `cProfile` data to file for each request.
 # enable_profiler: false

==
====
inventory
Use the properties in this section to override the inventory features.
==

Contrast Documentation

Agents 377

====
inventory:

 # Set to `false` to disable inventory features in the agent.
 # enable: true

 # Set to `false` to disable library analysis.
 # analyze_libraries: true

 # Apply a list of labels to libraries. Labels
 # must be formatted as a comma-delimited list.
 # Example - `label1, label2, label3`
 #
 # tags: NEEDS_TO_BE_SET

==
====
assess
Use the properties in this section to control Assess.
==
====
assess:

 # Include this property to determine if the Assess
 # feature should be enabled. If this property is not
 # present, the decision is delegated to the Contrast UI.
 # enable: false

 # Apply a list of labels to vulnerabilities and preflight
 # messages. Labels must be formatted as a comma-delimited list.
 # Example - `label1, label2, label3`
 #
 # tags: NEEDS_TO_BE_SET

 # Value options are `ALL`, `SOME`, or `NONE`.
 # stacktraces: ALL

 # ==
====
 # assess.sampling
 # Use the following properties to control sampling in the agent.
 # ==
====
 # sampling:

 # Set to `true` to enable sampling.
 # enable: false

 # This property indicates the number of requests
 # to analyze in each window before sampling begins.
 # baseline: 5

 # This property indicates that every *nth*
 # request after the baseline is analyzed.
 # request_frequency: 10

Contrast Documentation

Agents 378

 # This property indicates the duration for which a sample set is valid.
 # window_ms: 180_000

 # ==
====
 # assess.rules
 # Use the following properties to control simple rule configurations.
 # ==
====
 # rules:

 # Define a list of Assess rules to disable in the agent. To view a
 # list of rule names, in Contrast go to user menu > Policy Management >
 # Assess rules. The rules must be formatted as a comma-delimited list.
 #
 # Example - Set `reflected-xss,sql-injection` to disable
 # the reflected-xss rule and the sql-injection rule.
 #
 # disabled_rules: NEEDS_TO_BE_SET

==
====
protect
Use the properties in this section to override Protect features.
==
====
protect:

 # Include this property to determine if the Protect
 # feature should be enabled. If this property is not
 # present, the decision is delegated to the Contrast UI.
 # enable: false

 # ==
====
 # protect.rules
 # Use the following properties to set simple rule configurations.
 # ==
====
 # rules:

 # Define a list of Protect rules to disable in the agent. To view a
 # list of rule names, in Contrast go to user menu > Policy Management >
 # Protect rules. The rules must be formatted as a comma-delimited list.
 # disabled_rules: NEEDS_TO_BE_SET

 # ==
====
 # protect.rules.bot-blocker
 # Use the following selection to configure if the
 # agent blocks bots. Set to `true` to enable blocking.
 # ==
====
 # bot-blocker:

Contrast Documentation

Agents 379

 # Set to `true` for the agent to block known bots.
 # enable: false

 # ==
====
 # protect.rules.sql-injection
 # Use the following settings to configure the sql-injection rule.
 # ==
====
 # sql-injection:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or off.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.cmd-injection
 # Use the following properties to configure
 # how the command injection rule works.
 # ==
====
 # cmd-injection:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.path-traversal
 # Use the following properties to configure
 # how the path traversal rule works.
 # ==
====
 # path-traversal:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # Detect when custom code attempts to access sensitive

Contrast Documentation

Agents 380

 # system files. The agent blocks if blocking is enabled.
 # detect_custom_code_accessing_system_files: true

 # Detect when users attempt to bypass filters by
 # using "::$DATA" channels or null bytes in file
 # names. The agent blocks if blocking is enabled.
 # detect_common_file_exploits: true

 # ==
====
 # protect.rules.method-tampering
 # Use the following properties to configure
 # how the method tampering rule works.
 # ==
====
 # method-tampering:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.reflected-xss
 # Use the following properties to configure how
 # the reflected cross-site scripting rule works.
 # ==
====
 # reflected-xss:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.xxe
 # Use the following properties to configure
 # how the XML external entity works.
 # ==
====
 # xxe:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",

Contrast Documentation

Agents 381

 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

==
====
application
Use the properties in this section for
the application(s) hosting this agent.
==
====
application:

 # Override the reported application name.
 #
 # Note - On Java systems where multiple, distinct applications may be
 # served by a single process, this configuration causes the agent to \
report
 # all discovered applications as one application with the given name.
 #
 # name: NEEDS_TO_BE_SET

 # Override the reported application path.
 # path: NEEDS_TO_BE_SET

 # Add the name of the application group with which this
 # application should be associated in the Contrast UI.
 # group: NEEDS_TO_BE_SET

 # Add the application code this application should use in the Contrast UI.
 # code: NEEDS_TO_BE_SET

 # Override the reported application version.
 # version: NEEDS_TO_BE_SET

 # Apply labels to an application. Labels must
 # be formatted as a comma-delimited list.
 # Example - `label1,label2,label3`
 #
 # tags: NEEDS_TO_BE_SET

 # Define a set of `key=value` pairs (which conforms to RFC 2253) for
 # specifying user-defined metadata associated with the application. The
 # set must be formatted as a comma-delimited list of `key=value` pairs.
 # Example - `business-unit=accounting, office=Baltimore`
 #
 # metadata: NEEDS_TO_BE_SET

 # Provide the ID of a session which already exists in the Contrast
 # UI. Vulnerabilities discovered by the agent are associated with
 # this session. If an invalid ID is supplied, the agent will be
 # disabled. This option and `application.session_metadata` are
 # mutually exclusive; if both are set, the agent will be disabled.
 # session_id: NEEDS_TO_BE_SET

Contrast Documentation

Agents 382

 # Provide metadata which is used to create a new session ID in the
 # Contrast UI. Vulnerabilities discovered by the agent are associated with
 # this new session. This value should be formatted as `key=value` pairs
 # (conforming to RFC 2253). Available key names for this configuration
 # are branchName, buildNumber, commitHash, committer, gitTag, repository,
 # testRun, and version. This option and `application.session_id` are
 # mutually exclusive; if both are set the agent will be disabled.
 # session_metadata: NEEDS_TO_BE_SET

==
====
server
Use the settings in this section to set metadata for the server
hosting this agent. Contrast recognizes common, supported server
names, paths, types and environments. Doing this may require a new
server or license, and it may affect functionality of some features.
==
====
server:

 # Override the reported server name.
 # name: localhost

 # Override the reported server path.
 # path: NEEDS_TO_BE_SET

 # Override the reported server type.
 # type: NEEDS_TO_BE_SET

 # Set the environment directly to override the default set
 # by the Contrast UI. This allows the user to configure the
 # environment dynamically at startup rather than manually
 # updating the Server in the Contrast UI themselves afterwards.
 #
 # Valid values include `QA`, `PRODUCTION` and `DEVELOPMENT`.
 # For example, `PRODUCTION` registers this Server as
 # running in a `PRODUCTION` environment, regardless of the
 # organization's default environment in the Contrast UI.
 #
 # environment: NEEDS_TO_BE_SET

 # Apply a list of labels to the server. Labels
 # must be formatted as a comma-delimited list.
 # Example - `label1,label2,label3`
 #
 # tags: NEEDS_TO_BE_SET

Validate the Python agent configuration
The Python agent includes a script for validating and testing your agent configuration.

Steps to run the script

1. Install contrast-agent version 5.1.0 or later using pip.
2. Prepare your Contrast configuration using a YAML file (page 363), environment

variables (page 76), or both.

Contrast Documentation

Agents 383

3. Run the command contrast-validate-config. This script validates your current configuration
and tests your ability to communicate with Contrast.

NOTE
A Response: 400 Bad Request message still indicates a successful connection to
Contrast.

For example, this indicates that the application Server has not yet been created in
Contrast:

[contrast-validate-config] Sending test request to Contrast UI
[contrast-validate-config] Response: 400 Bad Request
[contrast-validate-config] {
 "success" : false,
 "messages" : ["Invalid agent request"]
}
[contrast-validate-
config] 400 status code indicates success for this endpoint
[contrast-validate-
config] Connection to the Contrast UI successful

And this indicates that the Server has already been created in Contrast:

[contrast-validate-config] Sending test request to Contrast UI
[contrast-validate-config] Response: 304 Not Modified
[contrast-validate-
config] 304 status code indicates success for this endpoint
[contrast-validate-
config] Connection to the Contrast UI successful

See also

• Configure the Python agent (page 363)

Configure middleware

WARNING
Manual middleware configuration is no longer recommended. Instead, you
should run your application with the contrast-python-run command, which
automatically detects and enables framework-specific instrumentation. See Contrast
Runner (page 413) for more information.

For rarer cases where manual middleware configuration is still required, instructions
are listed below.

Middleware is a software component that is part of a web application and is capable of reading and
modifying inbound requests and outbound responses.

Contrast Documentation

Agents 384

The Python agent is implemented as a middleware for all of the frameworks that Contrast supports. To
use the Python agent, you must configure the middleware for the framework that your application uses:

AIOHTTP
AIOHTTP middleware is a class-based middleware that should be passed into the aiohttp
web.Application constructor as an argument. The following example shows a sample AIOHTTP
application that uses the Contrast middleware class:

from aiohttp import web
from contrast.aiohttp import ContrastMiddleware

routes = web.RouteTableDef()

@routes.get("/")
def index(request):
 raise web.HTTPFound("/hello")

middlewares = [ContrastMiddleware(app_name="app name")]
app = web.Application(middlewares=middlewares)
app.add_routes(routes)

web.run_app(app)

Bottle
Contrast's Bottle middleware is a WSGI middleware, which operates by wrapping the Bottle application
instance.

To configure the Python agent for Bottle:

1. Find the Bottle application object in your application codebase. This will be an instance of
bottle.Bottle.
A sample Bottle application might look like this, where app is your Bottle application object:

from bottle import Bottle, run

app = Bottle(__name__)

@app.route("/")
def index():
 return "hello world"

<InstallContrastHere>

run(app)

2. Wrap the Bottle application object with Contrast's middleware. In the example above, replace
<InstallContrastHere> with:

from contrast.bottle import ContrastMiddleware
app = ContrastMiddleware(app)

Contrast Documentation

Agents 385

IMPORTANT
In rare cases, you may be required to pass the original bottle.Bottle application
instance directly to the ContrastMiddleware in addition to your WSGI application
object. If the application does not start, find your original Bottle application and pass it
to Contrast's middleware. For example:

app = ContrastMiddleware(
 app,
 original_bottle_app, # instance of bottle.Bottle
)

Django
New configuration steps: works with Contrast Python agent versions 4.6.0 and later

Contrast's Django middleware is a WSGI middleware, not a Django-style middleware.

1. Find your WSGI application object. The WSGI_APPLICATION Django configuration option points to
your project's WSGI app - this is often located in wsgi.py. You must set the WSGI_APPLICATION
config option if it is not already set.
A sample wsgi.py might look like this, where application is your WSGI application object:

from django.core.wsgi import get_wsgi_application
application = get_wsgi_application()

<InstallContrastHere>

2. Wrap the WSGI application object with Contrast's middleware. In the example above, replace
<InstallContrastHere> with:

from contrast.django import ContrastMiddleware
application = ContrastMiddleware(application)

Old configuration steps: will not work with Contrast Python agent versions 5.0.0 and later

Django middleware is configured in the settings.py file.

1. Find the settings.py file. This file isn't found in the same location for all applications, but it's
generally near the top of the application source tree. Common locations include:
• /settings.py

• config/settings.py

• app/settings.py

NOTE
When searching the source tree to find the settings.py, make sure to exclude any
directories that correspond to Python virtual environments.

Some applications have multiple settings.py files, which may correspond to different configurations
of the application (for example, prod or test). In these cases, add the Contrast agent middleware to
any and all of the configurations where it will be used.

2. Add the Contrast agent module to the list.
Include the Contrast middleware as early in the list as possible; although modifying the order may
be necessary to get the application working in some circumstances.

Contrast Documentation

Agents 386

• Django 1.10 and later: Look for the MIDDLEWARE configuration variable, which is an array. Add
the Contrast agent module to the list:

MIDDLEWARE = [
 'contrast.agent.middlewares.django_middleware.DjangoMiddleware',
 # OTHER MIDDLEWARE,
]

• Django 1.6 to 1.9: Look for the MIDDLEWARE_CLASSES configuration variable in settings.py and
add the Contrast agent module to the list:

MIDDLEWARE_CLASSES = [
 'contrast.agent.middlewares.legacy_django_middleware.DjangoMiddleware
',
 # OTHER MIDDLEWARE
]

See the Django documentation for more details on middleware inclusion.

Falcon (ASGI)
Falcon (ASGI) middleware is an ASGI middleware, which operates by wrapping the Falcon(ASGI)
application instance.

The following example shows a sample Falcon(ASGI) application wrapped by the Contrast middleware
class.

NOTE
If your Falcon (ASGI) application uses other middleware in addition to Contrast,
Contrast must be the first middleware initialized in order for certain features to work.

import falcon.asgi
from contrast.falcon_asgi import ContrastMiddleware

class Home(object):
 async def on_get(self, req, resp):
 resp.status = falcon.HTTP_200
 resp.body = "Hello World"

def create():
 # This is where the example app is declared. Look for something \
similar in your
 # application since this instance needs to be wrapped by Contrast \
middleware
 _app = falcon.asgi.App()

 # Add routes to your app
 home = Home()
 _app.add_route("/home", home)

 # This line wraps the application instance with the Contrast middleware
 # NOTE: Contrast should be the first middleware if others are used
 _app = ContrastMiddleware(_app)
 return _app

Contrast Documentation

Agents 387

https://docs.djangoproject.com/en/2.2/topics/http/middleware/

app = create()

Falcon (WSGI)
Contrast's Falcon middleware is a WSGI middleware, not a Falcon-style middleware.

1. Find your Falcon application object. This will be an instance of falcon.API or falcon.App
depending on your version of Falcon.
A sample Falcon application might look like this, where app is your Falcon application object:

import falcon
from views import Home

app = falcon.API()

home = Home()
app.add_route('/home', home)

<InstallContrastHere>

2. Wrap the Falcon application object with Contrast's middleware. In the example above, replace
<InstallContrastHere> with:

from contrast.falcon import ContrastMiddleware
app = ContrastMiddleware(app)

IMPORTANT
In rare cases, you may be required to pass the original falcon.App or
falcon.API application instance directly to the ContrastMiddleware in
addition to your WSGI application object. If the application does not start, find your
original Falcon application and pass it to Contrast's middleware. For example:

app = ContrastMiddleware(
 app,
 original_falcon_app, # instance of falcon.App or \
falcon.API
)

IMPORTANT
You must wrap the Falcon instance after route registration is complete.

FastAPI
FastAPI middleware is a class-based ASGI middleware that relies on
starlette.middleware.BaseHTTPMiddleware. Check Python supported technologies (page 360)
for the latest version of FastAPI supported by Contrast. The following example shows a sample FastAPI
application that uses the Contrast middleware class:

from fastapi import FastAPI
from contrast.fastapi import ContrastMiddleware

app = FastAPI()
app.add_middleware(ContrastMiddleware, original_app=app)

Contrast Documentation

Agents 388

@app.get("/")
def read_root():
 return RedirectResponse("/home")

If your FastAPI application uses other middleware in addition to Contrast, Contrast must be the first
middleware initialized in order for certain features to work.

from fastapi import FastAPI
from fastapi.middleware.httpsredirect import HTTPSRedirectMiddleware
from contrast.fastapi import ContrastMiddleware

app = FastAPI()

ContrastMiddleware must be the first middleware
app.add_middleware(ContrastMiddleware, original_app=app)
app.add_middleware(HTTPSRedirectMiddleware)

Adding middleware via the add_middleware method is the only supported way to add middleware
at this time, because certain features require the FastAPI app to be passed in as the original_app
keyword argument. Initializing middlewares by passing them in directly to the FastAPI class initialization
is not currently supported by Contrast.

Not currently supported.
app = FastAPI(middleware=[...])

WARNING
Calling add_middleware multiple times is known to re-initialize all previous
middleware.

Flask
Contrast’s Flask middleware is a WSGI middleware, which operates by wrapping the Flask application
instance.

1. Find your Flask application object. This will be an instance of flask.Flask.
A sample Flask application might look like this, where app is your Flask application object:

import Flask

app = Flask(__name__)

<InstallContrastHere>

@app.route('/')
def index():
 return render_template('index.html')

app.run(...)

2. Wrap the Flask application object with Contrast's middleware. In the example above, replace
<InstallContrastHere> with:

from contrast.flask import ContrastMiddleware
app.wsgi_app = ContrastMiddleware(app)

Contrast Documentation

Agents 389

https://github.com/encode/starlette/discussions/1161
https://github.com/encode/starlette/discussions/1161

NOTE
Contrast's Flask middleware requires an instance of flask.Flask as an
argument, rather than flask.Flask.wsgi_app.

Pyramid
Old configuration steps: will not work with Contrast Python agent versions 5.0.0 and later

In Pyramid, middlewares are called "tweens".

1. Find the configurator object in your application codebase. It might look like this:

from pyramid.config import Configurator
config = Configurator()

<InstallContrastHere>

2. Add Contrast's middleware to your config. In the example above, replace
<InstallContrastHere> with:

config.add_tween('contrast.agent.middlewares.pyramid_middleware.PyramidMi
ddleware')

See the Pyramid documentation for additional details on tween configuration.

New configuration steps: works with Contrast Python agent versions 4.6.0 and later

Contrast's Pyramid middleware is a WSGI middleware, not a Pyramid-style "tween".

1. Find your WSGI application object. This is often created by a call to
Configurator.make_wsgi_app().
For example, it might look like this:

from pyramid.config import Configurator

config = Configurator()
app = config.make_wsgi_app()

<InstallContrastHere>

2. Wrap the WSGI application object with Contrast's middleware. In the example above, replace
<InstallContrastHere> with:

from contrast.pyramid import ContrastMiddleware
app = ContrastMiddleware(app)

IMPORTANT
In rare cases, Contrast may require that you pass your application's Registry
object to the middleware as well. The registry is commonly available as an
attribute of both the Configurator instance and the Pyramid application object.

If the application does not start, find your application Registry and pass it to
Contrast's middleware, for example:

app = ContrastMiddleware(app, config.registry)

Contrast Documentation

Agents 390

https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/environment.html#explicit-tween-configuration

Quart
The Quart middleware should wrap the Quart application object and be assigned to the asgi_app
attribute. The following example shows a sample quart application that uses the Contrast middleware
class:

from quart import Quart, redirect
from contrast.quart import ContrastMiddleware

app = Quart(__name__)
app.asgi_app = ContrastMiddleware(app)

@app.route("/")
async def index():
 return redirect("/home")

WSGI
Contrast provides a generic WSGI middleware that includes all core agent functionality. Framework-
specific features such as route discovery are not implemented in the generic WSGI middleware.

To instrument any WSGI-compliant application with Contrast:

1. Find the WSGI application object in your application codebase. For example, a WSGI app was
created as follows:

from example.module import make_app
wsgi_app = make_app()

<InstallContrastHere>

2. Wrap the WSGI application object with Contrast's middleware. In the example above, replace
<InstallContrastHere> with:

from contrast.wsgi import ContrastMiddleware
wsgi_app = ContrastMiddleware(wsgi_app)

See the WSGI specification for additional details on WSGI middleware.

Python web servers
The Python agent is tested against several common production web servers. Some servers require
certain configuration options in order to work properly with Contrast.

Gunicorn
You can integrate Gunicorn with popular frameworks like Django, Pyramid, Tornado, or others.

Use the following command to start Gunicorn: gunicorn app.wsgi_app:application (where app
is the folder of your application).

The following configurations are available within your Gunicorn server:

• Bind:
-b ADDRESS1

gunicorn -b 127.0.0.1:8000

• Timeout:
-t INT or --timeout INT

Workers silent for more than this many seconds are killed and restarted.
Value is a positive number or 0. Setting it to 0 has the effect of infinite timeouts by disabling timeouts
for all workers entirely.

Contrast Documentation

Agents 391

https://www.python.org/dev/peps/pep-0333/#middleware-components-that-play-both-sides

The default is 30 seconds. Only set this noticeably higher if you’re sure of the repercussions for sync
workers. For the non sync workers, it means that the worker process is still communicating and is not
tied to the length of time required to handle a single request.

Uvicorn
Uvicorn is an asynchronous web server that can be installed with: pip install
uvicorn[standard].

The following are some suggested configurations:

• --loop=uvloop

• --http=httptools

Both uvloop and httptools are written in Cython, and offer greater performance but are not
compatible with Windows or PyPy.

• --interface

You may set this to some of the ASGI protocols. If you are using WSGI, and using —
ws=websockets, websockets will not be used and defaults to auto.

• --ws

If you have set --ws-max-size, --ws-ping-interval, --ws-ping-timeout, and —ws is not
set with websockets, everything will be ignored.

• To use gunicorn as a manager to uvicorn you can do that by the following:
gunicorn -k uvicorn.workers.UvicornWorker

• The UvicornWorker implementation uses the uvloop and httptools implementations. To run
under PyPy, you will need to use pure-python implementation instead. You can do this by using
the UvicornH11Worker class.gunicorn -k uvicorn.workers.UvicornH11Worker.

uWSGI configuration
Contrast requires the following configuration options when running on uWSGI. You can set these on the
command line or in your uWSGI configuration (.ini) file:

• --enable-threads: Contrast's machinery utilizes threads. This option must be enabled so the
agent can start background threads.

• --single-interpreter: The Python agent applies its instrumentation to the Python process in
which it is initialized. This option ensures that Contrast is initialized in the same process that handles
requests for your application.

• If using --master you must also use --lazy-apps: When running in master mode, uWSGI
initializes the application in a master process but forks this process into workers which handle
requests. To operate correctly, Contrast must be initialized independently in each worker process;
--lazy-apps achieves this.

Python YAML template
Use this template to configure the Python agent using a YAML configuration file. (Learn more about
YAML configuration (page 73).)

Place your YAML file in the default location: /etc/contrast/contrast_security.yaml

NOTE
The agent.service section of the YAML configuration file only applies to earlier
versions of Python (before version 5.19.0).

==
====

Contrast Documentation

Agents 392

https://www.uvicorn.org/deployment/

Use the properties in this YAML file to configure a Contrast agent.
Go to https://docs.contrastsecurity.com/en/order-of-precedence.html
to determine the order of precedence for configuration values.
==
====

Use this setting if you want to temporarily disable a Contrast agent.
Set to `true` to enable the agent; set to `false` to disable the agent.
enable: true

==
====
api
Use the properties in this section to connect the agent to the Contrast \
UI.
==
====
api:

 # ********************** REQUIRED **********************
 # Set the URL for the Contrast UI.
 url: https://app.contrastsecurity.com/Contrast

 # ********************** REQUIRED **********************
 # Set the API key needed to communicate with the Contrast UI.
 api_key: NEEDS_TO_BE_SET

 # ********************** REQUIRED **********************
 # Set the service key needed to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 service_key: NEEDS_TO_BE_SET

 # ********************** REQUIRED **********************
 # Set the user name used to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 user_name: NEEDS_TO_BE_SET

 # ==
====
 # api.certificate
 # Use the following properties for communication
 # with the Contrast UI using certificates.
 # ==
====
 # certificate:

 # If set to `false`, the agent will ignore the
 # certificate configuration in this section.
 # enable: true

 # Set the absolute or relative path to a CA for communication
 # with the Contrast UI using a self-signed certificate.
 # ca_file: NEEDS_TO_BE_SET

Contrast Documentation

Agents 393

 # Set the absolute or relative path to the Certificate
 # PEM file for communication with the Contrast UI.
 # cert_file: NEEDS_TO_BE_SET

 # Set the absolute or relative path to the Key PEM
 # file for communication with the Contrast UI.
 # key_file: NEEDS_TO_BE_SET

 # ==
====
 # api.proxy
 # Use the following properties for communication
 # with the Contrast UI over a proxy.
 # ==
====
 # proxy:

 # Set value to `true` for the agent to communicate with
 # the Contrast web interface over a proxy. Set value to
 # `false` if you don't want to use the proxy. If no value is
 # indicated, the presence of a valid **contrast.proxy.host**
 # and **contrast.proxy.port** will enable the proxy.
 # enable: NEEDS_TO_BE_SET

 # Set the URL for your Proxy Server. The URL form is `scheme://
host:port`.
 # url: NEEDS_TO_BE_SET

==
====
agent
Use the properties in this section to control the way and frequency
with which the agent communicates to logs and the Contrast UI.
==
====
agent:

 # ==
====
 # agent.logger
 # Define the following properties to set logging values.
 # If the following properties are not defined, the
 # agent uses the logging values from the Contrast UI.
 # ==
====
 # logger:

 # Enable diagnostic logging by setting a path to a log file.
 # While diagnostic logging hurts performance, it generates
 # useful information for debugging Contrast. The value set here
 # is the location to which the agent saves log output. If no
 # log file exists at this location, the agent creates a file.
 #
 # Example - `/opt/Contrast/contrast.log` creates a log in the
 # `/opt/Contrast` directory, and rotates it automatically as needed.

Contrast Documentation

Agents 394

 #
 # path: ./contrast_agent.log

 # Set the the log output level. Valid options are
 # `ERROR`, `WARN`, `INFO`, `DEBUG`, and `TRACE`.
 # level: INFO

 # Override the name of the process the agents uses in logs.
 # progname: Contrast Agent

 # Set to `true` to redirect all logs to
 # `stdout` instead of the file system.
 # stdout: false

 # Set to `true` to redirect all logs to `stderr` instead
 # of the file system. Overriden by `stdout` configuration.
 # stderr: false

 # ==
====
 # agent.security_logger
 # Define the following properties to set security
 # logging values. If not defined, the agent uses the
 # security logging (CEF) values from the Contrast UI.
 # ==
====
 # security_logger:

 # Set the file to which the agent logs security events.
 # path: ./contrast/security.log

 # Set the log level for security logging. Valid options
 # are `ERROR`, `WARN`, `INFO`, `DEBUG`, and `TRACE`.
 # level: ERROR

 # Change the Contrast security logger from a file-sized based rolling
 # scheme to a date-based rolling scheme. At midnight server time,
 # the log from the previous day is renamed to *file_name.yyyy-MM-dd*.
 # Note - this scheme does not have a size limit; manual log
 # pruning will be required. This flag must be set to use the
 # backups and size flags. Value options are `true` or `false`.
 # roll_daily: NEEDS_TO_BE_SET

 # Specify the file size cap (in MB) of each log file.
 # roll_size: NEEDS_TO_BE_SET

 # Specify the number of backup logs that the agent will create before
 # Contrast cleans up the oldest file. A value of `0` means that no \
backups
 # are created, and the log is truncated when it reaches its size cap.
 #
 # Note - this property must be used with
 # `agent.security_logger.roll_daily=false`; otherwise,
 # Contrast continues to log daily and disregard this limit.
 #

Contrast Documentation

Agents 395

 # backups: NEEDS_TO_BE_SET

 # ==
====
 # agent.security_logger.syslog
 # Define the following properties to set Syslog values. If the \
properties
 # are not defined, the agent uses the Syslog values from the Contrast \
UI.
 # ==
====
 # syslog:

 # Set to `true` to enable Syslog logging.
 # enable: NEEDS_TO_BE_SET

 # Set the IP address of the Syslog server
 # to which the agent should send messages.
 # ip: NEEDS_TO_BE_SET

 # Set the port of the Syslog server to
 # which the agent should send messages.
 # port: NEEDS_TO_BE_SET

 # Set the facility code of the messages the agent sends to Syslog.
 # facility: 19

 # Set the log level of Exploited attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_exploited: ALERT

 # Set the log level of Blocked attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_blocked: NOTICE

 # Set the log level of Blocked At Perimeter
 # attacks. Value options are `ALERT`, `CRITICAL`,
 # `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_blocked_perimeter: NOTICE

 # Set the log level of Probed attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_probed: WARNING

 # Set the log level of Suspicious attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_suspicious: WARNING

 # ==
====
 # agent.python
 # The following properties apply to any Python agent-wide configurations.
 # ==
====
 # python:

Contrast Documentation

Agents 396

 # Allow the agent to dump `cProfile` data to file for each request.
 # enable_profiler: false

==
====
inventory
Use the properties in this section to override the inventory features.
==
====
inventory:

 # Set to `false` to disable inventory features in the agent.
 # enable: true

 # Set to `false` to disable library analysis.
 # analyze_libraries: true

 # Apply a list of labels to libraries. Labels
 # must be formatted as a comma-delimited list.
 # Example - `label1, label2, label3`
 #
 # tags: NEEDS_TO_BE_SET

==
====
assess
Use the properties in this section to control Assess.
==
====
assess:

 # Include this property to determine if the Assess
 # feature should be enabled. If this property is not
 # present, the decision is delegated to the Contrast UI.
 # enable: false

 # Apply a list of labels to vulnerabilities and preflight
 # messages. Labels must be formatted as a comma-delimited list.
 # Example - `label1, label2, label3`
 #
 # tags: NEEDS_TO_BE_SET

 # Value options are `ALL`, `SOME`, or `NONE`.
 # stacktraces: ALL

 # ==
====
 # assess.sampling
 # Use the following properties to control sampling in the agent.
 # ==
====
 # sampling:

 # Set to `true` to enable sampling.

Contrast Documentation

Agents 397

 # enable: false

 # This property indicates the number of requests
 # to analyze in each window before sampling begins.
 # baseline: 5

 # This property indicates that every *nth*
 # request after the baseline is analyzed.
 # request_frequency: 10

 # This property indicates the duration for which a sample set is valid.
 # window_ms: 180_000

 # ==
====
 # assess.rules
 # Use the following properties to control simple rule configurations.
 # ==
====
 # rules:

 # Define a list of Assess rules to disable in the agent. To view a
 # list of rule names, in Contrast go to user menu > Policy Management >
 # Assess rules. The rules must be formatted as a comma-delimited list.
 #
 # Example - Set `reflected-xss,sql-injection` to disable
 # the reflected-xss rule and the sql-injection rule.
 #
 # disabled_rules: NEEDS_TO_BE_SET

==
====
protect
Use the properties in this section to override Protect features.
==
====
protect:

 # Include this property to determine if the Protect
 # feature should be enabled. If this property is not
 # present, the decision is delegated to the Contrast UI.
 # enable: false

 # ==
====
 # protect.rules
 # Use the following properties to set simple rule configurations.
 # ==
====
 # rules:

 # Define a list of Protect rules to disable in the agent. To view a
 # list of rule names, in Contrast go to user menu > Policy Management >
 # Protect rules. The rules must be formatted as a comma-delimited list.
 # disabled_rules: NEEDS_TO_BE_SET

Contrast Documentation

Agents 398

 # ==
====
 # protect.rules.bot-blocker
 # Use the following selection to configure if the
 # agent blocks bots. Set to `true` to enable blocking.
 # ==
====
 # bot-blocker:

 # Set to `true` for the agent to block known bots.
 # enable: false

 # ==
====
 # protect.rules.sql-injection
 # Use the following settings to configure the sql-injection rule.
 # ==
====
 # sql-injection:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or off.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.cmd-injection
 # Use the following properties to configure
 # how the command injection rule works.
 # ==
====
 # cmd-injection:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.path-traversal
 # Use the following properties to configure
 # how the path traversal rule works.
 # ==
====
 # path-traversal:

Contrast Documentation

Agents 399

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # Detect when custom code attempts to access sensitive
 # system files. The agent blocks if blocking is enabled.
 # detect_custom_code_accessing_system_files: true

 # Detect when users attempt to bypass filters by
 # using "::$DATA" channels or null bytes in file
 # names. The agent blocks if blocking is enabled.
 # detect_common_file_exploits: true

 # ==
====
 # protect.rules.method-tampering
 # Use the following properties to configure
 # how the method tampering rule works.
 # ==
====
 # method-tampering:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.reflected-xss
 # Use the following properties to configure how
 # the reflected cross-site scripting rule works.
 # ==
====
 # reflected-xss:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.xxe
 # Use the following properties to configure

Contrast Documentation

Agents 400

 # how the XML external entity works.
 # ==
====
 # xxe:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

==
====
application
Use the properties in this section for
the application(s) hosting this agent.
==
====
application:

 # Override the reported application name.
 #
 # Note - On Java systems where multiple, distinct applications may be
 # served by a single process, this configuration causes the agent to \
report
 # all discovered applications as one application with the given name.
 #
 # name: NEEDS_TO_BE_SET

 # Override the reported application path.
 # path: NEEDS_TO_BE_SET

 # Add the name of the application group with which this
 # application should be associated in the Contrast UI.
 # group: NEEDS_TO_BE_SET

 # Add the application code this application should use in the Contrast UI.
 # code: NEEDS_TO_BE_SET

 # Override the reported application version.
 # version: NEEDS_TO_BE_SET

 # Apply labels to an application. Labels must
 # be formatted as a comma-delimited list.
 # Example - `label1,label2,label3`
 #
 # tags: NEEDS_TO_BE_SET

 # Define a set of `key=value` pairs (which conforms to RFC 2253) for
 # specifying user-defined metadata associated with the application. The
 # set must be formatted as a comma-delimited list of `key=value` pairs.
 # Example - `business-unit=accounting, office=Baltimore`
 #

Contrast Documentation

Agents 401

 # metadata: NEEDS_TO_BE_SET

 # Provide the ID of a session which already exists in the Contrast
 # UI. Vulnerabilities discovered by the agent are associated with
 # this session. If an invalid ID is supplied, the agent will be
 # disabled. This option and `application.session_metadata` are
 # mutually exclusive; if both are set, the agent will be disabled.
 # session_id: NEEDS_TO_BE_SET

 # Provide metadata which is used to create a new session ID in the
 # Contrast UI. Vulnerabilities discovered by the agent are associated with
 # this new session. This value should be formatted as `key=value` pairs
 # (conforming to RFC 2253). Available key names for this configuration
 # are branchName, buildNumber, commitHash, committer, gitTag, repository,
 # testRun, and version. This option and `application.session_id` are
 # mutually exclusive; if both are set the agent will be disabled.
 # session_metadata: NEEDS_TO_BE_SET

==
====
server
Use the settings in this section to set metadata for the server
hosting this agent. Contrast recognizes common, supported server
names, paths, types and environments. Doing this may require a new
server or license, and it may affect functionality of some features.
==
====
server:

 # Override the reported server name.
 # name: localhost

 # Override the reported server path.
 # path: NEEDS_TO_BE_SET

 # Override the reported server type.
 # type: NEEDS_TO_BE_SET

 # Set the environment directly to override the default set
 # by the Contrast UI. This allows the user to configure the
 # environment dynamically at startup rather than manually
 # updating the Server in the Contrast UI themselves afterwards.
 #
 # Valid values include `QA`, `PRODUCTION` and `DEVELOPMENT`.
 # For example, `PRODUCTION` registers this Server as
 # running in a `PRODUCTION` environment, regardless of the
 # organization's default environment in the Contrast UI.
 #
 # environment: NEEDS_TO_BE_SET

 # Apply a list of labels to the server. Labels
 # must be formatted as a comma-delimited list.
 # Example - `label1,label2,label3`
 #

Contrast Documentation

Agents 402

 # tags: NEEDS_TO_BE_SET

==
====
Use the properties in this YAML file to configure a Contrast agent.
Go to https://docs.contrastsecurity.com/en/order-of-precedence.html
to determine the order of precedence for configuration values.
==
====

Use this setting if you want to temporarily disable a Contrast agent.
Set to `true` to enable the agent; set to `false` to disable the agent.
enable: true

==
====
api
Use the properties in this section to connect the agent to the Contrast \
UI.
==
====
api:

 # ********************** REQUIRED **********************
 # Set the URL for the Contrast UI.
 url: https://app.contrastsecurity.com/Contrast

 # ********************** REQUIRED **********************
 # Set the API key needed to communicate with the Contrast UI.
 api_key: NEEDS_TO_BE_SET

 # ********************** REQUIRED **********************
 # Set the service key needed to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 service_key: NEEDS_TO_BE_SET

 # ********************** REQUIRED **********************
 # Set the user name used to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 user_name: NEEDS_TO_BE_SET

 # ==
====
 # api.certificate
 # Use the following properties for communication
 # with the Contrast UI using certificates.
 # ==
====
 # certificate:

 # If set to `false`, the agent will ignore the
 # certificate configuration in this section.
 # enable: true

Contrast Documentation

Agents 403

 # Set the absolute or relative path to a CA for communication
 # with the Contrast UI using a self-signed certificate.
 # ca_file: NEEDS_TO_BE_SET

 # Set the absolute or relative path to the Certificate
 # PEM file for communication with the Contrast UI.
 # cert_file: NEEDS_TO_BE_SET

 # Set the absolute or relative path to the Key PEM
 # file for communication with the Contrast UI.
 # key_file: NEEDS_TO_BE_SET

 # ==
====
 # api.proxy
 # Use the following properties for communication
 # with the Contrast UI over a proxy.
 # ==
====
 # proxy:

 # Set value to `true` for the agent to communicate with
 # the Contrast web interface over a proxy. Set value to
 # `false` if you don't want to use the proxy. If no value is
 # indicated, the presence of a valid **contrast.proxy.host**
 # and **contrast.proxy.port** will enable the proxy.
 # enable: NEEDS_TO_BE_SET

 # Set the URL for your Proxy Server. The URL form is `scheme://
host:port`.
 # url: NEEDS_TO_BE_SET

==
====
agent
Use the properties in this section to control the way and frequency
with which the agent communicates to logs and the Contrast UI.
==
====
agent:

 # ==
====
 # agent.logger
 # Define the following properties to set logging values.
 # If the following properties are not defined, the
 # agent uses the logging values from the Contrast UI.
 # ==
====
 # logger:

 # Enable diagnostic logging by setting a path to a log file.
 # While diagnostic logging hurts performance, it generates
 # useful information for debugging Contrast. The value set here
 # is the location to which the agent saves log output. If no

Contrast Documentation

Agents 404

 # log file exists at this location, the agent creates a file.
 #
 # Example - `/opt/Contrast/contrast.log` creates a log in the
 # `/opt/Contrast` directory, and rotates it automatically as needed.
 #
 # path: ./contrast_agent.log

 # Set the the log output level. Valid options are
 # `ERROR`, `WARN`, `INFO`, `DEBUG`, and `TRACE`.
 # level: INFO

 # Override the name of the process the agents uses in logs.
 # progname: Contrast Agent

 # Set to `true` to redirect all logs to
 # `stdout` instead of the file system.
 # stdout: false

 # Set to `true` to redirect all logs to `stderr` instead
 # of the file system. Overriden by `stdout` configuration.
 # stderr: false

 # ==
====
 # agent.security_logger
 # Define the following properties to set security
 # logging values. If not defined, the agent uses the
 # security logging (CEF) values from the Contrast UI.
 # ==
====
 # security_logger:

 # Set the file to which the agent logs security events.
 # path: ./contrast/security.log

 # Set the log level for security logging. Valid options
 # are `ERROR`, `WARN`, `INFO`, `DEBUG`, and `TRACE`.
 # level: ERROR

 # Change the Contrast security logger from a file-sized based rolling
 # scheme to a date-based rolling scheme. At midnight server time,
 # the log from the previous day is renamed to *file_name.yyyy-MM-dd*.
 # Note - this scheme does not have a size limit; manual log
 # pruning will be required. This flag must be set to use the
 # backups and size flags. Value options are `true` or `false`.
 # roll_daily: NEEDS_TO_BE_SET

 # Specify the file size cap (in MB) of each log file.
 # roll_size: NEEDS_TO_BE_SET

 # Specify the number of backup logs that the agent will create before
 # Contrast cleans up the oldest file. A value of `0` means that no \
backups
 # are created, and the log is truncated when it reaches its size cap.
 #

Contrast Documentation

Agents 405

 # Note - this property must be used with
 # `agent.security_logger.roll_daily=false`; otherwise,
 # Contrast continues to log daily and disregard this limit.
 #
 # backups: NEEDS_TO_BE_SET

 # ==
====
 # agent.security_logger.syslog
 # Define the following properties to set Syslog values. If the \
properties
 # are not defined, the agent uses the Syslog values from the Contrast \
UI.
 # ==
====
 # syslog:

 # Set to `true` to enable Syslog logging.
 # enable: NEEDS_TO_BE_SET

 # Set the IP address of the Syslog server
 # to which the agent should send messages.
 # ip: NEEDS_TO_BE_SET

 # Set the port of the Syslog server to
 # which the agent should send messages.
 # port: NEEDS_TO_BE_SET

 # Set the facility code of the messages the agent sends to Syslog.
 # facility: 19

 # Set the log level of Exploited attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_exploited: ALERT

 # Set the log level of Blocked attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_blocked: NOTICE

 # Set the log level of Blocked At Perimeter
 # attacks. Value options are `ALERT`, `CRITICAL`,
 # `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_blocked_perimeter: NOTICE

 # Set the log level of Probed attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_probed: WARNING

 # Set the log level of Suspicious attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_suspicious: WARNING

 # ==
====
 # agent.python

Contrast Documentation

Agents 406

 # The following properties apply to any Python agent-wide configurations.
 # ==
====
 # python:

 # Allow the agent to dump `cProfile` data to file for each request.
 # enable_profiler: false

==
====
inventory
Use the properties in this section to override the inventory features.
==
====
inventory:

 # Set to `false` to disable inventory features in the agent.
 # enable: true

 # Set to `false` to disable library analysis.
 # analyze_libraries: true

 # Apply a list of labels to libraries. Labels
 # must be formatted as a comma-delimited list.
 # Example - `label1, label2, label3`
 #
 # tags: NEEDS_TO_BE_SET

==
====
assess
Use the properties in this section to control Assess.
==
====
assess:

 # Include this property to determine if the Assess
 # feature should be enabled. If this property is not
 # present, the decision is delegated to the Contrast UI.
 # enable: false

 # Apply a list of labels to vulnerabilities and preflight
 # messages. Labels must be formatted as a comma-delimited list.
 # Example - `label1, label2, label3`
 #
 # tags: NEEDS_TO_BE_SET

 # Value options are `ALL`, `SOME`, or `NONE`.
 # stacktraces: ALL

 # ==
====
 # assess.sampling
 # Use the following properties to control sampling in the agent.
 # ==

Contrast Documentation

Agents 407

====
 # sampling:

 # Set to `true` to enable sampling.
 # enable: false

 # This property indicates the number of requests
 # to analyze in each window before sampling begins.
 # baseline: 5

 # This property indicates that every *nth*
 # request after the baseline is analyzed.
 # request_frequency: 10

 # This property indicates the duration for which a sample set is valid.
 # window_ms: 180_000

 # ==
====
 # assess.rules
 # Use the following properties to control simple rule configurations.
 # ==
====
 # rules:

 # Define a list of Assess rules to disable in the agent. To view a
 # list of rule names, in Contrast go to user menu > Policy Management >
 # Assess rules. The rules must be formatted as a comma-delimited list.
 #
 # Example - Set `reflected-xss,sql-injection` to disable
 # the reflected-xss rule and the sql-injection rule.
 #
 # disabled_rules: NEEDS_TO_BE_SET

==
====
protect
Use the properties in this section to override Protect features.
==
====
protect:

 # Include this property to determine if the Protect
 # feature should be enabled. If this property is not
 # present, the decision is delegated to the Contrast UI.
 # enable: false

 # ==
====
 # protect.rules
 # Use the following properties to set simple rule configurations.
 # ==
====
 # rules:

Contrast Documentation

Agents 408

 # Define a list of Protect rules to disable in the agent. To view a
 # list of rule names, in Contrast go to user menu > Policy Management >
 # Protect rules. The rules must be formatted as a comma-delimited list.
 # disabled_rules: NEEDS_TO_BE_SET

 # ==
====
 # protect.rules.bot-blocker
 # Use the following selection to configure if the
 # agent blocks bots. Set to `true` to enable blocking.
 # ==
====
 # bot-blocker:

 # Set to `true` for the agent to block known bots.
 # enable: false

 # ==
====
 # protect.rules.sql-injection
 # Use the following settings to configure the sql-injection rule.
 # ==
====
 # sql-injection:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or off.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.cmd-injection
 # Use the following properties to configure
 # how the command injection rule works.
 # ==
====
 # cmd-injection:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.path-traversal
 # Use the following properties to configure
 # how the path traversal rule works.

Contrast Documentation

Agents 409

 # ==
====
 # path-traversal:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # Detect when custom code attempts to access sensitive
 # system files. The agent blocks if blocking is enabled.
 # detect_custom_code_accessing_system_files: true

 # Detect when users attempt to bypass filters by
 # using "::$DATA" channels or null bytes in file
 # names. The agent blocks if blocking is enabled.
 # detect_common_file_exploits: true

 # ==
====
 # protect.rules.method-tampering
 # Use the following properties to configure
 # how the method tampering rule works.
 # ==
====
 # method-tampering:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.reflected-xss
 # Use the following properties to configure how
 # the reflected cross-site scripting rule works.
 # ==
====
 # reflected-xss:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

Contrast Documentation

Agents 410

 # ==
====
 # protect.rules.xxe
 # Use the following properties to configure
 # how the XML external entity works.
 # ==
====
 # xxe:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

==
====
application
Use the properties in this section for
the application(s) hosting this agent.
==
====
application:

 # Override the reported application name.
 #
 # Note - On Java systems where multiple, distinct applications may be
 # served by a single process, this configuration causes the agent to \
report
 # all discovered applications as one application with the given name.
 #
 # name: NEEDS_TO_BE_SET

 # Override the reported application path.
 # path: NEEDS_TO_BE_SET

 # Add the name of the application group with which this
 # application should be associated in the Contrast UI.
 # group: NEEDS_TO_BE_SET

 # Add the application code this application should use in the Contrast UI.
 # code: NEEDS_TO_BE_SET

 # Override the reported application version.
 # version: NEEDS_TO_BE_SET

 # Apply labels to an application. Labels must
 # be formatted as a comma-delimited list.
 # Example - `label1,label2,label3`
 #
 # tags: NEEDS_TO_BE_SET

 # Define a set of `key=value` pairs (which conforms to RFC 2253) for

Contrast Documentation

Agents 411

 # specifying user-defined metadata associated with the application. The
 # set must be formatted as a comma-delimited list of `key=value` pairs.
 # Example - `business-unit=accounting, office=Baltimore`
 #
 # metadata: NEEDS_TO_BE_SET

 # Provide the ID of a session which already exists in the Contrast
 # UI. Vulnerabilities discovered by the agent are associated with
 # this session. If an invalid ID is supplied, the agent will be
 # disabled. This option and `application.session_metadata` are
 # mutually exclusive; if both are set, the agent will be disabled.
 # session_id: NEEDS_TO_BE_SET

 # Provide metadata which is used to create a new session ID in the
 # Contrast UI. Vulnerabilities discovered by the agent are associated with
 # this new session. This value should be formatted as `key=value` pairs
 # (conforming to RFC 2253). Available key names for this configuration
 # are branchName, buildNumber, commitHash, committer, gitTag, repository,
 # testRun, and version. This option and `application.session_id` are
 # mutually exclusive; if both are set the agent will be disabled.
 # session_metadata: NEEDS_TO_BE_SET

==
====
server
Use the settings in this section to set metadata for the server
hosting this agent. Contrast recognizes common, supported server
names, paths, types and environments. Doing this may require a new
server or license, and it may affect functionality of some features.
==
====
server:

 # Override the reported server name.
 # name: localhost

 # Override the reported server path.
 # path: NEEDS_TO_BE_SET

 # Override the reported server type.
 # type: NEEDS_TO_BE_SET

 # Set the environment directly to override the default set
 # by the Contrast UI. This allows the user to configure the
 # environment dynamically at startup rather than manually
 # updating the Server in the Contrast UI themselves afterwards.
 #
 # Valid values include `QA`, `PRODUCTION` and `DEVELOPMENT`.
 # For example, `PRODUCTION` registers this Server as
 # running in a `PRODUCTION` environment, regardless of the
 # organization's default environment in the Contrast UI.
 #
 # environment: NEEDS_TO_BE_SET

 # Apply a list of labels to the server. Labels

Contrast Documentation

Agents 412

 # must be formatted as a comma-delimited list.
 # Example - `label1,label2,label3`
 #
 # tags: NEEDS_TO_BE_SET

Python telemetry
The Python agent use telemetry to collect usage data. Telemetry is collected when an instrumented
application first loads the agent’s sensors and then periodically (every few hours) afterwards.

Your privacy is important to us (page 956). The telemetry feature does not collect application data.
The data is anonymized before being sent securely to Contrast. Then the aggregated data is stored
encrypted and under restricted access control. Any collected data will be deleted after one year.

The telemetry feature collects the following data:

Agent versions Data

Python 4.14.0 Agent version

Operating system and version

Python version

Application framework and version

Web server and version

Hosted or on-premises Contrast instance

To opt-out of the telemetry feature, set the CONTRAST_AGENT_TELEMETRY_OPTOUT environment
variable to 1 or true.

Telemetry data is securely sent to telemetry.python.contrastsecurity.com. You can also opt out of
telemetry by blocking communication at the network level.

Contrast Runner
As of version 5.24.0, the Python agent provides a new command-line interface (also called a runner)
for instrumenting Python applications. In general, when using the runner, it is no longer required
to manually configure middleware (page 384). Instead, the Contrast runner automatically applies
framework-specific instrumentation to your Python application.

The runner command is called contrast-python-run and is provided as part of the contrast-
agent package. In most Python environments it will be available on the command line without further
changes when the contrast-agent package is installed (page 361).

Using the runner
The runner is used by adding the contrast-python-run command to the beginning of the original
command that starts your application.

• For example, with a Django application that is started with the following command:

python manage.py runserver

• You would run the following command to add Contrast to this application:

contrast-python-run -- python manage.py runserver

NOTE
The double dash separator “--” is used to separate the runner command's arguments
from those that belong to the original command.

Contrast Documentation

Agents 413

• In another example, with a Flask application that is started with the following command:

FLASK_APP=apps/app.py flask run --host=localhost --port=8080

• Using the Contrast runner would look like this (note that setting the environment variable still
happens before the runner command):

FLASK_APP=apps/app.py contrast-python-run -- flask run --
host=localhost --port=8080

• The contrast-python-run command also works when deploying with web servers such as uwsgi
and gunicorn. For example:

contrast-python-run -- gunicorn apps/app:app --preload -b localhost:8080

• It also works when deploying to Apache using mod_wsgi-express. For example:

contrast-python-run -- mod_wsgi-express start-server app/wsgi.py --
user=www-data --group www-data

The runner follows the normal order of precedence (page 72) for Contrast configuration. It is also
possible to use environment variables with the runner directly on the command line:

CONTRAST__AGENT__LOGGER__LEVEL=DEBUG contrast-python-run --
 python manage.py runserver

Ruby agent
The Ruby agent is a Rack middleware that's compatible with the most popular web application
frameworks. The agent's goal is to be fully Rack compatible and to provide applications built on
Rack with interactive application security testing (IAST) and runtime application self-protection (RASP)
capabilities.

In Assess, the agent identifies vulnerable dataflow paths and other issues during the normal execution
of your application. It reports these findings to your organization in Contrast; you can then remediate the
vulnerabilities before deploying the application in a live environment.

In Protect, the Ruby agent inspects HTTP requests to identify potentially harmful input vectors. During
the request, the agent inspects database queries, file writes and other potentially damaging actions
resulting from the request. At the end of the request, the agent inspects the rendered output for
successful attacks and can block a successful attack from being forwarded to the application user. It
then sends the details of the attack to the Contrast application, which then sends you an alert and
displays attack details in the interface.

NOTE
The Ruby agent supports Assess, Protect, and SCA.

As a next step, you can:

• Install the Ruby agent (page 416)
• View Ruby agent supported technologies (page 414)

Supported technologies for the Ruby agent
We support the following technologies for this agent.

Contrast Documentation

Agents 414

Technology Supported versions Notes

Language
version

• 3.2.X: First supported agent was 6.13.0
• 3.1.X: First supported agent was 6.0.0
• 3.0.X: First supported agent was 4.6.0

See the Ruby Maintenance Branches schedule for specific release dates.

Contrast supports
Ruby Long-Term
Support (LTS)
versions in normal
maintenance and sec
urity
maintenance status.
Contrast shifts its
support for Ruby
versions as the
working group shifts
its LTS windows.

Not supported:

• 2.5.X: Last
supported agent
was 4.14.1

• 2.4.X: Last
supported agent
was 3.9.1

• 2.6.X: Last
supported agent
was 5.3.0

• 2.7.X: Last
supported agent
was 6.15.3

Application
frameworks

• Rails 6.X - 7.X
• Grape 1.5.X
• Sinatra 3.X

While the agent
can still run
on Rack-based
web frameworks
that aren't officially
supported, Contrast
may produce less-
specific findings than
it does for supported
frameworks. Instead
of reporting that a
vulnerability occurs
in your application
code, Contrast may
report it within
the framework code
where it interfaces
directly with the Rack
methods.

Not supported:

• Rails 3.X: Last
supported agent
was 3.11.0

• Rails 4.X: Last
supported agent
was 3.11.0

• Rails 5.X: Last
supported agent
was 6.15.3

Databases • MongoDB
• Mysql2
• PG
• SQLite3

Contrast doesn't
support old or
deprecated versions
of third-party
modules.

Contrast Documentation

Agents 415

https://www.ruby-lang.org/en/downloads/branches/
https://rubyonrails.org/
https://github.com/ruby-grape/grape
http://sinatrarb.com/
http://rack.github.io/
http://rack.github.io/
https://rubygems.org/gems/mongo
https://github.com/brianmario/mysql2
https://github.com/ged/ruby-pg
https://github.com/sparklemotion/sqlite3-ruby

Technology Supported versions Notes

Testing
environments

We test on a matrix of our supported Operating Systems, Application Frameworks,
and Web Servers and also run the Ruby Mspec Suite.

When changes are
made, Contrast
runs a battery of
automated tests to
ensure that it detects
findings in supported
technologies across
all supported
versions of Ruby.
In addition to its
own testing, Contrast
also runs the Ruby
Spec Suite against
an environment with
the agent enabled.

Web servers • Passenger 5.37 and 6.X
• Puma 3.7 - 5.X
• Thin 1.7.2 - 1.8.X
• Unicorn 5.0.X - 6.X

System requirements for the Ruby agent
Before installing the Ruby agent, your system must meet the following requirements:

• There is a deployed application to be analyzed, and the web application technology is supported by
Contrast.

• The application can be restarted.
• The web server has network connectivity with Contrast.
• The web server has network connectivity with RubyGems or the agent manually installed.
• The server meets the minimum requirements shown in this table.

Requirement Versions Notes

Operating
system

• 64-bit Linux (recommended)
• 64-bit OSX
• 64-bit Alpine

Starting with agent version 3.0.0, the gem installation step
requires the compilation of C extensions. This process is
automatic, but you may need to install the following in the
target environment:

• gcc, make, automake and autoconf (Package names
may vary. You may install your platform's version of build-
essential.)

• system headers
The agent runs in the Ruby application layer with
some C dependencies so it may need to be installed with the
--platform ruby flag to allow for compilation in either g libc
or musl libc based systems.

Ruby gems • ougai: ~>1.8 (1.8 and later, earlier
than 2)

• parser: ~>2.6 (2.6 and later, earlier
than 3)

• protobuf: ~>3.10 (3.10 and later,
earlier than 4

• rack: ~>2.0 (2.0 and later, earlier
than 3)

Install the Ruby agent
The contrast-agent.gem is a standard Ruby library that you can add to the application Gemfile.

Install the Ruby agent using RubyGems as a gem source (page 416) or update the Ruby
agent (page 417).

Install the Ruby agent with RubyGems as a gem source
To download the Ruby agent from RubyGems:

Contrast Documentation

Agents 416

https://www.phusionpassenger.com/
https://puma.io/
https://rubygems.org/gems/thin
https://yhbt.net/unicorn/

1. Add this to your application's gemfile:

gem 'contrast-agent'

2. Run an install:

bundle install

or an update:

bundle update contrast-agent

3. Configure middleware (page 418) (Rails, Sinatra, or Grape).
4. Configure the agent (page 418).
5. Verify that autoconf is installed on the system where you will run the agent.
6. Verify that you can see your application in Contrast.

NOTE
If installing in Alpine, you may need to run the command bundle config
force_ruby_platform true prior to installation.

NOTE
If you only want to run with Contrast in certain environments, you can do so using the
Bundler's Group function.

Ruby update agent
The most reliable and effective way to automatically update the Contrast Ruby agent is to use the
Ruby Bundler package manager to install and download the latest version available. Because
Bundler typically manages all dependencies for your Ruby application, it should already be available
and part of your build environment. How frequently you update the Contrast Ruby agent and where you
get updates depends on your organization's preferences and your Contrast implementation: Hosted or
on-premises.

The main steps are:

1. Choose a source for the Contrast Ruby agent.
2. Install the agent,
3. Use scripts for automatic updates.

Before you begin

• Some familiarity with Ruby’s Bundler package manager.
• Access to the RubyGems repository for the Contrast Ruby agent.
• Confirmed that your Ruby application runs properly without the Contrast Ruby agent.
• Previously successfully installed the Contrast Ruby agent.
• Defined a policy for how and when to update the agent, based on your change management policy

and the environment where you deploy agents.

Contrast Documentation

Agents 417

https://bundler.io/guides/groups.html

Install and use scripts automatic updates

1. Choose a source for the Contrast ruby agent:
• RubyGems public (or private) repository

2. Include the Contrast Ruby agent in the Gemfile to easily keep every new build of your application
aligned with the latest version of the agent. Do not specify a version for contrast-agent, and it will
retrieve the latest version.
The Gemfile is where you specify which dependencies you want to automatically resolve every
time your Ruby application builds with artifacts from RubyGems (public or private).

3. After you update the Gemfile, use the following command when you build your application. This will
automatically download and add the Contrast Ruby agent from RubyGems to the Ruby application.

$ bundle install

4. After you add contrast-agent to your Gemfile, you can use Bundler to update your agent, like this:

bundle update contrast-agent

Install the gem manually
You can manually update agents as part of a Ruby build process in two ways. Choose the one that
works best for your organization and workflow:

• Rubygems: Use the following command to retrieve and install the Contrast Ruby agent from
RubyGems (public or private) to the application:

$ gem install contrast-agent

Add the following line to your Gemfile to manage updates with Bundler, because the previous
command only installs the agent locally:

gem "contrast-agent"

Then to either install or update the agent using bundler run the following:

$ bundle install

• Add the following line to your Gemfile to manage the updates with Bundler, because the previous
command only installs the agent locally:

gem "contrast-agent"

See also

• Ruby supported technologies (page 414)
• Install Ruby (page 416)

Configure the Ruby agent
The configuration (page 70) for all agents uses this order of precedence (page 72). Configure the agent
using a YAML configuration file.

TIP
Use the Contrast agent configuration editor (page 74) to create or upload a YAML
configuration file, validate YAML, and get setting recommendations.

Follow these guidelines to configure your:

Contrast Documentation

Agents 418

• Frameworks (page 439)
• Grape (page 440)
• Rails (page 441)
• Sinatra (page 441)

• Web servers (page 442)
• Passenger (page 443)
• Puma (page 446)
• Thin (page 448)
• Unicorn (page 449)

See also

• Ruby supported technologies (page 414)

Ruby YAML template
Use this template to configure the Ruby agent using a YAML configuration file. (Learn more about
YAML configuration (page 73).)

Place your YAML file in the default location: /etc/contrast/contrast_security.yaml

==
====
Use the properties in this YAML file to configure a Contrast agent.
Go to https://docs.contrastsecurity.com/en/order-of-precedence.html
to determine the order of precedence for configuration values.
==
====

Use this setting if you want to temporarily disable a Contrast agent.
Set to `true` to enable the agent; set to `false` to disable the agent.
enable: true

==
====
api
Use the properties in this section to connect the agent to the Contrast \
UI.
==
====
api:

 # ********************** REQUIRED **********************
 # Set the URL for the Contrast UI.
 url: https://app.contrastsecurity.com/Contrast

 # ********************** REQUIRED **********************
 # Set the API key needed to communicate with the Contrast UI.
 api_key: NEEDS_TO_BE_SET

 # ********************** REQUIRED **********************
 # Set the service key needed to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 service_key: NEEDS_TO_BE_SET

 # ********************** REQUIRED **********************

Contrast Documentation

Agents 419

 # Set the user name used to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 user_name: NEEDS_TO_BE_SET

 # ==
====
 # api.certificate
 # Use the following properties for communication
 # with the Contrast UI using certificates.
 # ==
====
 # certificate:

 # If set to `false`, the agent will ignore the
 # certificate configuration in this section.
 # enable: true

 # Set the absolute or relative path to a CA for communication
 # with the Contrast UI using a self-signed certificate.
 # ca_file: NEEDS_TO_BE_SET

 # Set the absolute or relative path to the Certificate
 # PEM file for communication with the Contrast UI.
 # cert_file: NEEDS_TO_BE_SET

 # Set the absolute or relative path to the Key PEM
 # file for communication with the Contrast UI.
 # key_file: NEEDS_TO_BE_SET

 # ==
====
 # api.proxy
 # Use the following properties for communication
 # with the Contrast UI over a proxy.
 # ==
====
 # proxy:

 # Set value to `true` for the agent to communicate with
 # the Contrast web interface over a proxy. Set value to
 # `false` if you don't want to use the proxy. If no value is
 # indicated, the presence of a valid **contrast.proxy.host**
 # and **contrast.proxy.port** will enable the proxy.
 # enable: NEEDS_TO_BE_SET

 # Set the URL for your Proxy Server. The URL form is `scheme://
host:port`.
 # url: NEEDS_TO_BE_SET

==
====
agent
Use the properties in this section to control the way and frequency
with which the agent communicates to logs and the Contrast UI.
==

Contrast Documentation

Agents 420

====
agent:

 # ==
====
 # agent.logger
 # Define the following properties to set logging values.
 # If the following properties are not defined, the
 # agent uses the logging values from the Contrast UI.
 # ==
====
 # logger:

 # Enable diagnostic logging by setting a path to a log file.
 # While diagnostic logging hurts performance, it generates
 # useful information for debugging Contrast. The value set here
 # is the location to which the agent saves log output. If no
 # log file exists at this location, the agent creates a file.
 #
 # Example - `/opt/Contrast/contrast.log` creates a log in the
 # `/opt/Contrast` directory, and rotates it automatically as needed.
 #
 # path: ./contrast_agent.log

 # Set the the log output level. Valid options are
 # `ERROR`, `WARN`, `INFO`, `DEBUG`, and `TRACE`.
 # level: INFO

 # Override the name of the process the agents uses in logs.
 # progname: Contrast Agent

 # Set to `true` for the agent to tag
 # logs with `!AM!` for the metrics tool.
 # metrics: true

 # ==
====
 # agent.security_logger
 # Define the following properties to set security
 # logging values. If not defined, the agent uses the
 # security logging (CEF) values from the Contrast UI.
 # ==
====
 # security_logger:

 # Set the file to which the agent logs security events.
 # path: ./contrast/security.log

 # Set the log level for security logging. Valid options
 # are `ERROR`, `WARN`, `INFO`, `DEBUG`, and `TRACE`.
 # level: ERROR

 # ==
====
 # agent.security_logger.syslog

Contrast Documentation

Agents 421

 # Define the following properties to set Syslog values. If the \
properties
 # are not defined, the agent uses the Syslog values from the Contrast \
UI.
 # ==
====
 # syslog:

 # Set to `true` to enable Syslog logging.
 # enable: NEEDS_TO_BE_SET

 # Set the IP address of the Syslog server
 # to which the agent should send messages.
 # ip: NEEDS_TO_BE_SET

 # Set the port of the Syslog server to
 # which the agent should send messages.
 # port: NEEDS_TO_BE_SET

 # Set the facility code of the messages the agent sends to Syslog.
 # facility: 19

 # Set the log level of Exploited attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_exploited: ALERT

 # Set the log level of Blocked attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_blocked: NOTICE

 # Set the log level of Blocked At Perimeter
 # attacks. Value options are `ALERT`, `CRITICAL`,
 # `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_blocked_perimeter: NOTICE

 # Set the log level of Probed attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_probed: WARNING

 # Set the log level of Suspicious attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_suspicious: WARNING

 # ==
====
 # agent.heap_dump
 # The following properties are used to trigger heap dumps from within
 # the agent to snapshot the behavior of instrumented applications.
 # ==
====
 # heap_dump:

 # Set to `true` for the agent to automatically
 # take heap dumps of the instrumented application.
 # enable: false

Contrast Documentation

Agents 422

 # Set the location to which to save the heap dump files. If relative,
 # the path is determined based on the process' working directory.
 # path: contrast_heap_dumps

 # Set the amount of time to wait, in milliseconds,
 # after agent startup to begin taking heap dumps.
 # delay_ms: 10_000

 # Set the amount of time to wait, in milliseconds, between each heap \
dump.
 # window_ms: 10_000

 # Set the number of heap dumps to take before disabling this feature.
 # count: 5

 # Set to `true` for the agent to trigger garbage collection before
 # taking a heap dump to remove temproary objects from the dump.
 # clean: false

 # ==
====
 # agent.ruby
 # The following properties apply to any Ruby agent-wide configurations.
 # ==
====
 # ruby:

 # Allow the agent to track frozen Objects returned by
 # source methods. This configuration is on by default.
 # track_frozen_sources: NEEDS_TO_BE_SET

 # Allow the agent to track propagation through interpolated
 # Strings. This configuration is on by default.
 # interpolate: NEEDS_TO_BE_SET

 # Set a comma-separated string of rake tasks
 # in which to disable agent operation.
 # disabled_agent_rake_tasks: \
about,assets:clean,assets:clobber,assets:environment,assets:precompile,asset
s:precompile:all,db:create,db:drop,db:migrate:status,db:rollback,db:schema:c
ache:clear,db:schema:cache:dump,db:schema:dump,db:schema:load,db:seed,db:set
up,db:structure:dump,db:version,doc:app,log:clear,middleware,notes,notes:cus
tom,rails:template,rails:update,routes,secret,spec,spec:features,spec:reques
ts,spec:controllers,spec:helpers,spec:models,spec:views,spec:routing,spec:rc
ov,stats,test,test:all,test:all:db,test:recent,test:single,test:uncommitted,
time:zones:all,tmp:clear,tmp:create,webpacker:compile

==
====
inventory
Use the properties in this section to override the inventory features.
==
====
inventory:

Contrast Documentation

Agents 423

 # Set to `false` to disable inventory features in the agent.
 # enable: true

 # Apply a list of labels to libraries. Labels
 # must be formatted as a comma-delimited list.
 # Example - `label1, label2, label3`
 #
 # tags: NEEDS_TO_BE_SET

==
====
assess
Use the properties in this section to control Assess.
==
====
assess:

 # Include this property to determine if the Assess
 # feature should be enabled. If this property is not
 # present, the decision is delegated to the Contrast UI.
 # enable: false

 # Apply a list of labels to vulnerabilities and preflight
 # messages. Labels must be formatted as a comma-delimited list.
 # Example - `label1, label2, label3`
 #
 # tags: NEEDS_TO_BE_SET

 # Value options are `ALL`, `SOME`, or `NONE`.
 # stacktraces: ALL

 # ==
====
 # assess.sampling
 # Use the following properties to control sampling in the agent.
 # ==
====
 # sampling:

 # Set to `true` to enable sampling.
 # enable: false

 # This property indicates the number of requests
 # to analyze in each window before sampling begins.
 # baseline: 5

 # This property indicates that every *nth*
 # request after the baseline is analyzed.
 # request_frequency: 10

 # This property indicates the duration for which a sample set is valid.
 # window_ms: 180_000

 # ==

Contrast Documentation

Agents 424

====
 # assess.rules
 # Use the following properties to control simple rule configurations.
 # ==
====
 # rules:

 # Define a list of Assess rules to disable in the agent. To view a
 # list of rule names, in Contrast go to user menu > Policy Management >
 # Assess rules. The rules must be formatted as a comma-delimited list.
 #
 # Example - Set `reflected-xss,sql-injection` to disable
 # the reflected-xss rule and the sql-injection rule.
 #
 # disabled_rules: NEEDS_TO_BE_SET

==
====
protect
Use the properties in this section to override Protect features.
==
====
protect:

 # Include this property to determine if the Protect
 # feature should be enabled. If this property is not
 # present, the decision is delegated to the Contrast UI.
 # enable: false

 # ==
====
 # protect.rules
 # Use the following properties to set simple rule configurations.
 # ==
====
 # rules:

 # Define a list of Protect rules to disable in the agent. To view a
 # list of rule names, in Contrast go to user menu > Policy Management >
 # Protect rules. The rules must be formatted as a comma-delimited list.
 # disabled_rules: NEEDS_TO_BE_SET

 # ==
====
 # protect.rules.bot-blocker
 # Use the following selection to configure if the
 # agent blocks bots. Set to `true` to enable blocking.
 # ==
====
 # bot-blocker:

 # Set to `true` for the agent to block known bots.
 # enable: false

 # ==

Contrast Documentation

Agents 425

====
 # protect.rules.sql-injection
 # Use the following settings to configure the sql-injection rule.
 # ==
====
 # sql-injection:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or off.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.cmd-injection
 # Use the following properties to configure
 # how the command injection rule works.
 # ==
====
 # cmd-injection:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.path-traversal
 # Use the following properties to configure
 # how the path traversal rule works.
 # ==
====
 # path-traversal:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.method-tampering
 # Use the following properties to configure
 # how the method tampering rule works.
 # ==

Contrast Documentation

Agents 426

====
 # method-tampering:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.reflected-xss
 # Use the following properties to configure how
 # the reflected cross-site scripting rule works.
 # ==
====
 # reflected-xss:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.xxe
 # Use the following properties to configure
 # how the XML external entity works.
 # ==
====
 # xxe:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

==
====
application
Use the properties in this section for
the application(s) hosting this agent.
==
====
application:

 # Override the reported application name.

Contrast Documentation

Agents 427

 #
 # Note - On Java systems where multiple, distinct applications may be
 # served by a single process, this configuration causes the agent to \
report
 # all discovered applications as one application with the given name.
 #
 # name: NEEDS_TO_BE_SET

 # Override the reported application path.
 # path: NEEDS_TO_BE_SET

 # Add the name of the application group with which this
 # application should be associated in the Contrast UI.
 # group: NEEDS_TO_BE_SET

 # Add the application code this application should use in the Contrast UI.
 # code: NEEDS_TO_BE_SET

 # Override the reported application version.
 # version: NEEDS_TO_BE_SET

 # Apply labels to an application. Labels must
 # be formatted as a comma-delimited list.
 # Example - `label1,label2,label3`
 #
 # tags: NEEDS_TO_BE_SET

 # Define a set of `key=value` pairs (which conforms to RFC 2253) for
 # specifying user-defined metadata associated with the application. The
 # set must be formatted as a comma-delimited list of `key=value` pairs.
 # Example - `business-unit=accounting, office=Baltimore`
 #
 # metadata: NEEDS_TO_BE_SET

 # Provide the ID of a session which already exists in the Contrast
 # UI. Vulnerabilities discovered by the agent are associated with
 # this session. If an invalid ID is supplied, the agent will be
 # disabled. This option and `application.session_metadata` are
 # mutually exclusive; if both are set, the agent will be disabled.
 # session_id: NEEDS_TO_BE_SET

 # Provide metadata which is used to create a new session ID in the
 # Contrast UI. Vulnerabilities discovered by the agent are associated with
 # this new session. This value should be formatted as `key=value` pairs
 # (conforming to RFC 2253). Available key names for this configuration
 # are branchName, buildNumber, commitHash, committer, gitTag, repository,
 # testRun, and version. This option and `application.session_id` are
 # mutually exclusive; if both are set the agent will be disabled.
 # session_metadata: NEEDS_TO_BE_SET

==
====
server
Use the settings in this section to set metadata for the server
hosting this agent. Contrast recognizes common, supported server

Contrast Documentation

Agents 428

names, paths, types and environments. Doing this may require a new
server or license, and it may affect functionality of some features.
==
====
server:

 # Override the reported server name.
 # name: localhost

 # Override the reported server path.
 # path: NEEDS_TO_BE_SET

 # Override the reported server type.
 # type: NEEDS_TO_BE_SET

 # Set the environment directly to override the default set
 # by the Contrast UI. This allows the user to configure the
 # environment dynamically at startup rather than manually
 # updating the Server in the Contrast UI themselves afterwards.
 #
 # Valid values include `QA`, `PRODUCTION` and `DEVELOPMENT`.
 # For example, `PRODUCTION` registers this Server as
 # running in a `PRODUCTION` environment, regardless of the
 # organization's default environment in the Contrast UI.
 #
 # environment: NEEDS_TO_BE_SET

 # Apply a list of labels to the server. Labels
 # must be formatted as a comma-delimited list.
 # Example - `label1,label2,label3`
 #
 # tags: NEEDS_TO_BE_SET

==
====
Use the properties in this YAML file to configure a Contrast agent.
Go to https://docs.contrastsecurity.com/en/order-of-precedence.html
to determine the order of precedence for configuration values.
==
====

Use this setting if you want to temporarily disable a Contrast agent.
Set to `true` to enable the agent; set to `false` to disable the agent.
enable: true

==
====
api
Use the properties in this section to connect the agent to the Contrast \
UI.
==
====
api:

Contrast Documentation

Agents 429

 # ********************** REQUIRED **********************
 # Set the URL for the Contrast UI.
 url: https://app.contrastsecurity.com/Contrast

 # ********************** REQUIRED **********************
 # Set the API key needed to communicate with the Contrast UI.
 api_key: NEEDS_TO_BE_SET

 # ********************** REQUIRED **********************
 # Set the service key needed to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 service_key: NEEDS_TO_BE_SET

 # ********************** REQUIRED **********************
 # Set the user name used to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 user_name: NEEDS_TO_BE_SET

 # ==
====
 # api.certificate
 # Use the following properties for communication
 # with the Contrast UI using certificates.
 # ==
====
 # certificate:

 # If set to `false`, the agent will ignore the
 # certificate configuration in this section.
 # enable: true

 # Set the absolute or relative path to a CA for communication
 # with the Contrast UI using a self-signed certificate.
 # ca_file: NEEDS_TO_BE_SET

 # Set the absolute or relative path to the Certificate
 # PEM file for communication with the Contrast UI.
 # cert_file: NEEDS_TO_BE_SET

 # Set the absolute or relative path to the Key PEM
 # file for communication with the Contrast UI.
 # key_file: NEEDS_TO_BE_SET

 # ==
====
 # api.proxy
 # Use the following properties for communication
 # with the Contrast UI over a proxy.
 # ==
====
 # proxy:

 # Set value to `true` for the agent to communicate with
 # the Contrast web interface over a proxy. Set value to
 # `false` if you don't want to use the proxy. If no value is

Contrast Documentation

Agents 430

 # indicated, the presence of a valid **contrast.proxy.host**
 # and **contrast.proxy.port** will enable the proxy.
 # enable: NEEDS_TO_BE_SET

 # Set the URL for your Proxy Server. The URL form is `scheme://
host:port`.
 # url: NEEDS_TO_BE_SET

==
====
agent
Use the properties in this section to control the way and frequency
with which the agent communicates to logs and the Contrast UI.
==
====
agent:

 # ==
====
 # agent.logger
 # Define the following properties to set logging values.
 # If the following properties are not defined, the
 # agent uses the logging values from the Contrast UI.
 # ==
====
 # logger:

 # Enable diagnostic logging by setting a path to a log file.
 # While diagnostic logging hurts performance, it generates
 # useful information for debugging Contrast. The value set here
 # is the location to which the agent saves log output. If no
 # log file exists at this location, the agent creates a file.
 #
 # Example - `/opt/Contrast/contrast.log` creates a log in the
 # `/opt/Contrast` directory, and rotates it automatically as needed.
 #
 # path: ./contrast_agent.log

 # Set the the log output level. Valid options are
 # `ERROR`, `WARN`, `INFO`, `DEBUG`, and `TRACE`.
 # level: INFO

 # Override the name of the process the agents uses in logs.
 # progname: Contrast Agent

 # Set to `true` for the agent to tag
 # logs with `!AM!` for the metrics tool.
 # metrics: true

 # ==
====
 # agent.security_logger
 # Define the following properties to set security
 # logging values. If not defined, the agent uses the
 # security logging (CEF) values from the Contrast UI.

Contrast Documentation

Agents 431

 # ==
====
 # security_logger:

 # Set the file to which the agent logs security events.
 # path: ./contrast/security.log

 # Set the log level for security logging. Valid options
 # are `ERROR`, `WARN`, `INFO`, `DEBUG`, and `TRACE`.
 # level: ERROR

 # ==
====
 # agent.security_logger.syslog
 # Define the following properties to set Syslog values. If the \
properties
 # are not defined, the agent uses the Syslog values from the Contrast \
UI.
 # ==
====
 # syslog:

 # Set to `true` to enable Syslog logging.
 # enable: NEEDS_TO_BE_SET

 # Set the IP address of the Syslog server
 # to which the agent should send messages.
 # ip: NEEDS_TO_BE_SET

 # Set the port of the Syslog server to
 # which the agent should send messages.
 # port: NEEDS_TO_BE_SET

 # Set the facility code of the messages the agent sends to Syslog.
 # facility: 19

 # Set the log level of Exploited attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_exploited: ALERT

 # Set the log level of Blocked attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_blocked: NOTICE

 # Set the log level of Blocked At Perimeter
 # attacks. Value options are `ALERT`, `CRITICAL`,
 # `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_blocked_perimeter: NOTICE

 # Set the log level of Probed attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_probed: WARNING

 # Set the log level of Suspicious attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.

Contrast Documentation

Agents 432

 # severity_suspicious: WARNING

 # ==
====
 # agent.heap_dump
 # The following properties are used to trigger heap dumps from within
 # the agent to snapshot the behavior of instrumented applications.
 # ==
====
 # heap_dump:

 # Set to `true` for the agent to automatically
 # take heap dumps of the instrumented application.
 # enable: false

 # Set the location to which to save the heap dump files. If relative,
 # the path is determined based on the process' working directory.
 # path: contrast_heap_dumps

 # Set the amount of time to wait, in milliseconds,
 # after agent startup to begin taking heap dumps.
 # delay_ms: 10_000

 # Set the amount of time to wait, in milliseconds, between each heap \
dump.
 # window_ms: 10_000

 # Set the number of heap dumps to take before disabling this feature.
 # count: 5

 # Set to `true` for the agent to trigger garbage collection before
 # taking a heap dump to remove temproary objects from the dump.
 # clean: false

 # ==
====
 # agent.ruby
 # The following properties apply to any Ruby agent-wide configurations.
 # ==
====
 # ruby:

 # Allow the agent to track frozen Objects returned by
 # source methods. This configuration is on by default.
 # track_frozen_sources: NEEDS_TO_BE_SET

 # Allow the agent to track propagation through interpolated
 # Strings. This configuration is on by default.
 # interpolate: NEEDS_TO_BE_SET

 # Set a comma-separated string of rake tasks
 # in which to disable agent operation.
 # disabled_agent_rake_tasks: \
about,assets:clean,assets:clobber,assets:environment,assets:precompile,asset
s:precompile:all,db:create,db:drop,db:migrate:status,db:rollback,db:schema:c

Contrast Documentation

Agents 433

ache:clear,db:schema:cache:dump,db:schema:dump,db:schema:load,db:seed,db:set
up,db:structure:dump,db:version,doc:app,log:clear,middleware,notes,notes:cus
tom,rails:template,rails:update,routes,secret,spec,spec:features,spec:reques
ts,spec:controllers,spec:helpers,spec:models,spec:views,spec:routing,spec:rc
ov,stats,test,test:all,test:all:db,test:recent,test:single,test:uncommitted,
time:zones:all,tmp:clear,tmp:create,webpacker:compile

==
====
inventory
Use the properties in this section to override the inventory features.
==
====
inventory:

 # Set to `false` to disable inventory features in the agent.
 # enable: true

 # Apply a list of labels to libraries. Labels
 # must be formatted as a comma-delimited list.
 # Example - `label1, label2, label3`
 #
 # tags: NEEDS_TO_BE_SET

==
====
assess
Use the properties in this section to control Assess.
==
====
assess:

 # Include this property to determine if the Assess
 # feature should be enabled. If this property is not
 # present, the decision is delegated to the Contrast UI.
 # enable: false

 # Apply a list of labels to vulnerabilities and preflight
 # messages. Labels must be formatted as a comma-delimited list.
 # Example - `label1, label2, label3`
 #
 # tags: NEEDS_TO_BE_SET

 # Value options are `ALL`, `SOME`, or `NONE`.
 # stacktraces: ALL

 # ==
====
 # assess.sampling
 # Use the following properties to control sampling in the agent.
 # ==
====
 # sampling:

 # Set to `true` to enable sampling.

Contrast Documentation

Agents 434

 # enable: false

 # This property indicates the number of requests
 # to analyze in each window before sampling begins.
 # baseline: 5

 # This property indicates that every *nth*
 # request after the baseline is analyzed.
 # request_frequency: 10

 # This property indicates the duration for which a sample set is valid.
 # window_ms: 180_000

 # ==
====
 # assess.rules
 # Use the following properties to control simple rule configurations.
 # ==
====
 # rules:

 # Define a list of Assess rules to disable in the agent. To view a
 # list of rule names, in Contrast go to user menu > Policy Management >
 # Assess rules. The rules must be formatted as a comma-delimited list.
 #
 # Example - Set `reflected-xss,sql-injection` to disable
 # the reflected-xss rule and the sql-injection rule.
 #
 # disabled_rules: NEEDS_TO_BE_SET

==
====
protect
Use the properties in this section to override Protect features.
==
====
protect:

 # Include this property to determine if the Protect
 # feature should be enabled. If this property is not
 # present, the decision is delegated to the Contrast UI.
 # enable: false

 # ==
====
 # protect.rules
 # Use the following properties to set simple rule configurations.
 # ==
====
 # rules:

 # Define a list of Protect rules to disable in the agent. To view a
 # list of rule names, in Contrast go to user menu > Policy Management >
 # Protect rules. The rules must be formatted as a comma-delimited list.
 # disabled_rules: NEEDS_TO_BE_SET

Contrast Documentation

Agents 435

 # ==
====
 # protect.rules.bot-blocker
 # Use the following selection to configure if the
 # agent blocks bots. Set to `true` to enable blocking.
 # ==
====
 # bot-blocker:

 # Set to `true` for the agent to block known bots.
 # enable: false

 # ==
====
 # protect.rules.sql-injection
 # Use the following settings to configure the sql-injection rule.
 # ==
====
 # sql-injection:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or off.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.cmd-injection
 # Use the following properties to configure
 # how the command injection rule works.
 # ==
====
 # cmd-injection:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.path-traversal
 # Use the following properties to configure
 # how the path traversal rule works.
 # ==
====
 # path-traversal:

Contrast Documentation

Agents 436

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.method-tampering
 # Use the following properties to configure
 # how the method tampering rule works.
 # ==
====
 # method-tampering:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.reflected-xss
 # Use the following properties to configure how
 # the reflected cross-site scripting rule works.
 # ==
====
 # reflected-xss:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.xxe
 # Use the following properties to configure
 # how the XML external entity works.
 # ==
====
 # xxe:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",

Contrast Documentation

Agents 437

 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

==
====
application
Use the properties in this section for
the application(s) hosting this agent.
==
====
application:

 # Override the reported application name.
 #
 # Note - On Java systems where multiple, distinct applications may be
 # served by a single process, this configuration causes the agent to \
report
 # all discovered applications as one application with the given name.
 #
 # name: NEEDS_TO_BE_SET

 # Override the reported application path.
 # path: NEEDS_TO_BE_SET

 # Add the name of the application group with which this
 # application should be associated in the Contrast UI.
 # group: NEEDS_TO_BE_SET

 # Add the application code this application should use in the Contrast UI.
 # code: NEEDS_TO_BE_SET

 # Override the reported application version.
 # version: NEEDS_TO_BE_SET

 # Apply labels to an application. Labels must
 # be formatted as a comma-delimited list.
 # Example - `label1,label2,label3`
 #
 # tags: NEEDS_TO_BE_SET

 # Define a set of `key=value` pairs (which conforms to RFC 2253) for
 # specifying user-defined metadata associated with the application. The
 # set must be formatted as a comma-delimited list of `key=value` pairs.
 # Example - `business-unit=accounting, office=Baltimore`
 #
 # metadata: NEEDS_TO_BE_SET

 # Provide the ID of a session which already exists in the Contrast
 # UI. Vulnerabilities discovered by the agent are associated with
 # this session. If an invalid ID is supplied, the agent will be
 # disabled. This option and `application.session_metadata` are
 # mutually exclusive; if both are set, the agent will be disabled.
 # session_id: NEEDS_TO_BE_SET

Contrast Documentation

Agents 438

 # Provide metadata which is used to create a new session ID in the
 # Contrast UI. Vulnerabilities discovered by the agent are associated with
 # this new session. This value should be formatted as `key=value` pairs
 # (conforming to RFC 2253). Available key names for this configuration
 # are branchName, buildNumber, commitHash, committer, gitTag, repository,
 # testRun, and version. This option and `application.session_id` are
 # mutually exclusive; if both are set the agent will be disabled.
 # session_metadata: NEEDS_TO_BE_SET

==
====
server
Use the settings in this section to set metadata for the server
hosting this agent. Contrast recognizes common, supported server
names, paths, types and environments. Doing this may require a new
server or license, and it may affect functionality of some features.
==
====
server:

 # Override the reported server name.
 # name: localhost

 # Override the reported server path.
 # path: NEEDS_TO_BE_SET

 # Override the reported server type.
 # type: NEEDS_TO_BE_SET

 # Set the environment directly to override the default set
 # by the Contrast UI. This allows the user to configure the
 # environment dynamically at startup rather than manually
 # updating the Server in the Contrast UI themselves afterwards.
 #
 # Valid values include `QA`, `PRODUCTION` and `DEVELOPMENT`.
 # For example, `PRODUCTION` registers this Server as
 # running in a `PRODUCTION` environment, regardless of the
 # organization's default environment in the Contrast UI.
 #
 # environment: NEEDS_TO_BE_SET

 # Apply a list of labels to the server. Labels
 # must be formatted as a comma-delimited list.
 # Example - `label1,label2,label3`
 #
 # tags: NEEDS_TO_BE_SET

Ruby frameworks
Application frameworks are software libraries that provide a fundamental structure to support the
development of applications for a specific environment.

Follow these guidelines based on your framework:

Contrast Documentation

Agents 439

Configure with Grape
If you are using the Grape framework, you must configure your application to use the Ruby agent. A
simple application configured to work with the Ruby agent looks like the following example:

require 'grape'
require 'contrast-agent'

class App < Grape::API
 use Contrast::Agent::Middleware, true
end

Configure Grape with config.ru
If there is no class extending, Grape::API or config.ru is the default way of racking up your
application with the following configuration:

config.ru

frozen_string_literal: true

require 'rack'
Require Grape early for Framework support to detect it.
require 'Grape'

example app.rb, could be any file implementing Grape
endpoints and logic.
#
For instance:
#
frozen_string_literal: true
#
require 'Grape'
#
class App
def initialize
@filenames = ['', '.html', 'index.html', '/index.html']
@rack_static = ::Rack::Static.new(
lambda { [404, {}, []] },
root: File.expand_path('../public', __dir__),
urls: ['/']
)
end
#
def self.instance
@instance ||= Rack::Builder.new do
use Rack::Cors do
allow do
origins '*'
resource '*', headers: :any, methods: :get
end
end
#
run App.new
end.to_app
end

def call(env)

Contrast Documentation

Agents 440

Grape::API impleted in API module:
API.call(env)
handle response
......
end
end
#
require './app.rb'

Contrast Agent needs to be required after Grape.
require 'contrast-agent'

Example for requiring gems:
require 'bundler/setup'
Bundler.require(:default)

Add Contrast Agent middleware to the rack stack:
use Contrast::Agent::Middleware, true

Run Grape application:
run App.instance

Start the application with:

bundle exec rackup

OR

bundle exec rackup config.ru

Configure with Rails
If you are using Rails, the Ruby agent functions as a Railtie so no additional configuration is required.

Configure with Sinatra
If you are using the Sinatra framework, you must configure your application to use the Ruby agent. A
simple application configured to work with the Ruby agent looks like the following example:

require 'sinatra'
require 'contrast-agent'

class App < Sinatra::Base
 use Contrast::Agent::Middleware, true
end

Configure Sinatra with config.ru
If there is no class extending, Sinatra::Base or config.ru is the default way of racking up your
application with the following configuration:

config.ru

frozen_string_literal: true

Require Sinatra early for Framework support to detect it.
require 'sinatra'

example app.rb, could be any file implementing Sinatra
endpoints and logic.

Contrast Documentation

Agents 441

https://github.com/rails/rails/tree/master/railties

#
For instance:
#
frozen_string_literal: true
#
require 'sinatra'
#
get '/frank-says' do
'Put this in your pipe & smoke it!'
end
#
require './app.rb'

Contrast Agent needs to be required after sinatra.
require 'contrast-agent'

Example for requiring gems:
require 'bundler/setup'
Bundler.require(:default)

Add Contrast Agent middleware to the rack stack:
use Contrast::Agent::Middleware, true

Run Sinatra application:
run Sinatra::Application

Start the application with:

bundle exec rackup

OR

bundle exec rackup config.ru

See also

• Configure the Ruby agent (page 418)
• Ruby supported technologies (page 414)

Ruby web servers
Web Servers are technologies that deploy Web Application Frameworks. These servers manage
the application processes and receive HTTP requests which they forward to said Web Application
Frameworks.

Follow the guidelines based on your web server:

• Passenger (page 443)
• Puma (page 446)
• Thin (page 448)
• Unicorn (page 449)

See also

• Configure the Ruby agent (page 418)
• Ruby supported technologies (page 414)

Contrast Documentation

Agents 442

Configure Passenger
Sometimes the Ruby agent pushes the application over the timeout threshold and that prevents the
server from startup. This can be prevented by server configuration.

Passenger can be configured in Standalone mode or along side HTTP severs: Passenger + NGINX or
Passenger + Apache.

The standard way of configuration in Standalone mode goes through these three options:

1. Command line options:

$ passenger start --start-timeout 100

2. Environment variables:

$ env PASSENGER_START_TIMEOUT=100 passenger start

3. Passengerfile.json (must be located in the application directory):

{
 "start_timeout": "100"
}

The order of configurations (most to least precedent):

• Command line options
• Environment variables
• Passengerfile.json

NOTE
An exception is made for mass deployment, then pre-app configurations are
overridden both for command line and environment variables.

Passenger in NGINX or Apache mode is configured via the corresponding Apache or NGINX
configuration files. These modes don not consult with Passengerfile.json.

example of an Nginx configuration file which also configures Passenger:

server {
 server_name yourserver.com;
 root /var/www/myapp/code/public;
 passenger_enabled on;
 passenger_ruby /usr/bin/ruby2.0;
 passenger_sticky_sessions on;
}

example of an Apache configuration file which also configures Passenger:

<VirtualHost *:80>
 ServerName yourserver.com
 DocumentRoot /var/www/myapp/code/public
 PassengerStickySessions on

 <Directory /var/www/myapp/code/public>
 Allow from all

Contrast Documentation

Agents 443

https://www.phusionpassenger.com/library/deploy/standalone/mass_deployment.html

 Options -MultiViews
 Require all granted
 </Directory>
</VirtualHost>

Timeouts

• Max request time - The maximum amount of time, in seconds, that an application process may
take to process a request. If the request takes longer than this amount of time, then the application
process will be forcefully shut down, and possibly restarted upon the next request. A value of 0
means that there is no time limit. This is an enterprise only configuration.
• Default value: 0
• Command line:

$ passenger start --max-request-time SECONDS

• Environment variables:

• Passengerfile.json:

{
 "max_request_time": integer
}

• Max request queue time - When all concurrent requests are handled and their maximum number
is reached, Passenger will queue all incoming requests. This option specifies the maximum time
a request may spend in that queue. If a request in the queue reaches this specified limit, then
Passenger will send a "504 Gateway Timeout" error for that request. A value of 0 means that the
queue time is unbounded. This is an enterprise only configuration.
• Default value: 0
• Command line:

$ passenger start --max-request-queue-time NUMBER

• Environment variables:

PASSENGER_MAX_REQUEST_QUEUE_TIME=integer

• Passengerfile.json:

{
 "max_request_queue_time": integer
}

• Pool idle time - Maximum time for idle application process. If an application process hasn't received
any traffic after the given number of seconds, then it will be shutdown in order to conserve memory.
When this value is set to 0, application processes will not be shutdown unless manual killed or crush
occurs. Decreasing this value means that application processes will have to be spawned more often.
• Default value: 300 (5 minutes)
• Command line:

$ passenger start --pool-idle-time SECONDS

• Environment variables:

PASSENGER_POOL_IDLE_TIME=integer

• Passengerfile.json:

{
 "pool_idle_time": integer
}

• Max preload idle time - Timeout for automatically shutdown a preloader process if it hasn't done
anything for a given period. This option allows you to set the preloader's idle timeout, in seconds. A

Contrast Documentation

Agents 444

value of 0 means that it should never idle timeout. Setting a higher value will mean that the preloader
is kept around longer, which may slightly increase memory usage. But as long as the preloader
server is running, the time to spawn a Ruby application process only takes about 10% of the time that
is normally needed.
• Default value: 300 (5 minutes)
• Command line:

$ passenger start --max-preloader-idle-time SECONDS

• Environment variables:

PASSENGER_MAX_PRELOADER_IDLE_TIME=integer

• Passengerfile.json:

{
 "max_preloader_idle_time": integer
}

• Start timeout - Timeout for the startup of application. If an application process fails to start within the
timeout period then it will be forcefully killed with SIGKILL, and the error will be logged.
• Default value: 90
• Command line:

$ passenger start --start-timeout SECONDS;

• Environment variables:

PASSENGER_START_TIMEOUT=integer

• Passengerfile.json:

{
 "start_timeout": integer
}

Forking
Passenger is more like a process manager and instead of running application inside its own process
space it launches it as external process and handle the management. This includes shut down of
unused processes, or restarting them when they crash. An instance of an application is called a
process. Passenger takes care of starting and stopping application.

Spawning is when Passenger starts an instance of an application. There are two methods for spawning
an application in Passenger:

• Direct: new Ruby process with full copy of the application code and the web framework in memory.
This approach uses more memory and takes more time to start.

• Smart: For Ruby apps this method is default. It begins with 'preloader' process. This process loads
the entire application along with the web framework, by loading the file config.ru. The preloader
process doesn't participate in request handling. Whenever new application process is needed the
preloader spawns a child process (with the fork() system call).
The command used for creating a new fork is:

$ bundle exec passenger start --min-instances 2

This tells Passenger to keep 2 instances of the application.
• Default value: 1
• Default pool size for instances: 6
• Passengerfile.json:

Contrast Documentation

Agents 445

{
 "max_pool_size": 6
}

When a request is handled, Passenger will pass it to the process with the least number of requests. If
a process is killed, it is restarted automatically. Processes are also dynamically scaled, depending on
traffic, spawning new forks up to the maximum pool number.

See also

• Configure the Ruby agent (page 418)
• Ruby supported technologies (page 414)

Configure Puma
Sometimes the Ruby agent pushes the application over the timeout threshold and that prevents the
server from startup. This can be prevented by server configuration.

Puma can be configured directly through the CLI, in the config/puma.rb or config.ru files.

Timeouts
While the agent should work with the default or your custom configuration, it adds overhead to the first
request. As such, you may need to increase timeouts, and here’s how:

IMPORTANT
Some of the options are available only in Cluster Mode. All of the available options for
the timeouts are listed in the puma/dsl.rb.

• persistent_timeout(seconds) - Define how long persistent connections can be idle before Puma
closes them. The seconds are passed as integers.

• first_data_timeout(seconds) - Define how long the tcp socket stays open, if no data has been
received. The seconds are passed as integers.

• *force_shutdown_after(val=:forever) *- How long to wait for threads to stop when shutting
them down. You can pass seconds too, but you can pass symbols between :forever
and :immediately.
• :forever - the value is set to -1
• :immediately - the value is set to 0
• seconds - it sets them directly as the timeout

NOTE
Puma always waits a couple of seconds before shutdown, even in immediately
mode.

The following options are only available in cluster mode:

• worker_timeout(seconds) - Verifies that all workers have checked in to the master process within
the given timeout. This timeout is to protect against dead or hung processes. Setting this value will
not protect against slow requests. The minimum value is 6 seconds, the default value is 60 seconds.

• worker_boot_timeout(seconds) - change the default worker timeout for booting. If unspecified - it
will default to the value of worker_timeout.

Contrast Documentation

Agents 446

https://github.com/puma/puma/blob/master/lib/puma/dsl.rb

• worker_shutdown_timeout(seconds) - Set the timeout for worker shutdown.
• wait_for_less_busy_worker(val=0.005) - attempts to route traffic to less-busy workers by causing

them to delay listening on the socket, allowing workers which are not processing any requests to pick
up new requests first.

NOTE
This setting only works with MRI. For all other interpreters, this setting does nothing.

Puma initially sets two default timeout values:

• DefaultWorkerTimeout = 60
• DefaultWorkerShutdownTimeout = 30

To apply all of the timeouts settings, Puma must be configured to work in Cluster Mode.

Forking
Cluster mode is introduced in Puma 5, which allows Puma to fork workers from worker 0, instead of
directly from the master process.

Similar to the preload_app option, the fork_worker option allows your application to be initialized
only once for copy-on-write memory savings.

This actual mode has couple of advantages, and the first one is that it’s compatible with a phased
restart. The master process initially does not preload the application and that's why this mode works
with phased restart. When worker 0 reloads as part of a phased restart, it initializes a new copy of your
application first, then the other workers reload by forking from this new worker already containing the
new preloaded application.

TIP
A phased restart replaces all running workers in Puma cluster. It is done by first
killing an old worker, then starting a new worker, waiting until the new worker has
successfully started before proceeding to the next worker, until it goes through all
workers. The master process is not restarted.

This allows a phased restart to complete as quickly as a hot restart while still minimizing downtime by
staggering the restart across cluster workers.

The other advantage is that a refork command is added for additional copy-on-write improvements in
running applications and the idea is that it re-loads all nonzero workers by re-forking them from worker
0.

This command can potentially improve memory utilization in large or complex applications that don't
fully pre-initialize on startup, because the re-forked workers can share copy-on-write memory with a
worker that has been running for a while and serving requests.

A refork will also automatically trigger once, after a certain number of requests have been processed
by worker 0 (default 1000). To configure the number of requests before the auto-refork, pass a positive
integer argument to fork_worker (e.g., fork_worker 1000), or 0 to disable.

Limitations:

Contrast Documentation

Agents 447

• Cluster mode is not compatible with preload_app.
• In order to fork new workers cleanly, worker 0 shuts down its server and stops serving requests so

there are no open file descriptors or other kinds of shared global state between processes, and to
maximize copy-on-write efficiency across the newly-forked workers. This may temporarily reduce total
capacity of the cluster during a phased restart / refork.

After going through fork_worker and re-fork commands, these are other clustered (fork worker)
commands:

• *workers(count) *- How many worker processes to run. Typically this is set to the number of
available cores. The default is the value of the environment variable WEB_CONCURRENCY if set,
otherwise 0.

• before_fork(&block) - code to run immediately before master process forks workers (once on boot).
These hooks can block if necessary to wait for background operations unknown to Puma to finish
before the process terminates.

• on_worker_boot(&block) - code to run in a worker when it boots to setup the process before
booting the app.

• on_worker_shutdown(&block) - code to run immediately before a worker shuts down (after it has
finished processing HTTP requests)

• on_worker_fork(&block) - code to run in the master right before a worker is started. The worker's
index is passed as an argument.

• after_worker_fork(&block) - code to run in the master after a worker has been started. The worker's
index is passed as an argument.

• on_refork(&block) - When enabled, code to run in Worker 0 before all other workers are re-
forked from this process, after the server has temporarily stopped serving requests (once per
complete refork cycle).This can be used to trigger extra garbage-collection to maximize copy-on-write
efficiency, or close any connections to remote servers(database, Redis, ...) that were opened while
the server was running.

• out_of_band(&block) - code to run out-of-band when the worker is idle.These hooks run
immediately after a request has finished processing and there are no busy threads on the worker.
The worker doesn't accept new requests until this code finishes. This hook is useful for running
out-of-band garbage collection or scheduling asynchronous tasks to execute after a response.

• fork_worker(after_request=1000) - When enabled, workers will be forked from worker 0 instead of
from the master process. This option is similar to `preload_app` because the app is preloaded before
forking, but it is compatible with phased restart. This option also enables the refork command.

• nakayoshi_fork(enabled=true) - This is kind of different, but when enabled, Puma will GC 4 times
before forking workers. It will increase time to boot and fork. See your logs for details on how much
time this adds to your boot process. For most apps, it will be less than one second.This fork method
is based on the work of Koichi Sasada and Aaron Patterson and this option may decrease memory
utilization of preload-enabled cluster-mode Pumas.

NOTE
If available (Ruby 2.7+), it will also call GC.compact.

Not recommended for non-MRI Rubies.

See also

• Configure the Ruby agent (page 418)
• Ruby supported technologies (page 414)

Configure Thin
Sometimes the Ruby agent pushes the application over the timeout threshold and that prevents the
server from startup. This can be prevented by server configuration.

Contrast Documentation

Agents 448

Thin is lightweight web server, supporting clusters and providing options to set timeouts and wait time.
Thin accepts CLI commands or adding a config.yml file in which you can set all the settings you
need.

Timeouts
The wait option is the maximum wait time for the server to be restarted within a cluster.

The timeout option is the maximum number of seconds for incoming data to arrive before the
connection is dropped.

Forking
Thin supports clusters and you can run several server instances on different ports.

These are the available options:

cluster options:
-s, --servers NUM Number of servers to start
-o, --only NUM Send command to only one server of the \
cluster
-C, --config FILE Load options from config file
-O, --onebyone Restart the cluster one by one (only \
works with restart command)
-w, --wait NUM Maximum wait time for server to be \
started in seconds (use with -O)

There is also an experimental tuning option that can be run alongside clusters:

--threaded Call the Rack application in threads \
[experimental]

See also

• Configure the Ruby agent (page 418)
• Ruby supported technologies (page 414)

Configure Unicorn
Unicorn is single-threaded and multi-processed. It doesn't adjust the number of processes automatically
based on traffic. You must use a unicorf.conf.rb or unicorn.conf.minimal.rb file, or a script,
to configure this.

• Example for unicorn.conf.rb:

Define your root directory.
root = "/home/deployer/apps/gifroll/current"

Define worker directory for Unicorn.
working_directory "/path/to/app/current"

Define number of worker processes.
Each forked OS process consumes additional memory.
worker_processes 4

Define timeout for hanging workers before they are restarted.
timeout 30

Location of PID file.
pid "/path/to/app/shared/pids/unicorn.pid"

Contrast Documentation

Agents 449

Define log paths:

Allow redirecting $stderr to a given path. Unlike doing this from the \
shell,
this allows the Unicorn process to know the path being written to and \
rotates
the file if it is used for logging.
stderr_path "#{root}/log/unicorn.log"

Same as stderr_path, except for $stdout. Not many Rack applications \
write
to $stdout, but any that do will have their output written here.
stdout_path "#{root}/log/unicorn.log"

Loads Rails before forking workers for better worker spawn time.
Preloading your application reduces the startup time of individual
Unicorn worker_processes and allows you to manage the external \
connections
of each individual worker using the before_fork and after_fork calls.
#
Please check if other external connections work properly with
Unicorn forking. Many popular gems (dalli memcache client, Redis) will \
have
compatibility confirmation with Unicorn and the process model.
Check the gem documentation for more information.
preload_app true

When enabled, Unicorn will check the client connection by writing the
beginning of the HTTP headers before calling the application. This will
prevent calling the application for clients who have disconnected while
their connection was queued.
check_client_connection false

Enable a local variable to guard against running a hook (before_fork, \
after_fork)
multiple times
run_once = true

For example, use of before_fork and after_fork:
#
POSIX Signals are a form of interprocess communication, and signal
events or state changes.
QUIT: Signals a process to exit, but creates a core dump.
TERM: Tells a process to terminate, but allows the process
to clean up after itself.
#
Unicorn uses the QUIT signal to indicate a graceful shutdown.
The master process receives it and sends it to all workers, telling \
them to
shutdown after any in-flight request.
before_fork do |server, worker|
 Signal.trap 'TERM' do
 puts 'Unicorn master intercepting TERM and sending myself QUIT \
instead'

Contrast Documentation

Agents 450

 Process.kill 'QUIT', Process.pid
 end

 # You may want to execute code in the master process, before the forking
 # begins, to deal with operations that causes changes in state.
 # You need them to run once:
 if run_once
 # do_something_once_here ...
 run_once = false # prevent from firing again
 end
end

after_fork do |server, worker|
 Signal.trap 'TERM' do
 puts 'Unicorn worker intercepting TERM and doing nothing. Wait for \
master to send QUIT'
 end
 # ...
end

For more information, check the Unicorn Configurator: https://msp-
greg.github.io/unicorn/Unicorn/Configurator.html

• Example for unicorn.conf.minimal.rb:

listen 2007 # by default Unicorn listens on port 8080
worker_processes 2 # this should be >= nr_cpus
pid "/path/to/app/shared/pids/unicorn.pid"
stderr_path "/path/to/app/shared/log/unicorn.log"
stdout_path "/path/to/app/shared/log/unicorn.log"

Configure forking
Unicorn has a multi-process architecture to make better use of available CPU cores. On startup,
the Unicorn master process loads the application code and then spawns workers which inherit the
application code from their master process. The requests are handled only by the workers and never by
the master. The operating system network stack queues incoming requests and distributes them among
the workers.

Unicorn is designed to replace crashed workers without dropping user requests. When a worker
reaches the request timeout, the master process ends it (with kill -9) and replaces it with a new
process. You can configure the number of worker processes and the request timeout.

Configurations Description
worker_processes (nr) Sets the current number of worker_processes to nr. Each worker

process will serve exactly one client at a time. You can increment
or decrement this value at runtime by sending signals SIGTTIN or
SIGTTOU respectively to the master process without reloading the
rest of your Unicorn configuration.

You can read more about signals on Unicorn's site.

Unicorn::Configurator#after_fork Sets after_fork hook to a given block

Unicorn::Configurator#before_fork Sets before_fork hook to a given block.

Unicorn::Configurator#preload_app(bool) �
ObjectEnabling

This preloads an application before forking worker processes. This
allows memory savings when using a copy-on-write-friendly GC but
can cause bad things to happen when resources like sockets are
opened at load time by the master process and shared by multiple
children.

Contrast Documentation

Agents 451

https://yhbt.net/unicorn/SIGNALS.html

Configure timeouts

Variable Description Default value

timeout 30 This sets the timeout of worker processes to 30 seconds, the default value is 60 seconds.
The timeout configuration will end workers that exceed this limit. This timeout is enforced by
the master process itself and not subject to the scheduling limitations by the worker process.

60 seconds

delay integer This sets the seconds to wait between successful tries. 0.5 seconds

TIP
Unicorn works with nginx for more settings.

Configure APMs
The following APMs support Unicorn:

• Scout has a separate class for Unicorn integration.
• New Relic
• AppDynamics

See also

• Configure the Ruby agent (page 418)
• Ruby supported technologies (page 414)

Ruby YAML template
Use this template to configure the Ruby agent using a YAML configuration file. (Learn more about
YAML configuration (page 73).)

Place your YAML file in the default location: /etc/contrast/contrast_security.yaml

==
====
Use the properties in this YAML file to configure a Contrast agent.
Go to https://docs.contrastsecurity.com/en/order-of-precedence.html
to determine the order of precedence for configuration values.
==
====

Use this setting if you want to temporarily disable a Contrast agent.
Set to `true` to enable the agent; set to `false` to disable the agent.
enable: true

==
====
api
Use the properties in this section to connect the agent to the Contrast \
UI.
==
====

Contrast Documentation

Agents 452

http://nginx.org/en/docs/
https://scoutapm.com/docs/ruby/configuration
https://www.rubydoc.info/gems/scout_apm/1.6.1/ScoutApm/Environment
https://docs.newrelic.com/docs/apm/agents/ruby-agent/getting-started/ruby-agent-requirements-supported-frameworks/
https://docs.appdynamics.com/display/RUBY/Getting+Started+with+Ruby+Agent

api:

 # ********************** REQUIRED **********************
 # Set the URL for the Contrast UI.
 url: https://app.contrastsecurity.com/Contrast

 # ********************** REQUIRED **********************
 # Set the API key needed to communicate with the Contrast UI.
 api_key: NEEDS_TO_BE_SET

 # ********************** REQUIRED **********************
 # Set the service key needed to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 service_key: NEEDS_TO_BE_SET

 # ********************** REQUIRED **********************
 # Set the user name used to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 user_name: NEEDS_TO_BE_SET

 # ==
====
 # api.certificate
 # Use the following properties for communication
 # with the Contrast UI using certificates.
 # ==
====
 # certificate:

 # If set to `false`, the agent will ignore the
 # certificate configuration in this section.
 # enable: true

 # Set the absolute or relative path to a CA for communication
 # with the Contrast UI using a self-signed certificate.
 # ca_file: NEEDS_TO_BE_SET

 # Set the absolute or relative path to the Certificate
 # PEM file for communication with the Contrast UI.
 # cert_file: NEEDS_TO_BE_SET

 # Set the absolute or relative path to the Key PEM
 # file for communication with the Contrast UI.
 # key_file: NEEDS_TO_BE_SET

 # ==
====
 # api.proxy
 # Use the following properties for communication
 # with the Contrast UI over a proxy.
 # ==
====
 # proxy:

 # Set value to `true` for the agent to communicate with

Contrast Documentation

Agents 453

 # the Contrast web interface over a proxy. Set value to
 # `false` if you don't want to use the proxy. If no value is
 # indicated, the presence of a valid **contrast.proxy.host**
 # and **contrast.proxy.port** will enable the proxy.
 # enable: NEEDS_TO_BE_SET

 # Set the URL for your Proxy Server. The URL form is `scheme://
host:port`.
 # url: NEEDS_TO_BE_SET

==
====
agent
Use the properties in this section to control the way and frequency
with which the agent communicates to logs and the Contrast UI.
==
====
agent:

 # ==
====
 # agent.logger
 # Define the following properties to set logging values.
 # If the following properties are not defined, the
 # agent uses the logging values from the Contrast UI.
 # ==
====
 # logger:

 # Enable diagnostic logging by setting a path to a log file.
 # While diagnostic logging hurts performance, it generates
 # useful information for debugging Contrast. The value set here
 # is the location to which the agent saves log output. If no
 # log file exists at this location, the agent creates a file.
 #
 # Example - `/opt/Contrast/contrast.log` creates a log in the
 # `/opt/Contrast` directory, and rotates it automatically as needed.
 #
 # path: ./contrast_agent.log

 # Set the the log output level. Valid options are
 # `ERROR`, `WARN`, `INFO`, `DEBUG`, and `TRACE`.
 # level: INFO

 # Override the name of the process the agents uses in logs.
 # progname: Contrast Agent

 # Set to `true` for the agent to tag
 # logs with `!AM!` for the metrics tool.
 # metrics: true

 # ==
====
 # agent.security_logger
 # Define the following properties to set security

Contrast Documentation

Agents 454

 # logging values. If not defined, the agent uses the
 # security logging (CEF) values from the Contrast UI.
 # ==
====
 # security_logger:

 # Set the file to which the agent logs security events.
 # path: ./contrast/security.log

 # Set the log level for security logging. Valid options
 # are `ERROR`, `WARN`, `INFO`, `DEBUG`, and `TRACE`.
 # level: ERROR

 # ==
====
 # agent.security_logger.syslog
 # Define the following properties to set Syslog values. If the \
properties
 # are not defined, the agent uses the Syslog values from the Contrast \
UI.
 # ==
====
 # syslog:

 # Set to `true` to enable Syslog logging.
 # enable: NEEDS_TO_BE_SET

 # Set the IP address of the Syslog server
 # to which the agent should send messages.
 # ip: NEEDS_TO_BE_SET

 # Set the port of the Syslog server to
 # which the agent should send messages.
 # port: NEEDS_TO_BE_SET

 # Set the facility code of the messages the agent sends to Syslog.
 # facility: 19

 # Set the log level of Exploited attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_exploited: ALERT

 # Set the log level of Blocked attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_blocked: NOTICE

 # Set the log level of Blocked At Perimeter
 # attacks. Value options are `ALERT`, `CRITICAL`,
 # `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_blocked_perimeter: NOTICE

 # Set the log level of Probed attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_probed: WARNING

Contrast Documentation

Agents 455

 # Set the log level of Suspicious attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_suspicious: WARNING

 # ==
====
 # agent.heap_dump
 # The following properties are used to trigger heap dumps from within
 # the agent to snapshot the behavior of instrumented applications.
 # ==
====
 # heap_dump:

 # Set to `true` for the agent to automatically
 # take heap dumps of the instrumented application.
 # enable: false

 # Set the location to which to save the heap dump files. If relative,
 # the path is determined based on the process' working directory.
 # path: contrast_heap_dumps

 # Set the amount of time to wait, in milliseconds,
 # after agent startup to begin taking heap dumps.
 # delay_ms: 10_000

 # Set the amount of time to wait, in milliseconds, between each heap \
dump.
 # window_ms: 10_000

 # Set the number of heap dumps to take before disabling this feature.
 # count: 5

 # Set to `true` for the agent to trigger garbage collection before
 # taking a heap dump to remove temproary objects from the dump.
 # clean: false

 # ==
====
 # agent.ruby
 # The following properties apply to any Ruby agent-wide configurations.
 # ==
====
 # ruby:

 # Allow the agent to track frozen Objects returned by
 # source methods. This configuration is on by default.
 # track_frozen_sources: NEEDS_TO_BE_SET

 # Allow the agent to track propagation through interpolated
 # Strings. This configuration is on by default.
 # interpolate: NEEDS_TO_BE_SET

 # Set a comma-separated string of rake tasks
 # in which to disable agent operation.
 # disabled_agent_rake_tasks: \

Contrast Documentation

Agents 456

about,assets:clean,assets:clobber,assets:environment,assets:precompile,asset
s:precompile:all,db:create,db:drop,db:migrate:status,db:rollback,db:schema:c
ache:clear,db:schema:cache:dump,db:schema:dump,db:schema:load,db:seed,db:set
up,db:structure:dump,db:version,doc:app,log:clear,middleware,notes,notes:cus
tom,rails:template,rails:update,routes,secret,spec,spec:features,spec:reques
ts,spec:controllers,spec:helpers,spec:models,spec:views,spec:routing,spec:rc
ov,stats,test,test:all,test:all:db,test:recent,test:single,test:uncommitted,
time:zones:all,tmp:clear,tmp:create,webpacker:compile

==
====
inventory
Use the properties in this section to override the inventory features.
==
====
inventory:

 # Set to `false` to disable inventory features in the agent.
 # enable: true

 # Apply a list of labels to libraries. Labels
 # must be formatted as a comma-delimited list.
 # Example - `label1, label2, label3`
 #
 # tags: NEEDS_TO_BE_SET

==
====
assess
Use the properties in this section to control Assess.
==
====
assess:

 # Include this property to determine if the Assess
 # feature should be enabled. If this property is not
 # present, the decision is delegated to the Contrast UI.
 # enable: false

 # Apply a list of labels to vulnerabilities and preflight
 # messages. Labels must be formatted as a comma-delimited list.
 # Example - `label1, label2, label3`
 #
 # tags: NEEDS_TO_BE_SET

 # Value options are `ALL`, `SOME`, or `NONE`.
 # stacktraces: ALL

 # ==
====
 # assess.sampling
 # Use the following properties to control sampling in the agent.
 # ==
====
 # sampling:

Contrast Documentation

Agents 457

 # Set to `true` to enable sampling.
 # enable: false

 # This property indicates the number of requests
 # to analyze in each window before sampling begins.
 # baseline: 5

 # This property indicates that every *nth*
 # request after the baseline is analyzed.
 # request_frequency: 10

 # This property indicates the duration for which a sample set is valid.
 # window_ms: 180_000

 # ==
====
 # assess.rules
 # Use the following properties to control simple rule configurations.
 # ==
====
 # rules:

 # Define a list of Assess rules to disable in the agent. To view a
 # list of rule names, in Contrast go to user menu > Policy Management >
 # Assess rules. The rules must be formatted as a comma-delimited list.
 #
 # Example - Set `reflected-xss,sql-injection` to disable
 # the reflected-xss rule and the sql-injection rule.
 #
 # disabled_rules: NEEDS_TO_BE_SET

==
====
protect
Use the properties in this section to override Protect features.
==
====
protect:

 # Include this property to determine if the Protect
 # feature should be enabled. If this property is not
 # present, the decision is delegated to the Contrast UI.
 # enable: false

 # ==
====
 # protect.rules
 # Use the following properties to set simple rule configurations.
 # ==
====
 # rules:

 # Define a list of Protect rules to disable in the agent. To view a
 # list of rule names, in Contrast go to user menu > Policy Management >

Contrast Documentation

Agents 458

 # Protect rules. The rules must be formatted as a comma-delimited list.
 # disabled_rules: NEEDS_TO_BE_SET

 # ==
====
 # protect.rules.bot-blocker
 # Use the following selection to configure if the
 # agent blocks bots. Set to `true` to enable blocking.
 # ==
====
 # bot-blocker:

 # Set to `true` for the agent to block known bots.
 # enable: false

 # ==
====
 # protect.rules.sql-injection
 # Use the following settings to configure the sql-injection rule.
 # ==
====
 # sql-injection:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or off.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.cmd-injection
 # Use the following properties to configure
 # how the command injection rule works.
 # ==
====
 # cmd-injection:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.path-traversal
 # Use the following properties to configure
 # how the path traversal rule works.
 # ==
====

Contrast Documentation

Agents 459

 # path-traversal:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.method-tampering
 # Use the following properties to configure
 # how the method tampering rule works.
 # ==
====
 # method-tampering:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.reflected-xss
 # Use the following properties to configure how
 # the reflected cross-site scripting rule works.
 # ==
====
 # reflected-xss:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.xxe
 # Use the following properties to configure
 # how the XML external entity works.
 # ==
====
 # xxe:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.

Contrast Documentation

Agents 460

 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

==
====
application
Use the properties in this section for
the application(s) hosting this agent.
==
====
application:

 # Override the reported application name.
 #
 # Note - On Java systems where multiple, distinct applications may be
 # served by a single process, this configuration causes the agent to \
report
 # all discovered applications as one application with the given name.
 #
 # name: NEEDS_TO_BE_SET

 # Override the reported application path.
 # path: NEEDS_TO_BE_SET

 # Add the name of the application group with which this
 # application should be associated in the Contrast UI.
 # group: NEEDS_TO_BE_SET

 # Add the application code this application should use in the Contrast UI.
 # code: NEEDS_TO_BE_SET

 # Override the reported application version.
 # version: NEEDS_TO_BE_SET

 # Apply labels to an application. Labels must
 # be formatted as a comma-delimited list.
 # Example - `label1,label2,label3`
 #
 # tags: NEEDS_TO_BE_SET

 # Define a set of `key=value` pairs (which conforms to RFC 2253) for
 # specifying user-defined metadata associated with the application. The
 # set must be formatted as a comma-delimited list of `key=value` pairs.
 # Example - `business-unit=accounting, office=Baltimore`
 #
 # metadata: NEEDS_TO_BE_SET

 # Provide the ID of a session which already exists in the Contrast
 # UI. Vulnerabilities discovered by the agent are associated with
 # this session. If an invalid ID is supplied, the agent will be
 # disabled. This option and `application.session_metadata` are
 # mutually exclusive; if both are set, the agent will be disabled.

Contrast Documentation

Agents 461

 # session_id: NEEDS_TO_BE_SET

 # Provide metadata which is used to create a new session ID in the
 # Contrast UI. Vulnerabilities discovered by the agent are associated with
 # this new session. This value should be formatted as `key=value` pairs
 # (conforming to RFC 2253). Available key names for this configuration
 # are branchName, buildNumber, commitHash, committer, gitTag, repository,
 # testRun, and version. This option and `application.session_id` are
 # mutually exclusive; if both are set the agent will be disabled.
 # session_metadata: NEEDS_TO_BE_SET

==
====
server
Use the settings in this section to set metadata for the server
hosting this agent. Contrast recognizes common, supported server
names, paths, types and environments. Doing this may require a new
server or license, and it may affect functionality of some features.
==
====
server:

 # Override the reported server name.
 # name: localhost

 # Override the reported server path.
 # path: NEEDS_TO_BE_SET

 # Override the reported server type.
 # type: NEEDS_TO_BE_SET

 # Set the environment directly to override the default set
 # by the Contrast UI. This allows the user to configure the
 # environment dynamically at startup rather than manually
 # updating the Server in the Contrast UI themselves afterwards.
 #
 # Valid values include `QA`, `PRODUCTION` and `DEVELOPMENT`.
 # For example, `PRODUCTION` registers this Server as
 # running in a `PRODUCTION` environment, regardless of the
 # organization's default environment in the Contrast UI.
 #
 # environment: NEEDS_TO_BE_SET

 # Apply a list of labels to the server. Labels
 # must be formatted as a comma-delimited list.
 # Example - `label1,label2,label3`
 #
 # tags: NEEDS_TO_BE_SET

==
====
Use the properties in this YAML file to configure a Contrast agent.
Go to https://docs.contrastsecurity.com/en/order-of-precedence.html
to determine the order of precedence for configuration values.
==

Contrast Documentation

Agents 462

====

Use this setting if you want to temporarily disable a Contrast agent.
Set to `true` to enable the agent; set to `false` to disable the agent.
enable: true

==
====
api
Use the properties in this section to connect the agent to the Contrast \
UI.
==
====
api:

 # ********************** REQUIRED **********************
 # Set the URL for the Contrast UI.
 url: https://app.contrastsecurity.com/Contrast

 # ********************** REQUIRED **********************
 # Set the API key needed to communicate with the Contrast UI.
 api_key: NEEDS_TO_BE_SET

 # ********************** REQUIRED **********************
 # Set the service key needed to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 service_key: NEEDS_TO_BE_SET

 # ********************** REQUIRED **********************
 # Set the user name used to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 user_name: NEEDS_TO_BE_SET

 # ==
====
 # api.certificate
 # Use the following properties for communication
 # with the Contrast UI using certificates.
 # ==
====
 # certificate:

 # If set to `false`, the agent will ignore the
 # certificate configuration in this section.
 # enable: true

 # Set the absolute or relative path to a CA for communication
 # with the Contrast UI using a self-signed certificate.
 # ca_file: NEEDS_TO_BE_SET

 # Set the absolute or relative path to the Certificate
 # PEM file for communication with the Contrast UI.
 # cert_file: NEEDS_TO_BE_SET

Contrast Documentation

Agents 463

 # Set the absolute or relative path to the Key PEM
 # file for communication with the Contrast UI.
 # key_file: NEEDS_TO_BE_SET

 # ==
====
 # api.proxy
 # Use the following properties for communication
 # with the Contrast UI over a proxy.
 # ==
====
 # proxy:

 # Set value to `true` for the agent to communicate with
 # the Contrast web interface over a proxy. Set value to
 # `false` if you don't want to use the proxy. If no value is
 # indicated, the presence of a valid **contrast.proxy.host**
 # and **contrast.proxy.port** will enable the proxy.
 # enable: NEEDS_TO_BE_SET

 # Set the URL for your Proxy Server. The URL form is `scheme://
host:port`.
 # url: NEEDS_TO_BE_SET

==
====
agent
Use the properties in this section to control the way and frequency
with which the agent communicates to logs and the Contrast UI.
==
====
agent:

 # ==
====
 # agent.logger
 # Define the following properties to set logging values.
 # If the following properties are not defined, the
 # agent uses the logging values from the Contrast UI.
 # ==
====
 # logger:

 # Enable diagnostic logging by setting a path to a log file.
 # While diagnostic logging hurts performance, it generates
 # useful information for debugging Contrast. The value set here
 # is the location to which the agent saves log output. If no
 # log file exists at this location, the agent creates a file.
 #
 # Example - `/opt/Contrast/contrast.log` creates a log in the
 # `/opt/Contrast` directory, and rotates it automatically as needed.
 #
 # path: ./contrast_agent.log

 # Set the the log output level. Valid options are

Contrast Documentation

Agents 464

 # `ERROR`, `WARN`, `INFO`, `DEBUG`, and `TRACE`.
 # level: INFO

 # Override the name of the process the agents uses in logs.
 # progname: Contrast Agent

 # Set to `true` for the agent to tag
 # logs with `!AM!` for the metrics tool.
 # metrics: true

 # ==
====
 # agent.security_logger
 # Define the following properties to set security
 # logging values. If not defined, the agent uses the
 # security logging (CEF) values from the Contrast UI.
 # ==
====
 # security_logger:

 # Set the file to which the agent logs security events.
 # path: ./contrast/security.log

 # Set the log level for security logging. Valid options
 # are `ERROR`, `WARN`, `INFO`, `DEBUG`, and `TRACE`.
 # level: ERROR

 # ==
====
 # agent.security_logger.syslog
 # Define the following properties to set Syslog values. If the \
properties
 # are not defined, the agent uses the Syslog values from the Contrast \
UI.
 # ==
====
 # syslog:

 # Set to `true` to enable Syslog logging.
 # enable: NEEDS_TO_BE_SET

 # Set the IP address of the Syslog server
 # to which the agent should send messages.
 # ip: NEEDS_TO_BE_SET

 # Set the port of the Syslog server to
 # which the agent should send messages.
 # port: NEEDS_TO_BE_SET

 # Set the facility code of the messages the agent sends to Syslog.
 # facility: 19

 # Set the log level of Exploited attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_exploited: ALERT

Contrast Documentation

Agents 465

 # Set the log level of Blocked attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_blocked: NOTICE

 # Set the log level of Blocked At Perimeter
 # attacks. Value options are `ALERT`, `CRITICAL`,
 # `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_blocked_perimeter: NOTICE

 # Set the log level of Probed attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_probed: WARNING

 # Set the log level of Suspicious attacks. Value options are `ALERT`,
 # `CRITICAL`, `ERROR`, `WARNING`, `NOTICE`, `INFO`, and `DEBUG`.
 # severity_suspicious: WARNING

 # ==
====
 # agent.heap_dump
 # The following properties are used to trigger heap dumps from within
 # the agent to snapshot the behavior of instrumented applications.
 # ==
====
 # heap_dump:

 # Set to `true` for the agent to automatically
 # take heap dumps of the instrumented application.
 # enable: false

 # Set the location to which to save the heap dump files. If relative,
 # the path is determined based on the process' working directory.
 # path: contrast_heap_dumps

 # Set the amount of time to wait, in milliseconds,
 # after agent startup to begin taking heap dumps.
 # delay_ms: 10_000

 # Set the amount of time to wait, in milliseconds, between each heap \
dump.
 # window_ms: 10_000

 # Set the number of heap dumps to take before disabling this feature.
 # count: 5

 # Set to `true` for the agent to trigger garbage collection before
 # taking a heap dump to remove temproary objects from the dump.
 # clean: false

 # ==
====
 # agent.ruby
 # The following properties apply to any Ruby agent-wide configurations.
 # ==

Contrast Documentation

Agents 466

====
 # ruby:

 # Allow the agent to track frozen Objects returned by
 # source methods. This configuration is on by default.
 # track_frozen_sources: NEEDS_TO_BE_SET

 # Allow the agent to track propagation through interpolated
 # Strings. This configuration is on by default.
 # interpolate: NEEDS_TO_BE_SET

 # Set a comma-separated string of rake tasks
 # in which to disable agent operation.
 # disabled_agent_rake_tasks: \
about,assets:clean,assets:clobber,assets:environment,assets:precompile,asset
s:precompile:all,db:create,db:drop,db:migrate:status,db:rollback,db:schema:c
ache:clear,db:schema:cache:dump,db:schema:dump,db:schema:load,db:seed,db:set
up,db:structure:dump,db:version,doc:app,log:clear,middleware,notes,notes:cus
tom,rails:template,rails:update,routes,secret,spec,spec:features,spec:reques
ts,spec:controllers,spec:helpers,spec:models,spec:views,spec:routing,spec:rc
ov,stats,test,test:all,test:all:db,test:recent,test:single,test:uncommitted,
time:zones:all,tmp:clear,tmp:create,webpacker:compile

==
====
inventory
Use the properties in this section to override the inventory features.
==
====
inventory:

 # Set to `false` to disable inventory features in the agent.
 # enable: true

 # Apply a list of labels to libraries. Labels
 # must be formatted as a comma-delimited list.
 # Example - `label1, label2, label3`
 #
 # tags: NEEDS_TO_BE_SET

==
====
assess
Use the properties in this section to control Assess.
==
====
assess:

 # Include this property to determine if the Assess
 # feature should be enabled. If this property is not
 # present, the decision is delegated to the Contrast UI.
 # enable: false

 # Apply a list of labels to vulnerabilities and preflight
 # messages. Labels must be formatted as a comma-delimited list.

Contrast Documentation

Agents 467

 # Example - `label1, label2, label3`
 #
 # tags: NEEDS_TO_BE_SET

 # Value options are `ALL`, `SOME`, or `NONE`.
 # stacktraces: ALL

 # ==
====
 # assess.sampling
 # Use the following properties to control sampling in the agent.
 # ==
====
 # sampling:

 # Set to `true` to enable sampling.
 # enable: false

 # This property indicates the number of requests
 # to analyze in each window before sampling begins.
 # baseline: 5

 # This property indicates that every *nth*
 # request after the baseline is analyzed.
 # request_frequency: 10

 # This property indicates the duration for which a sample set is valid.
 # window_ms: 180_000

 # ==
====
 # assess.rules
 # Use the following properties to control simple rule configurations.
 # ==
====
 # rules:

 # Define a list of Assess rules to disable in the agent. To view a
 # list of rule names, in Contrast go to user menu > Policy Management >
 # Assess rules. The rules must be formatted as a comma-delimited list.
 #
 # Example - Set `reflected-xss,sql-injection` to disable
 # the reflected-xss rule and the sql-injection rule.
 #
 # disabled_rules: NEEDS_TO_BE_SET

==
====
protect
Use the properties in this section to override Protect features.
==
====
protect:

 # Include this property to determine if the Protect

Contrast Documentation

Agents 468

 # feature should be enabled. If this property is not
 # present, the decision is delegated to the Contrast UI.
 # enable: false

 # ==
====
 # protect.rules
 # Use the following properties to set simple rule configurations.
 # ==
====
 # rules:

 # Define a list of Protect rules to disable in the agent. To view a
 # list of rule names, in Contrast go to user menu > Policy Management >
 # Protect rules. The rules must be formatted as a comma-delimited list.
 # disabled_rules: NEEDS_TO_BE_SET

 # ==
====
 # protect.rules.bot-blocker
 # Use the following selection to configure if the
 # agent blocks bots. Set to `true` to enable blocking.
 # ==
====
 # bot-blocker:

 # Set to `true` for the agent to block known bots.
 # enable: false

 # ==
====
 # protect.rules.sql-injection
 # Use the following settings to configure the sql-injection rule.
 # ==
====
 # sql-injection:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or off.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.cmd-injection
 # Use the following properties to configure
 # how the command injection rule works.
 # ==
====
 # cmd-injection:

 # Set the mode of the rule. Value options are

Contrast Documentation

Agents 469

 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.path-traversal
 # Use the following properties to configure
 # how the path traversal rule works.
 # ==
====
 # path-traversal:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.method-tampering
 # Use the following properties to configure
 # how the method tampering rule works.
 # ==
====
 # method-tampering:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

 # ==
====
 # protect.rules.reflected-xss
 # Use the following properties to configure how
 # the reflected cross-site scripting rule works.
 # ==
====
 # reflected-xss:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.

Contrast Documentation

Agents 470

 #
 # mode: off

 # ==
====
 # protect.rules.xxe
 # Use the following properties to configure
 # how the XML external entity works.
 # ==
====
 # xxe:

 # Set the mode of the rule. Value options are
 # `monitor`, `block`, `block_at_perimeter`, or `off`.
 #
 # Note - If a setting says, "if blocking is enabled",
 # the setting can be `block` or `block_at_perimeter`.
 #
 # mode: off

==
====
application
Use the properties in this section for
the application(s) hosting this agent.
==
====
application:

 # Override the reported application name.
 #
 # Note - On Java systems where multiple, distinct applications may be
 # served by a single process, this configuration causes the agent to \
report
 # all discovered applications as one application with the given name.
 #
 # name: NEEDS_TO_BE_SET

 # Override the reported application path.
 # path: NEEDS_TO_BE_SET

 # Add the name of the application group with which this
 # application should be associated in the Contrast UI.
 # group: NEEDS_TO_BE_SET

 # Add the application code this application should use in the Contrast UI.
 # code: NEEDS_TO_BE_SET

 # Override the reported application version.
 # version: NEEDS_TO_BE_SET

 # Apply labels to an application. Labels must
 # be formatted as a comma-delimited list.
 # Example - `label1,label2,label3`
 #

Contrast Documentation

Agents 471

 # tags: NEEDS_TO_BE_SET

 # Define a set of `key=value` pairs (which conforms to RFC 2253) for
 # specifying user-defined metadata associated with the application. The
 # set must be formatted as a comma-delimited list of `key=value` pairs.
 # Example - `business-unit=accounting, office=Baltimore`
 #
 # metadata: NEEDS_TO_BE_SET

 # Provide the ID of a session which already exists in the Contrast
 # UI. Vulnerabilities discovered by the agent are associated with
 # this session. If an invalid ID is supplied, the agent will be
 # disabled. This option and `application.session_metadata` are
 # mutually exclusive; if both are set, the agent will be disabled.
 # session_id: NEEDS_TO_BE_SET

 # Provide metadata which is used to create a new session ID in the
 # Contrast UI. Vulnerabilities discovered by the agent are associated with
 # this new session. This value should be formatted as `key=value` pairs
 # (conforming to RFC 2253). Available key names for this configuration
 # are branchName, buildNumber, commitHash, committer, gitTag, repository,
 # testRun, and version. This option and `application.session_id` are
 # mutually exclusive; if both are set the agent will be disabled.
 # session_metadata: NEEDS_TO_BE_SET

==
====
server
Use the settings in this section to set metadata for the server
hosting this agent. Contrast recognizes common, supported server
names, paths, types and environments. Doing this may require a new
server or license, and it may affect functionality of some features.
==
====
server:

 # Override the reported server name.
 # name: localhost

 # Override the reported server path.
 # path: NEEDS_TO_BE_SET

 # Override the reported server type.
 # type: NEEDS_TO_BE_SET

 # Set the environment directly to override the default set
 # by the Contrast UI. This allows the user to configure the
 # environment dynamically at startup rather than manually
 # updating the Server in the Contrast UI themselves afterwards.
 #
 # Valid values include `QA`, `PRODUCTION` and `DEVELOPMENT`.
 # For example, `PRODUCTION` registers this Server as
 # running in a `PRODUCTION` environment, regardless of the
 # organization's default environment in the Contrast UI.
 #

Contrast Documentation

Agents 472

 # environment: NEEDS_TO_BE_SET

 # Apply a list of labels to the server. Labels
 # must be formatted as a comma-delimited list.
 # Example - `label1,label2,label3`
 #
 # tags: NEEDS_TO_BE_SET

Ruby telemetry
The Ruby agent use telemetry to collect usage data. Telemetry is collected when an instrumented
application first loads the agent’s sensors and then periodically (every few hours) afterwards.

Your privacy is important to us (page 956). The telemetry feature does not collect application data.
The data is anonymized before being sent securely to Contrast. Then the aggregated data is stored
encrypted and under restricted access control. Any collected data will be deleted after one year.

The telemetry feature collects the following data:

Agent versions Data

Ruby 4.13 Agent version

Operating system and version

Ruby version

Application framework and version

Web server and version

Hosted or on-premises Contrast instance

To opt-out of the telemetry feature, set the CONTRAST_AGENT_TELEMETRY_OPTOUT environment
variable to 1 or true.

Telemetry data is securely sent to telemetry.ruby.contrastsecurity.com. You can also opt out of telemetry
by blocking communication at the network level.

Go agent
The Go agent is a source code rewriter that instruments Go web applications for library support and
vulnerability reporting. It provides runtime insight into the source code and libraries that make up the
application.

NOTE
As a source code rewriter, installing the Go agent in an application requires access to
the application build environment.

The Go agent currently supports Assess and SCA only.

As a next step, you can:

• Install the Go agent (page 474)
• Go supported technologies (page 473)

Supported technologies for the Go agent
We support the following technologies for this agent.

Contrast Documentation

Agents 473

Technology Supported versions Notes

Language
version

• 1.20 (deprecated)
• 1.21
• 1.22

Contrast follows the Go release support policy which consists of
the two most recently released major versions. Support for Go
language versions is shifted as new major versions are released. The
application dependencies must be specified in a go.mod file.

Not supported:

• 1.19: Last supported agent was 5.12.0
• 1.18: Last supported agent was 4.2.0
• 1.17: Last supported agent was 3.6.0
• 1.16: Last supported agent was 3.6.0
• 1.15: Last supported agent was 1.12.0

Platforms • darwin/amd64
• darwin/arm64
• linux/amd64
• linux/arm64

Contrast builds and tests contrast-go for the listed platforms.

You can use contrast-go to cross-compile for other platforms,
however, compatibility is not guaranteed.

Dependency
management
system

Go mod The application must be part of a Go module. An application can be
initialized with modules by running go mod init.

Protocol stacks • net/http
• github.com/valyala/fasthttp

v1.46.0 and later
• google.golang.org/grpc v1.17.0

and later

The agent relies on the protocol implementation to understand
application behavior. If the application uses an unsupported protocol
package, the agent is not able to report vulnerability or route
information.

Routers and
frameworks

• github.com/gofiber/fiber v2.40.0
and later

• github.com/go-chi/chi/v5
• github.com/julienschmidt/

httprouter
• github.com/gin-gonic/gin v1 and

later
• github.com/go-openapi/swag

The agent can work with an unlisted framework as long as the
framework's underlying HTTP implementation is supported. However,
some features might be missing or less accurate.

For example, the agent might not correctly discover routes registered
with an unrecognized router.

If your framework is not in the list of supported frameworks or you
need assistance, contact Contrast support.

Database
support

database/sql The agent instruments the database/sql package in the standard
library to support databases registered as database drivers. See the
examples in SQLDrivers.

Install the Go agent

The Go agent uses a tool called contrast-go to inject instrumentation into your applications at build
time. When you run an instrumented application, the Go agent automatically starts and monitors the
application’s execution to detect vulnerabilities.

TIP
To see a list of available flags with command line arguments for contrast-go,
type contrast-go -h.

Steps

1. Install contrast-go with the installer:

go run github.com/contrast-security-oss/contrast-go-
installer@latest latest

2. Build your application with contrast-go:

contrast-go build -o output-name-of-application

Contrast Documentation

Agents 474

https://golang.org/doc/devel/release.html#policy
https://blog.golang.org/using-go-modules
https://pkg.go.dev/github.com/valyala/fasthttp
https://google.golang.org/grpc
https://pkg.go.dev/github.com/gofiber/fiber
http://pkg.go.dev/github.com/go-chi/chi/v5
https://pkg.go.dev/github.com/julienschmidt/httprouter
https://pkg.go.dev/github.com/julienschmidt/httprouter
http://pkg.go.dev/github.com/gin-gonic/gin
https://pkg.go.dev/github.com/go-swagger/go-swagger
https://support.contrastsecurity.com/hc/en-us/requests/new
https://github.com/golang/go/wiki/SQLDrivers
https://support.contrastsecurity.com/hc/en-us/articles/5189611973524
https://github.com/contrast-security-oss/contrast-go-installer

3. Configure the Go agent (page 477) using the Go YAML template (page 478) or environment
variables.

4. Run your application using the executable you generated in step 2.
5. Exercise and test your application.
6. Use the Contrast web interface to explore findings that the agent reports, such as vulnerabilities

and library usage information.
By default, your application name is based on the application’s Go module. Use search in the
Applications list to quickly find your application.

Install the Go agent in a container
Installing the Go agent in a container is essentially the same as the standard installation procedure,
except that the installation occurs in a container and, to follow best practices, you should use
environment variables to configure the Contrast credentials.

Using environment variables is the most secure method for installing the Go agent in a container. Since
containers often migrate through QA and production systems, it's a best practice to avoid hard-coding
credentials in the container definition.

TIP
If you would like to explore a sample application using the Go agent in a Dockerfile,
see the Go Test Bench project.

Before you begin

• You should have a basic understanding of how containers and related software work.
• You may need to adjust the instructions to meet your specific circumstances.

Install, build, and run the Go application

1. Ensure Go is installed.
2. Install contrast-go with this command:

RUN github.com/contrast-security-oss/contrast-go-installer@latest latest

3. Build the application by replacing your normal go build command with contrast-go build.
This step builds an executable with Contrast embedded in it.

RUN contrast-go build ./app

4. Configure the agent (page 477) with environment variables.

Docker example
This example shows how to install, build, and run a Go application in a Docker container.

Step 1: Install Go. You can use a different base image than the one \
shown in
this example.
FROM golang:1.21 AS builder
WORKDIR /build

COPY . .

Step 2: This step installs contrast-go and makes sure it's in your $PATH \

Contrast Documentation

Agents 475

https://github.com/Contrast-Security-OSS/go-test-bench#readme

so
you can use it in the next step.
RUN go run github.com/contrast-security-oss/contrast-go-installer@latest \
latest

Step 3: This step is your normal build step, but uses contrast-go \
instead of
go. This step doesn't replace Go; it just wraps it so that it can add
instrumentation during the build process.
RUN contrast-go build ./app

Optional: Move the finished build to a new container.
Not required, but nice to have!
FROM alpine:latest
COPY --from=builder /build/app .

Step 4: Configure the agent using enviornment variables.

ENTRYPOINT ["./app"]

Example of environment variable configuration

NOTE
The Export option in the Contrast agent configuration editor (page 74) is an easy way
create the environment variables for the Contrast credentials.

The process to set environment variables when using a cloud provider typically
involves using a secrets manager and then linking the values of those secrets to the
environment variables.

For example, you could use this command to build your container:

docker build -t my-app-image

And then, use these commands when you run the container:

docker run -p 3000:3000 --name my-app-instance \
-e "CONTRAST__API__URL=your-ts-url" \
-e "CONTRAST__API__API_KEY=your-api-key" \
-e "CONTRAST__API__SERVICE_KEY=your-service-key" \
-e "CONTRAST__API__USER_NAME=your-user-name" \
my-app-image

See also

• Kubernetes and Contrast
• AWS Fargate and Contrast agents

Install the Go agent with direct download
To install the Go agent:

Contrast Documentation

Agents 476

https://support.contrastsecurity.com/hc/en-us/articles/360054034352-Kubernetes-and-Contrast
https://support.contrastsecurity.com/hc/en-us/articles/360056537312-AWS-Fargate-and-Contrast-agents

1. Download the executable files from https://pkg.contrastsecurity.com.
The contrast-go executables can be downloaded directly for Mac and Linux operating systems.
You can see available versions in the go-agent-release user interface. Replace <version> with
the version number you want, or latest.
• For Mac:

wget https://pkg.contrastsecurity.com/go-agent-release/<version>/
darwin-amd64/contrast-go

or

curl -L https://pkg.contrastsecurity.com/go-agent-release/<version>/
darwin-amd64/contrast-go > contrast-go

• For Linux:

wget https://pkg.contrastsecurity.com/go-agent-release/<version>/linux-
amd64/contrast-go

or

curl -L https://pkg.contrastsecurity.com/go-agent-release/<version>/
linux-amd64/contrast-go > contrast-go

2. After download, verify that the agent is executable. For example:

chmod u+x contrast-go

3. Be sure the application has a go.mod file to indicate required dependencies. In the application
source directory run the following command:

go mod init

4. Build your application:

./contrast-go build -o output-name-of-application

5. Configure the Go agent (page 477) using the Go YAML template (page 478) or environment
variables.

6. Run your application using the executable from the output above.
7. Exercise and test your application.
8. Verify that Contrast sees your application.

Configure the Go agent
To configure the agent, you specify settings in a YAML file called contrast_security.yaml. The
simplest way to get started is to download a configuration file (page 50) from the Contrast web
interface. This file is pre-populated with the required settings for your organization.

The required settings are:

api:
 api_key: <key>
 service_key: <key>
 user_name: <key>

You can also find the keys (page 71) under Organization settings > Agent in the Contrast web
interface.

Contrast Documentation

Agents 477

https://pkg.contrastsecurity.com/ui/repos/tree/General/go-agent-release

TIP
You can also set any configuration value with environment variables (page 76) instead
of in a YAML file. Using environment variables is useful if you are using Contrast in
containers or CI/CD pipelines.

If you set values in both the YAML file and with environment variables, the agent uses
the environment variables, as described in order of precedence (page 72).

Location of the Go configuration file
The Contrast Go agent looks for the contrast_security.yaml file in the following directories until it
finds one:

• Current directory
• /etc/contrast/go/

• /etc/contrast/

• Darwin:$HOME/Library/Preferences/contrast/
• Darwin:$HOME/Library/Preferences/contrast/go/
• Linux:$XDG_CONFIG_DIR/contrast/
• Linux:$XDG_CONFIG_DIR/contrast/go/

Go YAML template
This template includes all available settings for the Go agent. (Learn more about YAML
configuration (page 73).)

You can also find the settings and generate a custom configuration file with the Contrast agent
configuration editor (page 74).

==
====
Use the properties in this YAML file to configure a Contrast agent.
Go to https://docs.contrastsecurity.com/en/order-of-precedence.html
to determine the order of precedence for configuration values.
==
====

Use this setting if you want to temporarily disable a Contrast agent.
Set to `true` to enable the agent; set to `false` to disable the agent.
enable: true

==
====
api
Use the properties in this section to connect the agent to the Contrast \
UI.
==
====
api:

 # ********************** REQUIRED **********************
 # Set the URL for the Contrast UI.
 url: https://app.contrastsecurity.com/Contrast

Contrast Documentation

Agents 478

 # ********************** REQUIRED **********************
 # Set the API key needed to communicate with the Contrast UI.
 api_key: NEEDS_TO_BE_SET

 # ********************** REQUIRED **********************
 # Set the service key needed to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 service_key: NEEDS_TO_BE_SET

 # ********************** REQUIRED **********************
 # Set the user name used to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 user_name: NEEDS_TO_BE_SET

 # ==
====
 # api.certificate
 # Use the following properties for communication
 # with the Contrast UI using certificates.
 # ==
====
 # certificate:

 # If set to `false`, the agent will ignore the
 # certificate configuration in this section.
 # enable: true

 # Set the absolute or relative path to a CA for communication
 # with the Contrast UI using a self-signed certificate.
 # ca_file: NEEDS_TO_BE_SET

 # ==
====
 # api.proxy
 # Use the following properties for communication
 # with the Contrast UI over a proxy.
 # ==
====
 # proxy:

 # Set value to `true` for the agent to communicate
 # with the Contrast web interface over a proxy. Set
 # value to `false` if you don't want to use the proxy.
 # enable: NEEDS_TO_BE_SET

 # Set the proxy host. It must be set with port and scheme.
 # host: localhost

 # Set the proxy port. It must be set with host and scheme.
 # port: 1234

 # Set the proxy scheme (e.g., `http` or
 # `https`). It must be set with host and port.
 # scheme: http

Contrast Documentation

Agents 479

 # Set the URL for your Proxy Server. The URL form is `scheme://
host:port`.
 # url: NEEDS_TO_BE_SET

 # Set the proxy user.
 # user: NEEDS_TO_BE_SET

 # Set the proxy password.
 # pass: NEEDS_TO_BE_SET

==
====
agent
Use the properties in this section to control the way and frequency
with which the agent communicates to logs and the Contrast UI.
==
====
agent:

 # ==
====
 # agent.logger
 # Define the following properties to set logging values.
 # If the following properties are not defined, the
 # agent uses the logging values from the Contrast UI.
 # ==
====
 # logger:

 # Enable diagnostic logging by setting a path to a log file.
 # While diagnostic logging hurts performance, it generates
 # useful information for debugging Contrast. The value set here
 # is the location to which the agent saves log output. If no
 # log file exists at this location, the agent creates a file.
 #
 # Example - `/opt/Contrast/contrast.log` creates a log in the
 # `/opt/Contrast` directory, and rotates it automatically as needed.
 #
 # path: ./contrast_agent.log

 # Set the the log output level. Valid options are
 # `ERROR`, `WARN`, `INFO`, `DEBUG`, and `TRACE`.
 # level: INFO

 # Set to `true` to redirect all logs to
 # `stdout` instead of the file system.
 # stdout: false

 # ==
====
 # agent.security_logger
 # Define the following properties to set security
 # logging values. If not defined, the agent uses the
 # security logging (CEF) values from the Contrast UI.

Contrast Documentation

Agents 480

 # ==
====
 # security_logger:

 # Set the file to which the agent logs security events.
 # path: ./contrast/security.log

 # Set the log level for security logging. Valid options
 # are `ERROR`, `WARN`, `INFO`, `DEBUG`, and `TRACE`.
 # level: ERROR

 # ==
====
 # agent.go
 # The following properties apply to any Go agent-wide configurations.
 # ==
====
 # go:

 # ==
====
 # agent.go.preview
 # Enable opt-in Go agent features.
 # ==
====
 # preview:

 # Enable Assess gRPC sources.
 # grpc: false

 # ==
====
 # agent.go.profile
 # Enable Go agent self-profiling features.
 # ==
====
 # profile:

 # Enable CPU profiling for running application.
 # cpu: false

 # Enable memory profiling for running application.
 # mem: false

==
====
inventory
Use the properties in this section to override the inventory features.
==
====
inventory:

 # Set to `false` to disable inventory features in the agent.
 # enable: true

Contrast Documentation

Agents 481

 # Set to `false` to disable library analysis.
 # analyze_libraries: true

==
====
assess
Use the properties in this section to control Assess.
==
====
assess:

 # Include this property to determine if the Assess
 # feature should be enabled. If this property is not
 # present, the decision is delegated to the Contrast UI.
 # enable: false

 # Apply a list of labels to vulnerabilities and preflight
 # messages. Labels must be formatted as a comma-delimited list.
 # Example - `label1, label2, label3`
 #
 # tags: NEEDS_TO_BE_SET

 # ==
====
 # assess.rules
 # Use the following properties to control simple rule configurations.
 # ==
====
 # rules:

 # Define a list of Assess rules to disable in the agent. To view a
 # list of rule names, in Contrast go to user menu > Policy Management >
 # Assess rules. The rules must be formatted as a comma-delimited list.
 #
 # Example - Set `reflected-xss,sql-injection` to disable
 # the reflected-xss rule and the sql-injection rule.
 #
 # disabled_rules: NEEDS_TO_BE_SET

==
====
protect
Use the properties in this section to override Protect features.
==
====
protect:

 # Include this property to determine if the Protect
 # feature should be enabled. If this property is not
 # present, the decision is delegated to the Contrast UI.
 # enable: false

 # ==
====
 # protect.probe_analysis

Contrast Documentation

Agents 482

 # Use the settings in this section to
 # control the behavior of probe analysis.
 # ==
====
 # probe_analysis:

 # Set to `false` to disable probe analysis.
 # enable: true

==
====
application
Use the properties in this section for
the application(s) hosting this agent.
==
====
application:

 # Override the reported application name.
 #
 # Note - On Java systems where multiple, distinct applications may be
 # served by a single process, this configuration causes the agent to \
report
 # all discovered applications as one application with the given name.
 #
 # name: NEEDS_TO_BE_SET

 # Override the reported application path.
 # path: NEEDS_TO_BE_SET

 # Add the name of the application group with which this
 # application should be associated in the Contrast UI.
 # group: NEEDS_TO_BE_SET

 # Add the application code this application should use in the Contrast UI.
 # code: NEEDS_TO_BE_SET

 # Override the reported application version.
 # version: NEEDS_TO_BE_SET

 # Apply labels to an application. Labels must
 # be formatted as a comma-delimited list.
 # Example - `label1,label2,label3`
 #
 # tags: NEEDS_TO_BE_SET

 # Define a set of `key=value` pairs (which conforms to RFC 2253) for
 # specifying user-defined metadata associated with the application. The
 # set must be formatted as a comma-delimited list of `key=value` pairs.
 # Example - `business-unit=accounting, office=Baltimore`
 #
 # metadata: NEEDS_TO_BE_SET

 # Provide the ID of a session which already exists in the Contrast
 # UI. Vulnerabilities discovered by the agent are associated with

Contrast Documentation

Agents 483

 # this session. If an invalid ID is supplied, the agent will be
 # disabled. This option and `application.session_metadata` are
 # mutually exclusive; if both are set, the agent will be disabled.
 # session_id: NEEDS_TO_BE_SET

 # Provide metadata which is used to create a new session ID in the
 # Contrast UI. Vulnerabilities discovered by the agent are associated with
 # this new session. This value should be formatted as `key=value` pairs
 # (conforming to RFC 2253). Available key names for this configuration
 # are branchName, buildNumber, commitHash, committer, gitTag, repository,
 # testRun, and version. This option and `application.session_id` are
 # mutually exclusive; if both are set the agent will be disabled.
 # session_metadata: NEEDS_TO_BE_SET

==
====
server
Use the settings in this section to set metadata for the server
hosting this agent. Contrast recognizes common, supported server
names, paths, types and environments. Doing this may require a new
server or license, and it may affect functionality of some features.
==
====
server:

 # Override the reported server name.
 # name: localhost

 # Override the reported server path.
 # path: NEEDS_TO_BE_SET

 # Override the reported server type.
 # type: NEEDS_TO_BE_SET

 # Set the environment directly to override the default set
 # by the Contrast UI. This allows the user to configure the
 # environment dynamically at startup rather than manually
 # updating the Server in the Contrast UI themselves afterwards.
 #
 # Valid values include `QA`, `PRODUCTION` and `DEVELOPMENT`.
 # For example, `PRODUCTION` registers this Server as
 # running in a `PRODUCTION` environment, regardless of the
 # organization's default environment in the Contrast UI.
 #
 # environment: NEEDS_TO_BE_SET

 # Apply a list of labels to the server. Labels
 # must be formatted as a comma-delimited list.
 # Example - `label1,label2,label3`
 #
 # tags: NEEDS_TO_BE_SET

==
====
Use the properties in this YAML file to configure a Contrast agent.

Contrast Documentation

Agents 484

Go to https://docs.contrastsecurity.com/en/order-of-precedence.html
to determine the order of precedence for configuration values.
==
====

Use this setting if you want to temporarily disable a Contrast agent.
Set to `true` to enable the agent; set to `false` to disable the agent.
enable: true

==
====
api
Use the properties in this section to connect the agent to the Contrast \
UI.
==
====
api:

 # ********************** REQUIRED **********************
 # Set the URL for the Contrast UI.
 url: https://app.contrastsecurity.com/Contrast

 # ********************** REQUIRED **********************
 # Set the API key needed to communicate with the Contrast UI.
 api_key: NEEDS_TO_BE_SET

 # ********************** REQUIRED **********************
 # Set the service key needed to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 service_key: NEEDS_TO_BE_SET

 # ********************** REQUIRED **********************
 # Set the user name used to communicate with the Contrast
 # UI. It is used to calculate the Authorization header.
 user_name: NEEDS_TO_BE_SET

 # ==
====
 # api.certificate
 # Use the following properties for communication
 # with the Contrast UI using certificates.
 # ==
====
 # certificate:

 # If set to `false`, the agent will ignore the
 # certificate configuration in this section.
 # enable: true

 # Set the absolute or relative path to a CA for communication
 # with the Contrast UI using a self-signed certificate.
 # ca_file: NEEDS_TO_BE_SET

 # ==

Contrast Documentation

Agents 485

====
 # api.proxy
 # Use the following properties for communication
 # with the Contrast UI over a proxy.
 # ==
====
 # proxy:

 # Set value to `true` for the agent to communicate
 # with the Contrast web interface over a proxy. Set
 # value to `false` if you don't want to use the proxy.
 # enable: NEEDS_TO_BE_SET

 # Set the proxy host. It must be set with port and scheme.
 # host: localhost

 # Set the proxy port. It must be set with host and scheme.
 # port: 1234

 # Set the proxy scheme (e.g., `http` or
 # `https`). It must be set with host and port.
 # scheme: http

 # Set the URL for your Proxy Server. The URL form is `scheme://
host:port`.
 # url: NEEDS_TO_BE_SET

 # Set the proxy user.
 # user: NEEDS_TO_BE_SET

 # Set the proxy password.
 # pass: NEEDS_TO_BE_SET

==
====
agent
Use the properties in this section to control the way and frequency
with which the agent communicates to logs and the Contrast UI.
==
====
agent:

 # ==
====
 # agent.logger
 # Define the following properties to set logging values.
 # If the following properties are not defined, the
 # agent uses the logging values from the Contrast UI.
 # ==
====
 # logger:

 # Enable diagnostic logging by setting a path to a log file.
 # While diagnostic logging hurts performance, it generates
 # useful information for debugging Contrast. The value set here

Contrast Documentation

Agents 486

 # is the location to which the agent saves log output. If no
 # log file exists at this location, the agent creates a file.
 #
 # Example - `/opt/Contrast/contrast.log` creates a log in the
 # `/opt/Contrast` directory, and rotates it automatically as needed.
 #
 # path: ./contrast_agent.log

 # Set the the log output level. Valid options are
 # `ERROR`, `WARN`, `INFO`, `DEBUG`, and `TRACE`.
 # level: INFO

 # Set to `true` to redirect all logs to
 # `stdout` instead of the file system.
 # stdout: false

 # ==
====
 # agent.security_logger
 # Define the following properties to set security
 # logging values. If not defined, the agent uses the
 # security logging (CEF) values from the Contrast UI.
 # ==
====
 # security_logger:

 # Set the file to which the agent logs security events.
 # path: ./contrast/security.log

 # Set the log level for security logging. Valid options
 # are `ERROR`, `WARN`, `INFO`, `DEBUG`, and `TRACE`.
 # level: ERROR

 # ==
====
 # agent.go
 # The following properties apply to any Go agent-wide configurations.
 # ==
====
 # go:

 # ==
====
 # agent.go.preview
 # Enable opt-in Go agent features.
 # ==
====
 # preview:

 # Enable Assess gRPC sources.
 # grpc: false

 # ==
====
 # agent.go.profile

Contrast Documentation

Agents 487

 # Enable Go agent self-profiling features.
 # ==
====
 # profile:

 # Enable CPU profiling for running application.
 # cpu: false

 # Enable memory profiling for running application.
 # mem: false

==
====
inventory
Use the properties in this section to override the inventory features.
==
====
inventory:

 # Set to `false` to disable inventory features in the agent.
 # enable: true

 # Set to `false` to disable library analysis.
 # analyze_libraries: true

==
====
assess
Use the properties in this section to control Assess.
==
====
assess:

 # Include this property to determine if the Assess
 # feature should be enabled. If this property is not
 # present, the decision is delegated to the Contrast UI.
 # enable: false

 # Apply a list of labels to vulnerabilities and preflight
 # messages. Labels must be formatted as a comma-delimited list.
 # Example - `label1, label2, label3`
 #
 # tags: NEEDS_TO_BE_SET

 # ==
====
 # assess.rules
 # Use the following properties to control simple rule configurations.
 # ==
====
 # rules:

 # Define a list of Assess rules to disable in the agent. To view a
 # list of rule names, in Contrast go to user menu > Policy Management >
 # Assess rules. The rules must be formatted as a comma-delimited list.

Contrast Documentation

Agents 488

 #
 # Example - Set `reflected-xss,sql-injection` to disable
 # the reflected-xss rule and the sql-injection rule.
 #
 # disabled_rules: NEEDS_TO_BE_SET

==
====
protect
Use the properties in this section to override Protect features.
==
====
protect:

 # Include this property to determine if the Protect
 # feature should be enabled. If this property is not
 # present, the decision is delegated to the Contrast UI.
 # enable: false

 # ==
====
 # protect.probe_analysis
 # Use the settings in this section to
 # control the behavior of probe analysis.
 # ==
====
 # probe_analysis:

 # Set to `false` to disable probe analysis.
 # enable: true

==
====
application
Use the properties in this section for
the application(s) hosting this agent.
==
====
application:

 # Override the reported application name.
 #
 # Note - On Java systems where multiple, distinct applications may be
 # served by a single process, this configuration causes the agent to \
report
 # all discovered applications as one application with the given name.
 #
 # name: NEEDS_TO_BE_SET

 # Override the reported application path.
 # path: NEEDS_TO_BE_SET

 # Add the name of the application group with which this
 # application should be associated in the Contrast UI.
 # group: NEEDS_TO_BE_SET

Contrast Documentation

Agents 489

 # Add the application code this application should use in the Contrast UI.
 # code: NEEDS_TO_BE_SET

 # Override the reported application version.
 # version: NEEDS_TO_BE_SET

 # Apply labels to an application. Labels must
 # be formatted as a comma-delimited list.
 # Example - `label1,label2,label3`
 #
 # tags: NEEDS_TO_BE_SET

 # Define a set of `key=value` pairs (which conforms to RFC 2253) for
 # specifying user-defined metadata associated with the application. The
 # set must be formatted as a comma-delimited list of `key=value` pairs.
 # Example - `business-unit=accounting, office=Baltimore`
 #
 # metadata: NEEDS_TO_BE_SET

 # Provide the ID of a session which already exists in the Contrast
 # UI. Vulnerabilities discovered by the agent are associated with
 # this session. If an invalid ID is supplied, the agent will be
 # disabled. This option and `application.session_metadata` are
 # mutually exclusive; if both are set, the agent will be disabled.
 # session_id: NEEDS_TO_BE_SET

 # Provide metadata which is used to create a new session ID in the
 # Contrast UI. Vulnerabilities discovered by the agent are associated with
 # this new session. This value should be formatted as `key=value` pairs
 # (conforming to RFC 2253). Available key names for this configuration
 # are branchName, buildNumber, commitHash, committer, gitTag, repository,
 # testRun, and version. This option and `application.session_id` are
 # mutually exclusive; if both are set the agent will be disabled.
 # session_metadata: NEEDS_TO_BE_SET

==
====
server
Use the settings in this section to set metadata for the server
hosting this agent. Contrast recognizes common, supported server
names, paths, types and environments. Doing this may require a new
server or license, and it may affect functionality of some features.
==
====
server:

 # Override the reported server name.
 # name: localhost

 # Override the reported server path.
 # path: NEEDS_TO_BE_SET

 # Override the reported server type.
 # type: NEEDS_TO_BE_SET

Contrast Documentation

Agents 490

 # Set the environment directly to override the default set
 # by the Contrast UI. This allows the user to configure the
 # environment dynamically at startup rather than manually
 # updating the Server in the Contrast UI themselves afterwards.
 #
 # Valid values include `QA`, `PRODUCTION` and `DEVELOPMENT`.
 # For example, `PRODUCTION` registers this Server as
 # running in a `PRODUCTION` environment, regardless of the
 # organization's default environment in the Contrast UI.
 #
 # environment: NEEDS_TO_BE_SET

 # Apply a list of labels to the server. Labels
 # must be formatted as a comma-delimited list.
 # Example - `label1,label2,label3`
 #
 # tags: NEEDS_TO_BE_SET

Contrast service

IMPORTANT
The Contrast service is required for earlier versions of Node.js (before Node.js agent
version 5.0.0) and Python (before Python agent version 5.19.0). Newer versions of the
agent use a more performant and native analysis that does not require the Contrast
Service. Refer to the documentation for each agent to verify the versions where these
changes occur.

The Contrast service is a stand-alone executable that enables the communication between Contrast
and multi-process dynamic language agents (Node.js and Python agents). It passes settings from
Contrast to the agent. It also aggregates and sends information from the agent back to Contrast.

It is compiled for various supported architectures:

• Linux 64-bit
• Macintosh 64-bit
• Windows 64-bit

The service is packaged with the Node.js and Python agents and starts automatically when the
instrumented application is started. The service is not packaged or started by the Go agent. You must
have a service installed, configured and running for the Go agent to function. You may do the same for
more control when running the Node.js or Python agents.

Install the Contrast service
Installation varies depending on your system:

• Linux: Install the Contrast service with a system package manager.
• Debian: Use the commands to install from the correct Debian repository.

1. Get the CODENAME for your Ubuntu release.

Contrast Documentation

Agents 491

grep VERSION_CODENAME /etc/os-release

2. Update the command below with the CODENAME, and run the commands.

curl https://pkg.contrastsecurity.com/api/gpg/key/public | sudo apt-
key add -
echo "deb https://pkg.contrastsecurity.com/debian-
public/ CODENAME contrast" | sudo tee /etc/apt/sources.list.d/
contrastc.list

3. Install the Contrast service:

sudo apt-get update && sudo apt-get install contrast-service

4. Configure the Contrast service (page 492).
• Red Hat Package Manager (RPM): Use these commands to install from Contrast's yum repository.

1. Configure your system to use the repository:

OSREL=$(rpmquery -E "%{rhel}")
sudo -E tee /etc/yum.repos.d/contrast.repo << EOF
[contrast]
name=contrast repo
baseurl=https://pkg.contrastsecurity.com/rpm-public/centos-$OSREL/
gpgcheck=0
enabled=1
EOF

2. Install the Contrast service:

yum install contrast-service

3. Configure the Contrast service. (page 492)

TIP
To remove the contrast-service package, run apt-get remove contrast-
service or yum remove contrast-service.

Configure the Contrast service
The Contrast service is not preconfigured with connection parameters. You must configure the service
with a YAML configuration file.

When installed as a system service, the Contrast service is controlled by this YAML configuration file
located in the /etc directory. Frequently, the service shares the same contrast_security.yaml
file with any other applications on the same server, to ensure that all connection values (like the socket
name or port number) are consistent.

Assuming an application-specific configuration file is not already installed in the application's working
directory, the location of the YAML configuration file determines whether it can be shared with the agent
on the same server:

• If you don't want it to be shared, place the configuration file at /etc/contrast/webserver/
contrast_security.yaml.

• If you do want it to be shared, place the configuration file at /etc/contrast/
contrast_security.yaml.

Contrast Documentation

Agents 492

A default configuration YAML file is installed with the Contrast service Linux package at /etc/
contrast/webserver/contrast_security.yaml. This template has placeholders for most
necessary items, but you should update the following:

• api: Set the API properties. This determines how the Contrast service connects to Contrast.
• agent: This is the top-level configuration section for agent-related configuration.

• service: These options affect communication between an agent and the Contrast service.
The connection configuration must be identical between the Contrast service and the agent
communicating with that service.
• socket: The path to the local unix socket (for example, /tmp/contrast.sock)
• host and port: Optionally, instead of socket, the Contrast Service can be configured to connect

at a host and port.
• grpc: (applies to Go and Node.js agents only) Set to "true" to use gRPC for agent to service

communication. This is optional and may provide a slight performance improvement.

If this configuration has an issue or incorrect values, or the Contrast service fails to connect to Contrast,
you can troubleshoot the failed connection result at /var/log/contrast/service.log.

Install the Contrast service
Installation varies depending on your system:

• Linux: Install the Contrast service with a system package manager.
• Debian: Use the commands to install from the correct Debian repository.

1. Get the CODENAME for your Ubuntu release.

grep VERSION_CODENAME /etc/os-release

2. Update the command below with the CODENAME, and run the commands.

curl https://pkg.contrastsecurity.com/api/gpg/key/public | sudo apt-
key add -
echo "deb https://pkg.contrastsecurity.com/debian-
public/ CODENAME contrast" | sudo tee /etc/apt/sources.list.d/
contrastc.list

3. Install the Contrast service:

sudo apt-get update && sudo apt-get install contrast-service

4. Configure the Contrast service (page 492).
• Red Hat Package Manager (RPM): Use these commands to install from Contrast's yum repository.

1. Configure your system to use the repository:

OSREL=$(rpmquery -E "%{rhel}")
sudo -E tee /etc/yum.repos.d/contrast.repo << EOF
[contrast]
name=contrast repo
baseurl=https://pkg.contrastsecurity.com/rpm-public/centos-$OSREL/
gpgcheck=0
enabled=1
EOF

2. Install the Contrast service:

yum install contrast-service

3. Configure the Contrast service. (page 492)

Contrast Documentation

Agents 493

TIP
To remove the contrast-service package, run apt-get remove contrast-
service or yum remove contrast-service.

Configure the Contrast service
The Contrast service is not preconfigured with connection parameters. You must configure the service
with a YAML configuration file.

When installed as a system service, the Contrast service is controlled by this YAML configuration file
located in the /etc directory. Frequently, the service shares the same contrast_security.yaml
file with any other applications on the same server, to ensure that all connection values (like the socket
name or port number) are consistent.

Assuming an application-specific configuration file is not already installed in the application's working
directory, the location of the YAML configuration file determines whether it can be shared with the agent
on the same server:

• If you don't want it to be shared, place the configuration file at /etc/contrast/webserver/
contrast_security.yaml.

• If you do want it to be shared, place the configuration file at /etc/contrast/
contrast_security.yaml.

A default configuration YAML file is installed with the Contrast service Linux package at /etc/
contrast/webserver/contrast_security.yaml. This template has placeholders for most
necessary items, but you should update the following:

• api: Set the API properties. This determines how the Contrast service connects to Contrast.
• agent: This is the top-level configuration section for agent-related configuration.

• service: These options affect communication between an agent and the Contrast service.
The connection configuration must be identical between the Contrast service and the agent
communicating with that service.
• socket: The path to the local unix socket (for example, /tmp/contrast.sock)
• host and port: Optionally, instead of socket, the Contrast Service can be configured to connect

at a host and port.
• grpc: (applies to Go and Node.js agents only) Set to "true" to use gRPC for agent to service

communication. This is optional and may provide a slight performance improvement.

If this configuration has an issue or incorrect values, or the Contrast service fails to connect to Contrast,
you can troubleshoot the failed connection result at /var/log/contrast/service.log.

Agent Operator (Kubernetes operator)
The Contrast Agent Operator is a standard Kubernetes operator that executes within Kubernetes and
OpenShift clusters to automate injecting Contrast agents into existing workloads, configuring injected
agents, and facilitating agent upgrades.

To get started, install the agent operator (page 496) or use the agent operator walkthrough (page 497)
for a full example.

The operator is configured using declarative Kubernetes native resource types. Resources types are
documented in the agent operator configuration (page 506) section.

Contrast Documentation

Agents 494

https://kubernetes.io/docs/concepts/extend-kubernetes/operator/

NOTE
 The Contrast Agent Operator is an open-source project. You can review the code

and contribute to its development here.

Security policies
The Contrast Agent Operator supports clusters with various security policies. It is recommended to
familiarize yourself with them before installation. See here for the latest policies.

See also

• Agent Operator supported technologies (page 495)
• Agent Operator networking requirements (page 496)
• Agent Operator telemetry (page 511)
• Agent Operator minimum configuration (page 502)

Supported technologies for Agent Operator

Kubernetes / OpenShift support
For the latest supported technology information see here.

Kubernetes version OpenShift version Operator version End-of-support

v1.28 v0.14.0+ 2024-10-28

v1.27 v0.14.0+ 2024-06-28

v1.26 v4.13 v0.14.0+ 2024-02-28

v1.25 v4.12 v0.8.0+ 2023-10-28

v1.24 v4.11 v0.4.0+ 2023-09-29

v1.23 v4.10 v0.1.0+ 2023-02-28

v1.22 v4.9 v0.1.0+ 2022-10-28

v1.21 v4.8 v0.1.0+ 2022-06-28

• The Contrast Agent Operator follows the upstream Kubernetes community support policy. End-of-life
dates are documented on the Kubernetes releases page.

• OpenShift support is dependent on the included version of Kubernetes. For example, OpenShift
v4.10 uses Kubernetes v1.23 and will be supported by Contrast until 2023-02-28. See Red
Hat's support article for the mapping between Kubernetes and OpenShift versions.

• The Contrast Agent Operator only supports executing on Linux amd64 hosts and will refuse
to be scheduled onto incompatible nodes. Additionally, the operator only supports injecting
workloads running on Linux amd64 hosts, even if the Contrast Agent supports additional platforms.
Contact Contrast Support if Kubernetes on Windows or arm64 support is desired.

Agent types

Agent Agent type Support status Compatibility notes

.NET Core dotnet-core Supported Supported .NET Core technologies (page 232)

Java java Supported Supported Java technologies (page 85)

NodeJS nodejs

OR

nodejs-esm

Supported Supported Node.js technologies (page 290)

Contrast Documentation

Agents 495

https://github.com/Contrast-Security-OSS/agent-operator
https://github.com/Contrast-Security-OSS/agent-operator/blob/master/docs/public/07-security-policy.md#security-policy
https://github.com/Contrast-Security-OSS/agent-operator#getting-started
https://kubernetes.io/releases/patch-releases/#support-period
https://kubernetes.io/releases/#release-history
https://access.redhat.com/solutions/4870701
https://support.contrastsecurity.com/hc/en-us

Agent Agent type Support status Compatibility notes

PHP php Beta Supported PHP technologies (page 343)

Python python Beta Supported Python technologies (page 360)

NOTE

• Injection of the Node.js agent may result in a substantial increase in the startup time
of the instrumented application. If startup time is unacceptable, injecting the agent
during compilation may be desirable. If the application was injected by the Node.js
agent during compilation then injection during runtime by the operator should be
disabled. See the rewriter CLI (page 339) for more information.

• NodeJS ESM injection is only supported on NodeJS LTS versions >= 18.19.0.
• Injection of a PHP application is in beta. Beta status means the feature might change

or act unexpectedly. By using this feature, you agree to the Contrast Beta Terms and
Conditions (page 956).

• Injection of a Python application is in beta. Beta status means the feature might
change or act unexpectedly. By using this feature, you agree to the Contrast Beta
Terms and Conditions (page 956).

• Injection of the Python agent is not supported for Alpine-based pods/containers.

Agent Operator networking requirements
The agent operator needs to be installed in environments where the networking restrictions do not block
functionality.

To maintain optimal functionality, it is required to set up bi-directional communication between the
control plane and worker nodes on port 443.

Install the Agent Operator
Contrast provides a single-file installation YAML that can be directly applied to a cluster and provides
reasonable defaults. Additional modifications may be desired based on your specific circumstances.

Contrast Documentation

Agents 496

Custom registries
If you want to use Agent Operator in an air-gapped environment (or you cannot use DockerHub), use
the Contrast custom registry examples to guide you.

Steps

1. Executing as a cluster administrator, apply the operator manifests using kubectl (Kubernetes)
or oc (OpenShift).

kubectl apply -f https://github.com/Contrast-Security-OSS/agent-operator/
releases/latest/download/install-prod.yaml

oc apply -f https://github.com/Contrast-Security-OSS/agent-operator/
releases/latest/download/install-prod.yaml

The manifests:
• Create the contrast-agent-operator namespace.
• Install the operator Deployment workload.
• Install the required Custom Resource Definitions.
• Configure RBAC with the minimum necessary permissions.
• Register the operator for admission webhooks.

NOTE
It is possible to install into a namespace other than the default contrast-
agent-operator, although modifications to the deployment manifests will be
required.

2. After applying the operator manifests, wait for the cluster to converge.

kubectl -n contrast-agent-
operator wait pod --for=condition=ready --selector=app.kubernetes.io/
name=operator,app.kubernetes.io/part-of=contrast-agent-operator --
timeout=30s

oc -n contrast-agent-operator wait pod --
for=condition=ready --selector=app.kubernetes.io/
name=operator,app.kubernetes.io/part-of=contrast-agent-operator --
timeout=30s

3. When the wait command succeeds the operator is ready to be configured (page 502).

See also

• Agent Operator networking requirements (page 496)
• Agent Operator walkthrough (page 497)
• Agent Operator minimum configuration (page 502)
• Agent Operator telemetry (page 511)

Agent Operator walkthrough

Before you begin
This topic provides a complete walk-through of installing the Contrast Agent Operator and injecting an
example workload as a cluster administrator using vanilla Kubernetes.

To follow this example using OpenShift, the Kubernetes commands will need to be converted to their
OpenShift equivalents. All commands are expected to execute within a Bash-like terminal.

Contrast Documentation

Agents 497

https://github.com/Contrast-Security-OSS/agent-operator/tree/master/manifests/install/examples/custom-registry

You should have a basic understanding of how Kubernetes and related software work. You may need to
adjust the instructions to meet your specific circumstances.

Step 1: Install the operator
To install the operator, the operator manifests must be applied to the cluster. Contrast provides a
single-file installation YAML that can be directly applied to a cluster and provides reasonable defaults.
Additional modifications may be desired based on your specific circumstances, in which case, a
configuration management framework, such as Kustomize, is recommended.

NOTE
This single-file installation YAML will create and install into the contrast-agent-
operator namespace. This namespace will be used later.

After waiting for cluster convergence, the operator should be ready in the Running status.

% kubectl -n contrast-agent-operator get pods

Output:

NAME READY STATUS RESTARTS AGE
contrast-agent-operator-57f5cfbf7-9svtt 1/1 Running 0 27s
contrast-agent-operator-57f5cfbf7-fp4vp 1/1 Running 0 39s

The operator is ready to be configured.

Step 2: Configure the operator
The operator must first be configured before injecting cluster workloads.

Kubernetes secrets are used to store connection authentication keys. Note that the name of the Secret
created in the next part is default-agent-connection-secret and is created in the contrast-
agent-operator namespace.

% kubectl -n contrast-agent-operator \
 create secret generic default-agent-connection-secret \
 --from-literal=apiKey=TODO \
 --from-literal=serviceKey=TODO \
 --from-literal=userName=TODO

Output:

secret/default-agent-connection-secret created

NOTE
Replace TODO with the equivalent values for your Contrast server instance. Find the
agent keys (page 71) describes how to retrieve agent keys from the Contrast UI.

Contrast Documentation

Agents 498

https://kustomize.io/

To complete the connection configuration, a ClusterAgentConnection is needed. Note that
ClusterAgentConnection created in the next part is created in the contrast-agent-operator
namespace and refers to the Secret's key values used above.

% kubectl apply -f - <<EOF
apiVersion: agents.contrastsecurity.com/v1beta1
kind: ClusterAgentConnection
metadata:
 name: default-agent-connection
 namespace: contrast-agent-operator
spec:
 template:
 spec:
 url: https://app.contrastsecurity.com/Contrast
 apiKey:
 secretName: default-agent-connection-secret
 secretKey: apiKey
 serviceKey:
 secretName: default-agent-connection-secret
 secretKey: serviceKey
 userName:
 secretName: default-agent-connection-secret
 secretKey: userName
EOF

Output:

clusteragentconnection.agents.contrastsecurity.com/default-agent-
connection created

NOTE
The name of the ClusterAgentConnection is not important and can be named anything.

The operator is now configured and can inject agents into existing workloads.

Step 3: Inject workloads
This example will focus on injecting the Contrast Java agent into the Java sample application using a
Deployment workload.

First, deploy the sample application to the cluster. Note that the Deployment created in the next part is
created in the default namespace.

% kubectl apply -f - <<EOF
apiVersion: apps/v1
kind: Deployment
metadata:
 name: spring-petclinic
 namespace: default
 labels:
 arbitrary-label: arbitrary-value
spec:
 selector:

Contrast Documentation

Agents 499

https://github.com/Contrast-Security-OSS/demo-petclinic

 matchLabels:
 app: spring-petclinic
 template:
 metadata:
 labels:
 app: spring-petclinic
 spec:
 containers:
 - image: contrastsecuritydemo/spring-petclinic:1.5.1
 name: spring-petclinic
EOF

Output:

deployment.apps/spring-petclinic created

After waiting for cluster convergence, the deployed workload should be ready in the Running status.

% kubectl -n default get pods

Output:

NAME READY STATUS RESTARTS AGE
spring-petclinic-77d97bdbd5-ts2cz 1/1 Running 0 15d

Next, the operator can be configured to inject the Java agent using an AgentInjector configuration entity.
Note that the AgentInjector needs to be created in the same namespace that the previous Deployment
was deployed into, default in this case.

% kubectl apply -f - <<EOF
apiVersion: agents.contrastsecurity.com/v1beta1
kind: AgentInjector
metadata:
 name: spring-petclinic-injector
 namespace: default
spec:
 type: java
 selector:
 labels:
 - name: arbitrary-label
 value: arbitrary-value
EOF

Output:

agentinjector.agents.contrastsecurity.com/spring-petclinic-
injector configured

Checking the logs of the spring-petclinic-app Pod shows that the Contrast Java agent is now
instrumenting the application.

% kubectl -n default logs Deployment/spring-petclinic
Defaulted container "spring-petclinic" out of: spring-petclinic, contrast-
init (init)
Picked up JAVA_TOOL_OPTIONS: -javaagent:/opt/contrast/contrast-agent.jar
[Contrast] Wed Dec 20 21:47:23 GMT 2023 Loading pre-packaged configuration
[Contrast] Wed Dec 20 21:47:23 GMT 2023 Couldn't find pre-packaged \
configuration.

Contrast Documentation

Agents 500

[Contrast] Wed Dec 20 21:47:23 GMT 2023 Starting Contrast (build 6.1.1) \
Pat. 8,458,789 B2
[Contrast] Wed Dec 20 21:47:24 GMT 2023 Contrast logger configuration \
errors will be logged to stderr
[Contrast] Wed Dec 20 21:47:26 GMT 2023 Copyright: 2023 Contrast Security, \
Inc
[Contrast] Wed Dec 20 21:47:26 GMT 2023 Contact: \
support@contrastsecurity.com
[Contrast] Wed Dec 20 21:47:26 GMT 2023 License: Commercial
[Contrast] Wed Dec 20 21:47:26 GMT 2023 NOTICE: This Software and the \
patented inventions embodied within may only be used as part of
[Contrast] Wed Dec 20 21:47:26 GMT 2023 Contrast Security's commercial \
offerings. Even though it is made available through public
[Contrast] Wed Dec 20 21:47:26 GMT 2023 repositories, use of this Software \
is subject to the applicable End User Licensing Agreement
[Contrast] Wed Dec 20 21:47:26 GMT 2023 found at https://
www.contrastsecurity.com/enduser-terms-0317a or as otherwise agreed between
[Contrast] Wed Dec 20 21:47:26 GMT 2023 Contrast Security and the End \
User. The Software may not be reverse engineered, modified,
[Contrast] Wed Dec 20 21:47:26 GMT 2023 repackaged, sold, redistributed or \
otherwise used in a way not consistent with the End User
[Contrast] Wed Dec 20 21:47:26 GMT 2023 License Agreement.
[Contrast] Wed Dec 20 21:47:26 GMT 2023 The Contrast Java agent collects \
usage data in order to help us improve compatibility and security coverage.
[Contrast] Wed Dec 20 21:47:26 GMT 2023 The data is anonymous and does not \
contain application data. It is collected by Contrast and is never shared.
[Contrast] Wed Dec 20 21:47:26 GMT 2023 You can opt-out of telemetry by \
setting the CONTRAST_AGENT_TELEMETRY_OPTOUT environment variable to 'true' \
or '1'
[Contrast] Wed Dec 20 21:47:26 GMT 2023 Read more about Contrast Java \
agent telemetry: https://docs.contrastsecurity.com/en/java-telemetry.html
[Contrast] Wed Dec 20 21:47:27 GMT 2023 Effective instructions: \
Assess=true, Protect=false, Observe=false
[Contrast] Wed Dec 20 21:47:27 GMT 2023 Contrast logger configuration \
errors will be logged to stderr
[Contrast] Wed Dec 20 21:47:41 GMT 2023 Starting JVM [18888ms]
 |\ _,,,--,,_
 /,`.-'`' ._ \-;;,_
 _______ __|,4-))_ .;.(__`'-'__ ___ __ _ ___ _______
| | '---''(_/._)-'(__) | | | | | | | | |
| _ | ___|_ _| | | | | |_| | | | __ _ _
| |_| | |___ | | | | | | | | | | \ \ \ \
| ___| ___| | | | _| |___| | _ | | _| \ \ \ \
| | | |___ | | | |_| | | | | | | |_))))
|___| |_______| |___| |_______|_______|___|_| |__|___|_______| / / / /
==/_/_/_/
:: Built with Spring Boot :: 1.5.4.RELEASE
2023-12-20 21:47:45.651 INFO 1 ---
 [main] o.s.s.petclinic.PetClinicApplication : Starting \
PetClinicApplication v1.5.1 on spring-petclinic-77d97bdbd5-ts2cz with \
PID 1 (/spring-petclinic/spring-petclinic-1.5.1.jar started by root in /
spring-petclinic)

Step 4: Uninstall the operator (optional)
To restore the original state of the cluster, first remove existing AgentInjectors.

Contrast Documentation

Agents 501

% kubectl -n default delete agentinjector spring-petclinic-injector

Output:

agentinjector.agents.contrastsecurity.com "spring-petclinic-
injector" deleted

After which, the operator will restore all injected workloads to their previous non-instrumented state.
Once the cluster converges, the operator can be safely removed.

% kubectl delete -f https://github.com/Contrast-Security-OSS/agent-operator/
releases/latest/download/install-prod.yaml

Output:

namespace "contrast-agent-operator" deleted
customresourcedefinition.apiextensions.k8s.io \
"agentconfigurations.agents.contrastsecurity.com" deleted
customresourcedefinition.apiextensions.k8s.io \
"agentconnections.agents.contrastsecurity.com" deleted
customresourcedefinition.apiextensions.k8s.io \
"agentinjectors.agents.contrastsecurity.com" deleted
customresourcedefinition.apiextensions.k8s.io \
"clusteragentconfigurations.agents.contrastsecurity.com" deleted
customresourcedefinition.apiextensions.k8s.io \
"clusteragentconnections.agents.contrastsecurity.com" deleted
serviceaccount "contrast-agent-operator-service-account" deleted
clusterrole.rbac.authorization.k8s.io "contrast-agent-operator-service-
role" deleted
clusterrolebinding.rbac.authorization.k8s.io "contrast-agent-operator-
service-role-binding" deleted
service "contrast-agent-operator" deleted
deployment.apps "contrast-agent-operator" deleted
poddisruptionbudget.policy "contrast-agent-operator" deleted
mutatingwebhookconfiguration.admissionregistration.k8s.io "contrast-web-
hook-configuration" deleted

See also

• Install the Agent Operator (page 496)
• Agent Operator minimum configuration (page 502)
• Agent Operator configuration (page 506)

Agent Operator minimum configuration
All configuration of the operator is handled through the use of Kubernetes native configuration entities
defined by custom resource definitions (CRDs). The CRDs are deployed with the operator and define
how to interact with the operator's configuration entities.

Tooling such as Visual Studio Code's Kubernetes extension can aid in creating syntactically correct
entities in your cluster.

The full schema is documented in the Agent Operator configuration (page 506). This section only
covers the minimal setup required and may not cover all situations.

Minimum configuration
For a minimum setup, 3 manifests are required.

Contrast Documentation

Agents 502

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://code.visualstudio.com/docs/azure/kubernetes

1. First, a standard Kubernetes Secret contains the necessary connection keys to authenticate to
your Contrast server instance. The Secret must be deployed into the same namespace as the
ClusterAgentConnection entity. You can find your agent keys under find the agent keys (page 71).

apiVersion: v1
kind: Secret
metadata:
 name: default-agent-connection-secret
 namespace: contrast-agent-operator
type: Opaque
stringData:
 apiKey: TODO
 serviceKey: TODO
 userName: TODO

2. Second, a ClusterAgentConnection configuration entity. The ClusterAgentConnection provides the
default connection settings for agents within the cluster and maps to the above mentioned Secret
containing connection authentication keys. For security, ClusterAgentConnection entities must be
deployed into the same namespace as the operator to be used. This example assumes that the
default namespace contrast-agent-operator hasn't been customized.

apiVersion: agents.contrastsecurity.com/v1beta1
kind: ClusterAgentConnection
metadata:
 name: default-agent-connection
 namespace: contrast-agent-operator
spec:
 template:
 spec:
 url: https://app.contrastsecurity.com/Contrast
 apiKey:
 secretName: default-agent-connection-secret
 secretKey: apiKey
 serviceKey:
 secretName: default-agent-connection-secret
 secretKey: serviceKey
 userName:
 secretName: default-agent-connection-secret
 secretKey: userName

3. Finally, a AgentInjector configuration entity. The AgentInjector selects workloads eligible for
automatic injection using workload labels e.g. metadata.labels within the namespace in which
the AgentInjector is deployed.

apiVersion: agents.contrastsecurity.com/v1beta1
kind: AgentInjector
metadata:
 name: dotnet-hello-world
 namespace: default
spec:
 type: dotnet-core
 selector:
 labels:
 - name: app
 value: dotnet-hello-world

In this example manifest, the Contrast Agent Operator will automatically inject the .NET
Contrast agent into workloads (e.g. Deployments, DeploymentConfigs, etc.) that have the
label app=dotnet-hello-world in the namespace default.

Contrast Documentation

Agents 503

See also

• Agent Operator configuration (page 506)
• Agent Operator supported technologies (page 495)

Upgrade the operator
The Contrast Agent Operator follows semantic versioning.

• MAJOR versions may include breaking changes to the operator API. Care should be taken when
upgrading between MAJOR versions as manifests may have changed or existing CRDs may need to
be updated.

• MINOR versions contain new features and are fully backwards compatible and are safe to apply to an
existing cluster. Optional manifest changes may be needed to use new functionality.

• Patch versions contain security and bug fixes and are fully backwards compatible and are safe to
apply to an existing cluster. No manifest changes are required.

Contrast publishes image tags in the following format:

:2
:2.1
:2.1.10
:latest

Where :2 represents the latest release in the 2.X.X semantic version branch. To simplify upgrades,
prefix versions may be used based on your risk tolerance (ensure imagePullPolicy is set
to Always).

NOTE
While the Contrast Agent Operator supports high availability setups using multiple
replicas and leader leases, Contrast only supports deployments where all operator
instances are running the same version for extended periods of time. The
option imagePullPolicy should not be relied on to keep multiple instances on
the same version. Using an operator, such as Keel to facilitate safe upgrades, is
recommended if automatic upgrades are desired.

Minor and patch upgrades
Upgrading to new versions follows the same steps as installing into a fresh cluster. Executing as a
cluster administrator, apply the operator manifests using kubectl (Kubernetes) or oc (OpenShift).

kubectl apply -f https://github.com/Contrast-Security-OSS/agent-operator/
releases/latest/download/install-prod.yaml

oc apply -f https://github.com/Contrast-Security-OSS/agent-operator/
releases/latest/download/install-prod.yaml

Major upgrades
Major upgrades may include additional manifest changes. Deleting only the contrast-agent-
operator namespace maintains the installed CRDs (and by extension any cluster configurations).

kubectl delete namespace contrast-agent-operator
kubectl apply -f https://github.com/Contrast-Security-OSS/agent-operator/
releases/latest/download/install-prod.yaml

Contrast Documentation

Agents 504

https://semver.org/#semantic-versioning-specification-semver
https://keel.sh/

oc delete project contrast-agent-operator
oc apply -f https://github.com/Contrast-Security-OSS/agent-operator/
releases/latest/download/install-prod.yaml

While these generic steps may work in most major upgrades, care should be taken to follow the
migration steps provided in the release notes, if any, to ensure the major upgrade is successful.

See also

• Agent Operator configuration (page 506)
• Operator supported technologies (page 495)

Uninstall the Agent Operator
The Contrast Agent Operator stores all data in the Kubernetes backplane, and is designed to
completely remove all modifications when removed from a cluster. To ensure that everything is cleaned
up correctly, it is recommended the following steps are taken in order.

kubectl delete crd agentconfigurations.agents.contrastsecurity.com
kubectl delete crd agentconnections.agents.contrastsecurity.com
kubectl delete crd agentinjectors.agents.contrastsecurity.com
kubectl delete crd clusteragentconfigurations.agents.contrastsecurity.com
kubectl delete crd clusteragentconnections.agents.contrastsecurity.com

oc delete crd agentconfigurations.agents.contrastsecurity.com
oc delete crd agentconnections.agents.contrastsecurity.com
oc delete crd agentinjectors.agents.contrastsecurity.com
oc delete crd clusteragentconfigurations.agents.contrastsecurity.com
oc delete crd clusteragentconnections.agents.contrastsecurity.com

Deleting the CRDs will delete any operator configuration entities automatically. Allow the Contrast Agent
Operator to reverse any changes it has made to cluster workloads once the configuration entities have
been removed.

NOTE
This may cause substantial shifting of deployed pods as Kubernetes redeploys
impacted workloads, depending on how many workloads were injected by the operator.
Caution is advised in larger clusters.

After the cluster settles, the operator is safe to remove.

kubectl delete -f https://github.com/Contrast-Security-OSS/agent-operator/
releases/latest/download/install-prod.yaml

oc delete -f https://github.com/Contrast-Security-OSS/agent-operator/
releases/latest/download/install-prod.yaml

NOTE
Errors around missing CRDs is normal if the CRDs were deleted in the first step as
recommended.

Contrast Documentation

Agents 505

Agent Operator configuration
The topic describes the schema for every configuration entity type the Contrast Agent Operator
accepts. Some entities are optional.

AgentConfiguration

apiVersion: agents.contrastsecurity.com/v1beta1
kind: AgentConfiguration
metadata:
 name: example-agent-configuration
 namespace: default
spec:
 yaml: |
 server:
 environment: QA
 suppressDefaultServerName: false
 suppressDefaultApplicationName: false

Property Type Required Default
value

Description

spec.yaml string No A YAML configuration file as documented
"YAML configuration"

spec.suppressDefaultServerName boolean No False If false, automatically set the Contrast
server name on injected workloads
('kubernetes-{namespace}'), rather than
use the default (normally the pod name).

spec.suppressDefaultApplicationName boolean No False If false, automatically set the Contrast
application name on injected workloads
(the workload name), rather than use the
default (generated by the agent).

NOTE
Connection keys will be ignored in the provided YAML file and should not be provided.

AgentConnection

apiVersion: agents.contrastsecurity.com/v1beta1
kind: AgentConnection
metadata:
 name: example-agent-connection
 namespace: default
spec:
 url: https://app.contrastsecurity.com/Contrast
 apiKey:
 secretName: example-agent-connection-secret
 secretKey: apiKey
 serviceKey:
 secretName: example-agent-connection-secret
 secretKey: serviceKey
 userName:
 secretName: example-agent-connection-secret
 secretKey: userName

Contrast Documentation

Agents 506

Property Type Required Default
value

Description

spec.url string Yes The URL of your Contrast server.

spec.apiKey.secretName string Yes The name of the Secret containing the apiKey.

spec.apiKey.secretKey string Yes The key of the value in the named Secret containing
the apiKey.

spec.serviceKey.secretName string Yes The name of the Secret containing the serviceKey.

spec.serviceKey.secretKey string Yes The key of the value in the named Secret containing
the serviceKey.

spec.userName.secretName string Yes The name of the Secret containing the userName.

spec.userName.secretKey string Yes The key of the value in the named Secret containing
the userName.

IMPORTANT
For security, Secrets referenced must be contained in the same namespace as the
AgentConnection.

AgentInjector

apiVersion: agents.contrastsecurity.com/v1beta1
kind: AgentInjector
metadata:
 name: example-injector-dotnet-core
 namespace: default
spec:
 enabled: true
 version: latest
 type: dotnet-core
 image:
 registry: docker.io/contrast
 name: agent-dotnet-core
 pullSecretName: contrastdotnet-pull-secret
 pullPolicy: Always
 selector:
 images:
 - "*"
 labels:
 - name: app
 value: example-*
 connection:
 name: example-agent-connection
 configuration:
 name: example-agent-configuration

Property Type Required Default value Description

spec.enabled boolean No TRUE Enables or disables this
agent injector.

Contrast Documentation

Agents 507

Property Type Required Default value Description

spec.version string No latest The version of the agent
to inject. The literal
'latest' will inject the latest
version. Partial version
matches are supported,
e.g. '2' will select version
'2.1.0'.

spec.type agentType Yes The type of agent to
inject. Can be one
of ['dotnet-core', 'java',
'nodejs' or 'nodejs-esm',
'php', 'python’].

spec.image.registry string No docker.io/contrast The image registry to
use for downloading agent
images. This registry must
be accessible by the pods
being injected and by the
operator.

spec.image.name string No {based on type} The name of the injector
image to use.

spec.image.pullSecretName string No The name of a pull Secret
to append to the pod's
imagePullSecrets list.

spec.image.pullPolicy string No Always The pull policy to use
when fetching Contrast
images. See Kubernetes
imagePullPolicy for more
information.

spec.selector.images string[] No Select all containers in Pod. Container images to inject
the agent into. Glob
patterns are supported.

spec.selector.labels labelSelector[] No Select all workloads in
namespace.

Deployment/
StatefulSet/DaemonSet/
DeploymentConfig labels
whose pods are
eligible for agent injection.

spec.connection.name string No Defaults AgentConnection
specified by a
ClusterAgentConnection.

The name
of AgentConnection
resource. Must exist within
the same namespace.

spec.configuration.name string No Defaults a
AgentConfiguration
specified by a
ClusterAgentConfiguration.

The name of
a AgentConfiguration
resource. Must exist within
the same namespace.

• Disabling an existing AgentInjector will remove all injections from selected workloads.
• The referenced AgentConnection and AgentConfiguration must exist in the same namespace as the

AgentInjector.
• If using a custom registry, both the Pod being injected and the operator must have access, either

through the default pull secret, or custom pull secrets.
• Agent version latest is recommended when using the agent in pre-production environments.
• The AgentInjector supports selecting Deployment, StatefulSet, DaemonSet, and DeploymentConfig

(on OpenShift) workloads. Injecting pods directly is not supported.
• If the selected workload creates many containers in a single Pod, spec.selector.images can be used

to filter which containers are injected.

labelSelector

Property Type Required Default value Description

name string Yes The name of the label to match.

value string Yes The value of the label to match. Glob patterns are supported.

Contrast Documentation

Agents 508

NOTE
Label selections are cumulative using the logical AND operation.

agentType

Agent Agent Type

.NET Core dotnet-core

Java java

Node.js nodejs

OR

nodejs-esm

PHP php

Python python

Types are further documented in Operator supported technologies (page 495).

ClusterAgentConfiguration

apiVersion: agents.contrastsecurity.com/v1beta1
kind: ClusterAgentConfiguration
metadata:
 name: default-agent-configuration
 namespace: contrast-agent-operator
spec:
 namespaces:
 - default
 template:
 spec:
 yaml: |
 server:
 environment: QA

Property Type Required Default value Description

spec.namespace string[] No All namespaces. The namespaces to apply this
AgentConfiguration template to. Glob syntax
is supported.

spec.template AgentConfiguration Yes The default AgentConfiguration to apply
to the namespaces selected by
'spec.namespaces'.

NOTE
For security, ClusterAgentConfiguration manifests must be deployed into the same
namespace of the operator.

ClusterAgentConnection

apiVersion: agents.contrastsecurity.com/v1beta1
kind: ClusterAgentConnection

Contrast Documentation

Agents 509

metadata:
 name: default-agent-connection
 namespace: contrast-agent-operator
spec:
 namespaces:
 - default
 template:
 spec:
 url: http://app.contrastsecurity.com/Contrast
 apiKey:
 secretName: default-agent-connection-secret
 secretKey: apiKey
 serviceKey:
 secretName: default-agent-connection-secret
 secretKey: serviceKey
 userName:
 secretName: default-agent-connection-secret
 secretKey: userName

Property Type Required Default value Description

spec.namespace string[] No All namespaces. The namespaces to apply this
AgentConfiguration template to. Glob syntax is
supported.

spec.template AgentConnection Yes The default AgentConnection to apply to the
namespaces selected by 'spec.namespaces'.

NOTE

• For security, ClusterAgentConnection manifests must be deployed into the same
namespace of the operator.

• Secrets referenced by ClusterAgentConnection must exist in the same namespace
in which the ClusterAgentConnection entity is deployed.

See also

• Install Agent Operator (page 496)
• Agent Operator supported technologies (page 495)
• Agent operator telemetry (page 511)

.NET Core chaining support
The .NET Core Agent, paired with the Contrast Agent Operator (page 494), supports profiler chaining
with Dynatrace using the Dynatrace Operator. Support is enabled automatically when the Dynatrace
Operator is used to inject the Dynatrace agent into workloads.

If you use the Dynatrace Operator in classicFullStack mode, set the
CONTRAST_ENABLE_EARLY_CHAINING=true environment variable for the Contrast Agent Operator
and restart the affected pods. Use this manifest example to guide you.

The Agent Operator supports executing in OpenShift clusters that have security context constraints
(SCCs) using the built-in admission or mutating controllers. The Dynatrace Operator and any
injections are tested against the restricted policy. If you are running your application in an
OpenShift cluster where the default restricted policy disallows setting an SCCs policy, ensure

Contrast Documentation

Agents 510

https://github.com/Contrast-Security-OSS/agent-operator/blob/master/docs/public/05-advanced-topics.md
https://github.com/Contrast-Security-OSS/agent-operator/blob/master/docs/public/05-advanced-topics.md
https://github.com/Dynatrace/dynatrace-operator
https://github.com/Contrast-Security-OSS/agent-operator/tree/master/manifests/install/examples/classicfullstack-chaining

the CONTRAST_SUPPRESS_SECCOMP_PROFILE=true environment variable is applied to the Agent
Operator workload.

Vendor Version Support validated on

Dynatrace Operator v0.6.0 2022/06/09

Future Dynatrace versions may break chaining. Chaining can introduce incompatibilities and can be
disabled using the agent.dotnet.enable_chaining: false option.

Agent Operator Telemetry
The Contrast Agent Operator uses telemetry to collect usage data. Telemetry is collected when the
operator is first installed in a cluster and then periodically (every few hours) afterwards.

Your privacy is important to us. The telemetry feature doesn't collect application data. The data is
anonymized before being sent securely to Contrast. Then the aggregated data is stored encrypted and
under restricted access control. Any collected data will be deleted after one year.

To opt-out of the telemetry feature, set the CONTRAST_AGENT_TELEMETRY_OPTOUT environment
variable to 1 or true.

Telemetry data is securely sent to telemetry.dotnet.contrastsecurity.com. You can also opt out of
telemetry by blocking communication at the network level.

The telemetry feature collects the following data:

Operator v0.3.0

• The version of the operator.
• The uptime of the operator.
• Cluster version information and platform as published by the Kubernetes API.
• A cryptographically (SHA256) anonymous hash of the cluster ID, a randomly generated GUID

created at first launch by the operator and stored in the operator's namespace as a Secret.
• The count of watched resources in the cluster (all operator entities, DaemonSets,

DeploymentConfigs, Deployments, Namespaces, Pods, Secrets, and StatefulSets).
• Exceptions thrown internally by the operator, including log message, exception type, exception

message, and stack trace frames.

Agent performance
Agent performance in application security refers to the effectiveness and efficiency of security agents
or software tools deployed to protect applications from vulnerabilities and threats. These agents can be
various security mechanisms such as firewalls, intrusion detection systems (IDS), intrusion prevention
systems (IPS), web application firewalls (WAF), and vulnerability scanners.

See also
Agent performance with Protect (page 511)

Java agent performance (page 512)

.NET Core agent performance (page 514)

Agent performance with Protect

What can impact Protect performance?
The performance of these agents is crucial because they need to accurately and swiftly detect
and respond to potential security risks in real-time. Here are a few main aspects related to agent
performance in application security:

Contrast Documentation

Agents 511

1. Accuracy: The security agent should have a high level of accuracy in identifying and classifying
security threats. To address genuine risks, we want to minimize false positives (misidentifying
legitimate activities as threats) and false negatives (failing to detect actual threats).
• When sensitive rules are detected, they are audited and validated. The rules are adjusted or

turned off for a quick fix. The engineering team is responsible for fixing and tuning the false
positives (FP) to ensure the system's accuracy.

2. Speed and responsiveness: Application security agents should operate in real-time or near real-
time to detect and respond promptly to security incidents. Delayed responses can lead to extended
exposure to vulnerabilities and increase the risk of successful attacks.
• Contrast’s infrastructure services are expected to have enough resources and capacity to handle

high loads and errors without impacting performance.
3. Scalability: Agents should be capable of handling the demands of large-scale applications and

networks. The system has a cloud-native licensing model that allows easy deployment and scaling
of microservices in clustered environments. It provides flexibility for scaling up and down based on
demand to ensure optimal performance.
• Our updated configuration deployment enables the efficient scaling up and down of the system

with microservices. It simplifies the process of deploying and managing the system at scale,
ensuring smooth operations.

4. Resource utilization: Effective security agents should need to utilize system resources, such as
CPU, memory, and network bandwidth, efficiently. They should handle the need for robust security
measures and minimize resource consumption to avoid adversely impacting the performance of the
protected applications.
• The memory consumption is typically capped. See the agent-specific sections for detailed

information about memory usage.
5. Adaptability: Application security agents should be adaptable to evolving threats and new attack

vectors. Regular updates and enhancements to the agent's capabilities, such as signature updates,
rule updates, and machine learning models, are necessary to ensure the continued effectiveness of
security measures.
• You can optimize performance by determining the most applicable rules and tuning them. You

can also use exclusions and allowlisting to reduce unnecessary scans and analysis, which helps
in further tuning and reducing performance impact.

Overall, the agent performance objective in application security is to provide a robust and reliable
defence against potential threats while minimizing false positives, response times, and resource
utilization. Organizations can enhance the security posture of their applications and protect them from
various attacks by balancing security effectiveness and system performance.

See also
Java agent performance (page 512)

.NET Core agent performance (page 514)

Performance expectations for the Java agent with Protect
To provide insights into its impact on performance, we have gathered information based on internal
tests conducted with a sample Java application. Please note that the actual performance numbers may
vary based on several other factors.

CPU Usage

• The Java agent typically utilizes 5-15% of CPU resources
• This range provides an estimate of the additional CPU load incurred when the agent is enabled in

Protect mode
• The impact may vary based on the complexity of your application, the load it experiences, and other

environmental factors

Contrast Documentation

Agents 512

Memory consumption

• The Java agent typically requires 200-300 MB of additional memory
• This memory usage accounts for the Agent's operations and any associated data structures
• The actual memory impact may depend on the size and complexity of your application, as well as the

number of concurrent requests it handles

Latency

• Enabling the Java agent in Protect mode may introduce additional latency to the processing of
requests

• 99% of observed requests for Protect analysis take between 100 µs - 5 ms
• The specific impact will depend on various factors like the application's workload, the number of

concurrent users, and the nature of the requests
• It is important to note that the latency introduced is generally minimal, but it may vary based on your

specific application characteristics. These performance numbers serve as a baseline to provide you
with an initial understanding of the Java agent's impact on your application. However, we emphasize
that the actual performance impact may differ based on the unique aspects of your environment and
application. We recommend conducting your performance tests using representative workloads and
realistic scenarios to accurately gauge the impact on your application's performance. By simulating
conditions similar to your production environment, you can fine-tune the configuration and evaluate
the trade-off between security and performance. Our team is committed to continuously enhancing
the Java agent's efficiency and optimizing its impact on your application's performance. We value
your feedback and encourage you to reach out to us with any performance-related observations or
concerns. Feel free to contact our support team if you require any assistance or further information
regarding the performance characteristics of our Java agent. We are here to help you ensure the
security and stability of your application while maintaining optimal performance levels.

The following graph illustrates a combined representation of the request handling time for real customer
host applications instrumented with our agent. It showcases a 24-hour sample of Java performance
impact.

• The top row shows the overall request handling time, indicating that a substantial portion of the
HTTP requests, approximately 93% of requests (1.06 billion hits), fall within the 10 millisecond to 50

Contrast Documentation

Agents 513

https://support.contrastsecurity.com/hc/en-us/requests/new?ticket_form_id=360000011243

milliseconds range. Additionally, you can see 98.1 million hits with a handling time between 5 and 10
milliseconds, while the remaining handling times follow a normal distribution.

• The bottom row displays the Protect time, which represents the length of time our Protect RASP
product takes to analyze each request. Notably, among the total requests, 800 million were analyzed
within a time frame of 1 to 5 milliseconds, demonstrating a negligible impact on latency. Similarly,
an additional 344 million requests underwent analysis within an even shorter time range of 0.5 to
1 milliseconds, indicating minimal latency impact. The distribution of request handling times for host
applications instrumented with our agent allows us to observe the number of requests falling into
different time ranges while also providing insights on the performance impact introduced by Protect.

• Garbage collecting and other JVM elements can pause execution, which impacts timing.

Performance expectations for the .NET Core agent with Protect
To provide insights into its impact on performance, we have gathered information based on internal
tests conducted with a sample .NET Core application. Please note the actual performance numbers
may vary based on several other factors.

CPU usage

• The .NET Core agent typically utilizes 5-10% of CPU resources
• This range represents the additional CPU load incurred when the agent is enabled in Protect mode
• The actual impact may vary depending on the complexity of your application, the workload it handles,

and other environmental considerations

Memory consumption

• The .NET Core agent typically requires around 200 MB of additional memory
• This memory usage accounts for the agent's operations and relevant data structures
• The actual memory impact may differ based on your application's size, complexity, and the number of

concurrent requests it processes

Latency

• Enabling the .NET Core agent in Protect mode may introduce additional latency during request
processing

• The latency increase can range from 1-10 milliseconds
• The specific impact on latency depends on factors such as your application's workload, the number of

concurrent users, and the nature of the requests being handled
• It is important to note that the introduced latency is generally minimal, but actual numbers may vary

based on your specific application characteristics. These performance numbers serve as a baseline,
providing an initial understanding of the impact the .NET Core agent has on your application's
performance. However, it is crucial to recognize that the actual performance impact may differ based
on the unique aspects of your environment and application. We strongly recommend conducting
your performance tests using representative workloads and realistic scenarios to accurately assess
the impact on your application's performance. By simulating conditions similar to your production
environment, you can optimize the configuration and evaluate the balance between security and
performance. Our team remains dedicated to continuously improving the efficiency of the .NET Core
agent and optimizing its impact on your application's performance. We value your feedback and
encourage you to reach out to us with any performance-related observations or concerns. Feel
free to contact our support team if you require any assistance or further information regarding the
performance characteristics of our .NET Core agent. We are here to assist you in ensuring the
security and stability of your application while maintaining optimal performance levels.

Contrast Documentation

Agents 514

https://support.contrastsecurity.com/hc/en-us/requests/new?ticket_form_id=360000011243

Use Contrast

The way you interact with Contrast depends on your particular situation, the tools and integrations you
use, your roles and permissions, and whether you are accessing Contrast through the web interface,
command line tools or the REST API.

NOTE
All commands used in this guide should be run in a command shell with administrative
privileges from the directory in which Contrast was installed.

The majority of Contrast users will likely be assigned an Editor role. (You can see what permission level
you have (page 519) under user settings. (page 516))

With Editor permissions you can instrument an application (page 48) and start viewing results in
Contrast. You can also interact with the basic components of Contrast (all visible in the header of the
web interface):

• Applications (page 523)
View a searchable list of an organization’s applications. License, merge, tag, archive and restore
applications.

• Servers (page 588)
View a searchable list of an organization’s servers. Designate server environment, enable Assess
and Protect, settings, tagging and deleting.

• Libraries (page 598)
View a searchable list of libraries being used by all the applications in an organization. Use tags and
view statistics for known vulnerabilities present in libraries and high-risk libraries.

• Vulnerabilities (page 690)
View a searchable list of vulnerabilities discovered. You can view this list for each application in
an organization. Mark status, merge, share, tag, and export vulnerabilities. View details of any
vulnerability for more information and guidance for fixing it.

• Attacks (page 706)
View a searchable list of attacks that are occurring or have occurred on all the applications in an
organization. View attacks at the highest level or delve into the individual attack events.

You can also use other features and tools to enhance your Contrast experience:

• Reports (page 717)
Collect data and export as a CSV or PDF to share it outside of Contrast.

• Integrations (page 724)
Use Contrast in conjunction with other tools like bugtrackers, build tools, application servers, Security
Incident Event Management (SIEM), notifications and chat.

• Contrast CLI (page 665)
Perform software composition analysis (SCA) on your application to show you the dependencies
between open-source libraries.

Although most of the configuration for these features requires system (page 868),
organization (page 809) or RulesAdmin (page 778) permissions, an Editor can:

Contrast Documentation

Use Contrast 515

https://api.contrastsecurity.com/

• Instrument an application (page 48)
• Send notifications
• Customize scoring (page 830)

Supported languages for Contrast
This table provides a view of the languages the different Contrast components support.

Table key:

 Supported

 Under consideration

-- Not applicable for this technology

Language Contrast Scan Contrast SCA Contrast
Assess

Contrast
Protect

Contrast
Serverless

Java

(AWS and Azure)

Kotlin

Scala

.NET Framework --

.NET Core

Node.js

Client-side
JavaScript

--

Ruby

Python

Go

PHP

C#

VB.NET

Additional technologies for Contrast Scan
Contrast Scan supports these additional languages and technologies:

SAP ABAP JavaScript/TypeScript PowerScript
ActionScript JCL RPG IV
ASP.NET JSP Swift
C and C++ NATURAL Transact-SQL
COBOL Objective-C TypeScript
HTML Oracle Forms Visual Basic
Informix (SQL and 4GL) PS-SQL XML

Manage user settings
To manage user settings in Contrast, open the user menu (your name in the top right corner of the
Contrast web interface), and select User settings. There you can:

• Change your password (page 517)
• Set up two-step authentication (page 517)
• Edit your profile (page 518)
• Find API keys (page 518)
• Manage notifications (page 519)

Contrast Documentation

Use Contrast 516

• View your permissions (page 519)

Log in to Contrast
To log in to Contrast for the first time, you must accept an email invitation generated by your
administrator. Select the link in the email to log in to Contrast.

If your organization is using single sign-on (SSO) (page 823), select the checkbox on the login page to
disable the password input field. You are only required to enter your email address. Once your email is
verified you can log in with your full SSO credentials.

If you are using two-step authentication (page 517), your login process occurs after successful SSO
authentication.

Change your password
To change your account password, complete the following steps.

1. Log in to Contrast.
2. In the user menu, select User settings > Change password.
3. In the form fields, enter your current password and new password. Retype your new password in

the next field to confirm it.

NOTE
Your new password must adhere to the password policy set by your
administrator (page 822). Contrast notifies you of their requirements as you begin
typing.

4. Check the box to agree to the Terms and Conditions.
5. Select Save.

NOTE
Customers using single sign-on (SSO) to log in (page 517) don't have the option to
change their password.

Set up two-step authentication
If your administrator has enabled two-step authentication at an organization (page 822) or
system (page 914) level, you can add an extra layer of protection beyond your username and
password. To set it up:

1. In the user menu, select User settings > Two-step verification.
2. Use the toggle to enable two-step authentication.
3. Use the radio buttons to select how you want to receive verification codes:

• Email: You can receive authentication codes in the email you associated with Contrast. To set
this up, you will receive an email with a verification code to enter in the configuration page

• Google Authenticator: You will need to download the app to your mobile device, and you can
receive authentication codes there. To set this up, scan the QR code provided in Contrast, and
follow the instructions to validate your device.

4. Before completing two-step authentication setup, you can download a set of backup codes in the
form of a .txt file, which allows you to login if you encounter an error or get locked out of your
account. You must download and save these codes in a secure location.

Contrast Documentation

Use Contrast 517

https://app.contrastsecurity.com/Contrast/static/html/tac.htm

5. If you want to change the way you receive verification codes, you can go back and reconfigure
notification settings. Once you change your selection, Contrast automatically issues a new set of
backup codes. It is not necessary to save your changes.

TIP
If you run into issues using either method, you can use the backup codes provided,
select Can't sign in? or use the Reset Device link in Google Authenticator.

Manage your profile
Add or update your name, time, date and language preferences to customize your experience using
Contrast.

1. In the user menu, select User settings > Profile.
2. Under General information, you can enter your basic information, such as your name or time

zone.
3. Click on the thumbnail to upload a new profile image.
4. Here you can also view your organization and personal keys (page 518) under Your keys.
5. Select Save.

View your API keys
Use API keys to establish communication between agents or custom scripts and Contrast. The agent
and the Contrast API use the keys for these purposes:

• To identify which organization is being accessed.
• To identify you as a valid user.

Steps

1. Go to User menu > User settings > Profile.
Under Your keys you can see the API keys, which include the API key and these keys:
• Organization ID: Identifies the organization being accessed.
• Service key: Uses your credentials to connect to Contrast services.
• Authorization header: Identities you as a valid user.

Contrast Documentation

Use Contrast 518

https://support.contrastsecurity.com/hc/en-us/articles/360035743631-Issues-with-Two-Step-Verification

2. To copy the authorization header, select Copy.
3. To rotate the service key, click Rotate.

Rotating the service key affects any integrations using that key. To reconnect, update your
credentials in your integrations.

4. To generate a sample API request and copy it to clipboard, select Generate sample API request.

Manage user notifications
To change your notification settings:

1. In the user menu, select User settings > Notifications.
2. Click in the Subscriptions field to choose the application(s) for which you want to receive

notifications. The default selection is "All Applications".
3. Use the toggles in the In Contrast and Email columns to enable or disable the following

subscriptions.
• Active attack: There is an active attack on an application with Protect enabled.
• New vulnerability: Contrast has detected a new vulnerability. Click in the field to receive

notifications for specific severity levels or "Library"; the default selection is "All".
• Vulnerable library: Get notifications when a new vulnerable library is detected or a new CVE is

detected in a library.
• Server messages: Get server messages around reliability issues.
• Server offline: A server can no longer be reached.
• New comment: A team member commented on a finding.
• New asset: A new asset (application or server) to which you have access (page 519) has been

added. Click in the field to set this notification for "Application" or "Server"; the default selection is
"All".

• Nearing expiration: An application license is about to expire.
• Policy violations: A compliance, library or remediation policy is in violation. Select the box if you

want to aggregate policy violation emails into a digest.
• Email: A daily summary of Contrast activities.

View your permissions
The Permissions page provides a detailed view of the assigned permissions for both the organization
and the applications to which you have access. To see your permissions:

1. Go to the User menu > User settings > Permissions.
2. See your organization listed at the top of the page along with your organization role.

The Application permissions grid shows your role for each application within the organization.
3. Click the help icon next to each role for details on the data access and actions made available by

each level.

See also

• Application roles (page 945)
• Organization roles (page 947)

Projects
After the CLI is run on a manifest, or a GitHub, Bitbucket, or GitLab account has been connected to
your Contrast organization, you can view the associated projects and findings in Contrast. This provides
earlier and broader visibility of vulnerabilities in open-source software where instrumentation is not
possible or is too late in the software development life cycle (SDLC).

To view CLI results on this page you will need to have the Contrast CLI 2.0 installed via
npm (page 666).

Contrast Documentation

Use Contrast 519

To view repository scan results on this grid you will need to connect your accounts (page 521) to
Contrast.

See also

• View projects (page 520)
• Supported languages and package managers (page 666) for Contrast CLI
• Contrast Security GitHub App (page 714)

View projects
There are multiple ways to view information about projects and repositories connected to Contrast from
GitHub, Bitbucket or GitLab.

NOTE
Depending on your permissions in the organization, you may or may not be able to
perform actions on this page. To be able to delete a repository you will need admin
permissions (page 945) enabled.

• Select Projects in the header.
• Select a project name from the list and, if applicable, expand the row to view more information about

the connected projects. Each row contains the latest activity and the total number of vulnerable
libraries along with the total number of critically vulnerable libraries.

• The projects view shows:
• Name: This is the name of the project containing either the manifest stored locally for the CLI or

the GitHub, Bitbucket, or GitLab account and repository name. The type of project is identified by
the analysis performed.

Contrast Documentation

Use Contrast 520

• Projects analyzed by Contrast CLI are identified with this icon
• Projects analyzed by the Contrast Security GitHub App, Bitbucket, or GitLab are identified with

this icon .
• Last activity date: The latest activity (the reason for the trigger) and a timestamp of the latest

activity.
• Connections: Connect (page 521) Contrast to your GitHub, Bitbucket, or GitLab account to see

results.
• Vulnerable libraries: This shows the number of libraries in the project with an identified

vulnerability (CVE). The number of libraries with at least one critical severity CVE is coded red.
If applicable, expand a row to view the connected projects. Hover over the thermometer section
to see the number of CVEs by severity. Click the thermometer to open the details panel. If
vulnerabilities exist, they display in a list and are color-coded by severity.
• If a message of Analysis not complete. Try again or contact Support. appears, it means that

the analysis is in progress or there is a failure. Try connecting the repository again. If that fails
contact Support for help.

• If a message of None identified appears, it means that no vulnerable libraries have been found.
• Actions: This is where you can view the repository, disconnect (page 521) the repository

connections, or export (page 521) the CLI project data to a CSV file.
• Use the sort by dropdown at the top-right to sort the list by the last activity date or the repository

name.

Export project details
You can export project details in a CSV file or in a generated Software Bill of Materials (SBOM) file.

The exported CSV file contains data fields like Library Name, Language, Version, Release Date, CVE
Count, and Licenses for each project.

Steps
To export project details:

1. Select Projects in the header.
2. Locate the row for the project to be exported.
3. Select the Export icon at the end of the row.
4. Select the format under the Download As options. If you select the SBOM option you will need to

specify the standard.

The file will be downloaded to your desktop.

Account connections
With the connection options at the top of the Projects grid, you can easily connect Contrast to your
GitHub, Bitbucket, or GitLab repositories.

Once you connect to either platform, scan results will appear on the Projects grid in Contrast. You can
manage individual connections row-by-row on the Projects page.

GitHub
Click the GitHub icon to use the Contrast Security GitHub App (page 714) to connect with Contrast.

Contrast Documentation

Use Contrast 521

https://support.contrastsecurity.com/hc/en-us/requests/new

Bitbucket
Connect to your Bitbucket repository to view scan results from Bitbucket files.

Connect to Bitbucket

NOTE
A test commit is performed by Contrast before adding the changes to the bitbucket-
pipelines.

1. Click the Bitbucket icon .
2. Select Configure to add projects to your workspace.
3. Select Update to establish the connection.

Disconnect from BitBucket

1. Click the Bitbucket icon .
2. Select Disconnect.
3. Select the Disconnect button in the resulting window to disconnect all associated projects from

Contrast.
To disconnect individual projects, locate the row in the grid for the project you want to disconnect
and click the Delete icon.

GitLab
Connect to your GitLab repository to view scan results from GitLab files.

NOTE
To connect to GitLab you must have a GitLab Owner or Maintainer role to write the
required variables into a GitLab repository.

Connect to GitLab

1. Click the GitLab icon .
2. Select Configure to add projects to your namespace.
3. Select Update to establish the connection.

Disconnect from GitLab

1. Click the GitLab icon .
2. Select Disconnect.
3. Select the Disconnect button in the resulting window to disconnect all associated projects from

Contrast.
To disconnect individual projects, locate the row in the grid for the project you want to disconnect
and click the Delete icon.

Contrast Documentation

Use Contrast 522

Applications
After an application has been instrumented (page 48), you can view your applications (page 523) in
Contrast and explore these features:

• Route coverage (page 534)
• Session metadata (page 531)
• Flow maps (page 540)
• Application scoring (page 950)

NOTE
An Organization or Application Administrator will need to license your
application (page 816) for these features to work.

View applications
There are multiple ways to view application information.

Steps

1. Select Applications in the header to view a list of all applications found in your organization.
2. Select an application name from the list to view the application's Overview tab.
3. To filter the list based on application status, select the small triangle at the very top of the

applications list.
Alternatively, to search for specific application by name, select the magnifying glass icon () to
search for them.

The filters include:
• All: Applications that you added to Contrast, excluding archived applications.
• Online: Only applications whose agents have contacted Contrast within the last 5 minutes.

Excludes archived applications.
• Offline: Only applications whose agents have had no contact with Contrast for more than 5

minutes.
Excludes archived applications.

• Merged: Only applications that are are part of a merged application (the primary application and
its. components)

Contrast Documentation

Use Contrast 523

Excludes archived applications.
• Licensed: Only applications that have a Contrast license applied to them

Excludes archived applications.
• Unlicensed: Only applications that have no Contrast license applied to them

Excludes archived applications.
• High risk: Only applications that have a high or critical vulnerability with a status of: Reported,
Suspicious , orConfirmed .
Excludes archived applications.

• Policy violation: This filter is available when the organization has enabled compliance policies.
Only applications that are in violation of a compliance policy.
Excludes archived applications.

• Archived Only applications that are visible for historical purposes. The agent for an archived
application no longer reports vulnerabilities to Contrast.

4. To filter by application score, select the filter icon () next to the Score column header and select
one or more scores.
To remove filters, select Clear next to the column header.

5. To filter the list of applications, select the filter icon () next to the Application column header. The
filters include:
• Application metadata (if configured): Application metadata that you associated with

applications.
• Application tags (if created): Tags you assigned to applications.
• Languages: The language that an application uses.
• Servers: The servers where applications are running.
• Open vulnerability severity: The severity for open vulnerabilities.
• Technologies: Technologies that applications use. For example, JSON or jQuery.

To remove filters, select Clear next to the column header.
• Environments: The environments associated with applications: Development, QA, and

Production.
• Application importance: The importance level you set in the application settings.

Contrast Documentation

Use Contrast 524

Contrast Documentation

Use Contrast 525

Application details
The Overview tab for an application shows details about the application configuration and activity.

Dashboard
The dashboard at the top of the tab shows this information:

• Scores: The letter grade is based on the number and seriousness of the vulnerabilities found in the
application. Use the application scoring guide (page 950) for guidance.

• Libraries: The number of open-source libraries that Contrast SCA identified and the number of
vulnerable libraries.

• Routes exercised: The number of routes exercised in the application and the number of observed
routes.

• Servers: The number of servers associated with the selected application.

Environment details
For each environment, you see these details, if servers are defined for the application:

• Protect and Assess settings: The setting bars indicate the number of servers where Assess or
Protect is turned on or off.
To manage the settings, select a section of the bar. Doing so opens a filtered view of the
servers (page 589) where you can manage the Assess and Protect settings.

• Servers: The number of servers associated with the application.
• Vulnerabilities: The number of vulnerabilities. Use filters to change the view by severity, status, or

type.
Hover over a section of the vulnerabilities bar to view additional details.

• Vulnerability trend: This view shows the trends for vulnerabilities that Contrast identifies and the
remediation of these vulnerabilities, either by manual verification or auto-verification policies.

Edit application settings
You may need to access or edit settings for your application:

• Application names: Each application in an organization must have a unique name.To change the
name, select Applications in the header, then click on the application's name in the grid to go to
its Overview page. Click on the name at the top of the page to update the text.
Alternatively, select the Settings icon in the top right of the Overview page and update the name in
the Application defaults window.
SuperAdmins can also edit application names by selecting SuperAdmin in the user menu, then
Applications in the header, then clicking on the name in the grid.

• Application ID: The application ID is the last URI segment in the URL of your browser. To locate
an application's ID, select an application from the grid. The segment after applications/ is the
application ID.

• Application importance: This value appears in the application's metadata and may also be used in
your organization's integrations settings. To set an application's importance level select an application
name to view its Overview page and select the Settings icon. In the Application defaults window,
use the Importance field to select a level from the dropdown.

1. Select your application from the Applications tab. Your selected application overview displays.
2. Select the settings icon in your application overview. The Application Settings popup displays.
3. Edit any of the fields as required.
4. Click Save to save your updated application settings.

Contrast Documentation

Use Contrast 526

Field descriptions

• Application names: Each application in an organization must have a unique name.To change the
name, select Applications in the header, then click on the application's name in the grid to go to
its Overview page. Click on the name at the top of the page to update the text.
Alternatively, select the Settings icon in the top right of the Overview page and update the name in
the Application defaults window.
SuperAdmins can also edit application names by selecting SuperAdmin in the user menu, then
Applications in the header, then clicking on the name in the grid.

• Application Code: The identification code or number that’s internal to your organization and unique
to the application or microservice. Use this field if you want to integrate these applications' unique
identifiers into your usage of Contrast. This code can be configured upon application startup, in the
application properties section of an agent configuration.

• Override URL: This is the url used to replicate a vulnerability.
• Importance: This value appears in the application's metadata and may also be used in your

organization's integrations settings. To set an application's importance level select an application
name to view its Overview page and select the Settings icon. In the Application defaults window,
use the Importance field to select a level from the dropdown.

Add tags to applications
Use application tags to better organize applications and improve search functionality.

Steps

1. Select Applications in the header.
2. Add tags:

a. To add tags for a single application, hover over the end of the application's row and select the
Tag icon ().
Alternatively, go to the Overview page for the application and select the Tag icon () at the
top of the list.

b. To add tags for multiple applications, select the check mark next to each application and select
the Tag icon from the action menu at the bottom of the list.

3. In the Tag application window, start typing to view a list of existing tags. Select the tags you want to
use or enter a new tag.
After adding tags, you can see them next to the application name in the Overview tab for the
application.
To remove a tag, click x in the tag name.

4. To use tags for filtering, select the Filter icon () next to the Applications column and select
Application tags.

Contrast Documentation

Use Contrast 527

Merge and unmerge applications
Merging two or more applications creates a single application called a primary application and is a
common operation for Organization Administrators responsible for bringing applications online.

The main purpose of merging is to present a single application view for the purposes of scoring,
discovered vulnerabilities, and remediation. Applications can be made up of module, which may show
up individually in the application list. Merging also allows you to logically organize all of an application's
modules into one entity in Contrast.

Steps

1. Select Applications in the header, and use the check marks to select the applications to merge.
2. Select theMerge icon () from the menu at the bottom of the list.
3. In the Merge applications window, use the dropdown to choose one of the merged applications to

represent the primary application.
4. Once your applications are merged, you see the primary application icon () beside the name of

the primary application.

5. To see the application modules in the merged application as well as details about exercised routes,
select the primary application icon in the application's row .

Contrast Documentation

Use Contrast 528

6. To unmerge either all or specific application modules from the primary application, select the
primary application icon () in the application's row or Overview page. In the Applications modules
window, select any number of the modules, and select Unmerge selected.

Archive and unarchive applications
If an application should no longer collect vulnerabilities, but you want to keep it in your organization for
historical purposes, the best solution is to archive the application.

Archiving an application maintains the integrity of past application data, such as vulnerabilities and
libraries, but the agent no longer reports vulnerabilities to Contrast.

Archived applications also improve your overall portfolio score, as they don't count against the total
score.

An administrator can restore an archived application. After you unarchive an application, it is visible in
the default Applications list. All vulnerabilities and issues immediately impact the its score.

Before you begin

• Archiving an application doesn't free up a license in Contrast. To return a license back to the pool of
available licenses is to archive and fully delete (page 531) the application.

Steps

1. Select Applications in the header.
2. Find the application you want to archive.
3. Archive the application:

a. To archive a single application, hover over the end of the application's row and select the
Archive icon ().

b. To archive multiple applications, select the checkmark next to each one and select the Archive
icon () from the action menu at the bottom of the list.

Contrast Documentation

Use Contrast 529

c. In the displayed window, select Archive to confirm your choice.
4. To unarchive an application::

a. Select the small triangle () next to the Applications header at the top of the list.
b. Select Archived.
c. To unarchive a single application, hover over the end of the application's row and select the

Unarchive icon ().
d. To unarchive multiple applications, select the checkmark next to each one and select the

Unarchive icon in the action menu at the bottom of the list.

e. In the displayed window, select Unarchive to confirm your choice.

Reset an application
Resetting an application purges all the data associated with it, but doesn't remove the application.
Resetting applications is useful when you want to clear all history and findings associated with a
specific application.

It is common to reset an application before deleting (page 531) it to make sure that all associated
vulnerabilities, URLs and components are cleared properly.

Reset behavior

• General behavior:
When you reset an application, it loses its historical vulnerability data, library data, and route
coverage data. It keeps its license association and entry in Contrast, as well as its server
associations.

• Application or server is online:
If you reset an application that is online or its server is online, the count for vulnerabilities, libraries,
and routes becomes 0. If you browse some of the application endpoints, data for vulnerabilities,
libraries, and routes repopulate. Discovered routes remain lost, because route discovery occurs
during application startup.

• Application or server is offline:
If you reset the application when the application or its server is offline, all the data populates, as
expected.

Before you begin
You can reset only one application at a time.

CAUTION
If you reset an application, there is no way to restore the purged data.

Steps

1. Select Applications in the header.

Contrast Documentation

Use Contrast 530

2. Hover over the end of the row and select the Reset icon (),
Alternatively, in the application's Overview tab, select the Settings icon () and select Reset
application.

3. In the Reset Application window, select Reset.

Delete applications
When you delete an application, Contrast permanently removes all of its associated findings, such as
vulnerabilities and libraries.

Licenses applied to applications permanently count towards the number of maximum allowable
applications. Deleting a licensed application has no effect on the number of licenses you are allowed to
apply to applications

Before you begin

• Optional: You can reset the application (page 530) before you archive and delete it.
Resetting an application purges all of the data associated with it, but doesn't remove the application.
Users often reset applications to clear all history and findings associated with a specific application.

Steps

1. Select Applications in the header.
2. Find the application that you want to delete.
3. Archive the application:

a. To archive a single application, hover over the end of the application's row and select the
Archive icon ().

b. To archive multiple applications, select the check mark next to each one and select the
Archive icon () in the action menu at the bottom of the list.

c. In the displayed window, select Archive.
4. Select the Dropdown icon () next to the Applications header at the top of the page and select

Archived.
5. Delete the application:

a. To delete a single application, hover over the end of the row of the application you want to
delete and select the Delete () icon.

b. To delete multiple applications, select the check mark next to each one and select the Delete
icon () in the action menu at the bottom of the list.

c. In the displayed window, select Delete.

Use session metadata filters
Use session metadata to filter vulnerabilities and route information for a specific branch, build,
committer, or repository. When you add the necessary configuration settings (page 533) to your agent
configuration file, the agent reports this information along with the rest of your standard vulnerability
data to Contrast.

A session is the combination of metadata values that you set in the agent configuration file. Depending
on the defined values, each agent run could be part of a single session or every agent run could have
its own session. If you are integrating Contrast into a CI/CD pipeline, ensure that you send at least
one session metadata value that is unique each time you deploy a new version of the application.
For example, configure the agent to send the Commit Hash or Build Number metadata because these
values are likely to change for each application deployment.

Contrast Documentation

Use Contrast 531

If you don't select a specific session metadata filter, the Session column in the Vulnerability list displays
up to 10 of the values specified in the agent configuration file. This limit ensures that the Contrast web
interface can display vulnerability and sink group data correctly.

The session metadata filters that you apply affect the Vulnerabilities and Route coverage lists.

Steps

1. Select Applications in the header.
2. Select an application in the list.
3. Select either the Vulnerabilities tab or the Route coverage tab.

• In the Vulnerabilities tab,, select the Session metadata icon () at the top of the list.
• In the Route Coverage tab, in the Session routes section of the Route coverage summary, select

Apply filter.
4. Select the session: Most recent session or Custom session and the filter.

In the Vulnerabilities list in the Vulnerabilities tab, the Session column and the View by filter are
hidden and the details of the most recent session display above the session metadata icon.
a. In System property, select one of the displayed properties.
b. In Value, start typing to find values for the selected system property.

5. Select Apply filter to save the selected filter.
6. To clear a session metadata filter, use one of these methods:

• In the Vulnerabilities tab, In the Vulnerabilities list, select the Session metadata icon (). and
select Clear filter.

Alternatively, select Clear next to the displayed metadata above the Session metadata icon ().

Contrast Documentation

Use Contrast 532

In the Vulnerabilities list, the Session column displays after you clear the session metadata filter.
• In the Route Coverage tab, in the Session metadata section of the Route coverage summary,

select Clear filter.

Configure session metadata
To send session metadata for your application to Contrast, add session metadata key-value pairs to
your agent configuration file.

The agent reports the following build properties. You may include all or some of these properties. When
you do, the metadata will be available to you as additional information for each vulnerability reported or
as a way to filter them.

Supply these settings as system properties, environment settings or properties in a YAML configuration
file.

Name Setting

Commit Hash commitHash

Committer committer

Branch Name branchName

Git Tag gitTag

Repository repository

Test Run testRun

Version version

Build Number buildNumber

The metadata string format must be an RFC 2253 compliant string of comma delimited key=value pairs.
Do not include these characters:

• A space or hash (#) characters at the beginning of the string.
• A space at the end of the string
• Special characters: comma (,) , plus sign (+), double quotes (“), backslash (\), left angle bracket (<),

right angle bracket (>), or semicolon (;)

Here are some examples of how you might configure session metadata in the following instances:

• Java system properties: Include an additional entry in the line where you add your javaagent flag.
In this case, you will set the property contrast.application.session_metadata to a set of
key-value pairs (which conform to RFC 2253) that identify your test run.

-Dcontrast.application.session_metadata="branchName=feature/some-new-
thing,committer=Jane,repository=Contrast-Java"

• .NET Framework using app.config or web.config: You can add an entry to your configuration to
specify this property.

<?xml version="1.0"?>
<configuration>
 <connectionStrings />
 <appSettings>
 <add key="contrast.application.session_metadata" \
value="branchName=feature/some-new-
thing,committer=Jane,repository=Contrast-DotNet" />

Contrast Documentation

Use Contrast 533

• YAML configuration: You can add an additional entry to your contrast_security.yaml file.

application:
 session_metadata: branchName=feature/some-new-
thing,committer=Jane,repository=Contrast-Ruby

• Continuous integration (CI) build scripts: You can set values using environment variables.

-Dcontrast.application.session_metadata="branchName=feature/some-new-
thing,committer=Jane,repository=Contrast-Java,buildNumber=$BUILD_NUMBER"

-Dcontrast.application.session_metadata="branchName=$GIT_BRANCH,committer=
$GIT_COMMITTER_NAME,commitHash=$GIT_COMMIT_HASH,repository=$GIT_URL,buildN
umber=$BUILD_NUMBER"

Route coverage
For Assess users, route coverage associates vulnerabilities with the originating web request.

With route coverage, you can see detailed information on the components of your application, such as
which routes were exercised and which ones were not. This information can help you decide where to
focus testing and remediation.

Web request example
Web requests are the primary interface of web applications. A request may be handled by one function
with many subsequent functions coordinating interactions with other services, databases, or files.

During the request handling process, Contrast monitors data flows across the application to identify
vulnerabilities. A single web request may be vulnerable to multiple types of attacks. Contrast associates
these vulnerabilities with the original request.

This example shows a web request:

GET /users?active=true
Host: YourDomain.com
Accept: application/json

This example shows how a function might handle the web request:

@Controller
public class UserController {
 @GetMapping("/users")
 public String users(@RequestParam(name="active", required=false, \
defaultValue=true) Bool active) {
 ...
 }
}

How route coverage works
An application route is a combination of three parts:

• An HTTP verb (for example: GET).
• The resource path (for example: /users).
• The method signature of the controller (for example: UserController.users(Bool active)).

For cases where using a method signature isn't appropriate, Contrast uses route templates, such as
route.jsp, route.xhtml, or /route/id/{id).

When a Contrast agent starts, it instruments functions in the application so that the agent can assess
web requests for vulnerabilities while the application is running. If a function implements a framework to

Contrast Documentation

Use Contrast 534

handle web requests, Contrast can identify the route before a request is handled. In Contrast, the status
for these routes is Discovered .

When your application is handling a request, Contrast tracks the activity as an Exercised route.

Frameworks and technologies
Contrast supports route discovery for these frameworks:

• Java:currently supported technologies (page 85)
• .NET Framework: all currently supported frameworks (page 174)
• .NET Core: all currently supported frameworks (page 232)
• Node.js: all currently supported frameworks (page 290)
• Python: all currently supported frameworks (page 360)
• Ruby: all currently supported frameworks (page 416)
• Go: all currently supported frameworks (page 473)

If the framework you are using is unsupported, contact Support . For unsupported frameworks, Contrast
will attempt to infer the routes based on observed requests, but you will not see any routes discovered
within Contrast.

Exclusion of built-in routes and applications
Contrast route coverage excludes built-in routes in select web frameworks and applications. For
example:

• The Jersey framework for Java applications includes a built-in route for serving a WADL file. Contrast
does not include this route in its route coverage. Other web frameworks have similar built-in routes.

• The Contrast Java agent does not report routes from built-in applications such as the Tomcat
Manager Application.

View route details
Route coverage (page 534) helps you understand how vulnerabilities map to your application's attack
surface.

If you remove routes from the Route coverage list (steps 8 and 9) and they still exist when the
server restarts or you exercise the application, Contrast includes them in the list again. To permanently
exclude routes, select the Exclude icon () at the end of the route's row.

Steps

1. Select Applications in the header.
2. Select the name of an application.

The Overview tab shows the number of routes exercised compared to the number of total routes in
your application.

3. In the Overview tab, select the number of routes exercised or select the Route coverage tab.

Contrast Documentation

Use Contrast 535

https://support.contrastsecurity.com/hc/requests/new?ticket_form_id=360000011243

4. In the Route coverage tab, the Route coverage summary shows this information:

• Exercised routes: This section shows these details:
• The percentage of discovered routes that you exercised.
• The number of exercised routes.

• Session metadata: This section shows these details, based on the applied session metadata
filters:

NOTE
If you haven't applied session metadata filters, no values display. To see values
for session metadata, select Apply filter or Edit filter (to change the current
filters) and specify the filters (page 531) you want to use.

• Percentage of routes exercised that match the applied filters.
• The number of exercised routes that match the applied filters.
• The selected session.
• The repository for the application
• Build number
• Branch name
• Committer

5. In the Route Coverage tab, if you don't apply session metadata filters, the route coverage chart
displays.

NOTE
If you previously selected metadata filters, this chart does not display. To see the
chart, select Clear the filters.

The chart displays details about routes based on their status:
• Discovered by Contrast (but never exercised with the agent)
• Exercised with the Contrast agent
• Exercised and found to contain vulnerabilities

Contrast Documentation

Use Contrast 536

6. In the Route coverage list, view additional details about each route.
• Route: A route that Contrast identified or is tracking.
• Server: The servers where the application is running.

By default, the Server column shows up to three servers. To view a complete list of servers (if
more than three are in use), select Show all.

NOTE
When you delete a server, Contrast removes it from the list instead of displaying
it as greyed out.

• Vulnerabilities: The number of vulnerabilities associated with the route.
• Last activity: The activity time span for the route.
• Status: The route status.

7. Select an option to view details for each route that Contrast has identified in the application:
a. To view the URL for the route, select a route name.
b. To view vulnerability details for a specific route, select a section of the severity bar Vulnerability

column. Each section indicates one or more severity levels: Critical, High, Medium, Low, and
Notes.

c. To view routes based on an activity time span, select the Filter icon () next to the Last
Activity column.
Changing the time span also changes the time span for the route coverage chart.
To clear the filter selection, select Clear next to the column heading.

d. To view routes with a specific status only, select the Filter icon () next to the Status column.
The status options are:
• All: Shows all routes that are not excluded.
• Exercised: Shows only routes that are exercised.
• Not Exercised: Shows routes that Contrast discovered but are not exercised.
• Vulnerable: Shows only routes that have a vulnerability associated with them.
• Excluded: Shows only routes that you excluded from the application scoring calculations.

8. To remove a single route from the list:
a. Hover over the end of the row and click the Remove icon ().
b. To confirm the removal of the route, select Delete.

9. To remove multiple routes from the list:
a. Select the check mark next to one or more routes or to select all routes, select the check mark

next to Route.
b. In the batch action menu at the bottom of the page, select the Remove icon ().
c. To confirm the removal of the route, select Delete.

10. To view and share route details outside of Contrast:
a. Select the check mark next to one or more routes or to select all routes, select the check mark

next to Route.
b. In the batch action menu at the bottom of the page, select the Export icon().

This action exports the details to a CSV file. The file downloads to your default download
location.
The CSV file includes:
• A list of the application's routes.
• Details about the server on which they were found.

Contrast Documentation

Use Contrast 537

• Details of when the routes were last exercised.
• A list of vulnerabilities, the severity and status of each.

See also

• Exclude routes (page 538)
• Include routes (page 539)

Route exclusion and inclusion
In situations where you require a specific percentage of route coverage for security reasons, Contrast
provides an option to exclude irrelevant or inaccessible routes from route coverage calculations.

You can choose to re-include any routes that you excluded previously.

Including or excluding routes requires an Admin role.

Effects of route exclusion

• Contrast collects vulnerability data for excluded routes, but excludes this data from application
scoring calculations.

• Excluding a route excludes it from all environments where Contrast discovers it.
• If you defined session metadata to exercise and discover routes in an application, excluding a route

also excludes this data.
• The audit log includes an entry for each route that you exclude.

Effects of route inclusion

• Contrast includes data for the included route in application scoring calculations.
• Including a route includes it in all environments where Contrast discovers it.
• The audit log includes an entry for each route that you include.

Exclude routes
Excluding routes (page 538) that are irrelevant or inaccessible helps to ensure that route coverage
calculations for applications are accurate.

To ensure the route remains excluded, don't remove it after you mark it as excluded. If you exclude a
route and then remove it, Contrast includes the route again if its detected when the application server
starts or after you exercise the application.

Before you begin

• Identify the routes that you want to exclude.

Steps

1. Select Applications from the header.
2. Select an application name.
3. Select the Route Coverage tab.
4. Exclude one or more routes:

a. To exclude a single route, hover over the end of the row and select the Exclude icon ()
b. To exclude multiple routes, use the check marks in the left column to select routes. Then,

select the Exclude icon from the batch action menu at the bottom of the page.

Contrast Documentation

Use Contrast 538

c. Confirm the exclusion in the Exclude route window.
The status for the selected routes changes to Excluded.

Include routes
You can include routes (page 538) that you previously excluded. On the Route coverage page,
excluded routes have a status of Excluded.

Before you begin

• Identify the excluded routes that you want to include.

Steps

1. Select Applications in the header.
2. Select an application name.
3. Select the Route coverage tab.
4. Display a list of excluded routes by selecting the triangle () at the top of the list and select

Excluded.

5. Include one or more excluded routes:
a. To include a single, excluded route, hover over the end of the row and select the Re-include

icon ().
b. To select multiple excluded routes, use the check marks in the left column to select routes.

Then, select the Re-include icon in the batch action menu at the bottom of the page.

c. Confirm the inclusion in the Re-include route window.
The status returns to the status the route had before you excluded it.

Configure route expiration policy
Configuring a route expiration policy can ensure that your route coverage metric in Contrast is more
accurate.

The policy affects route data that Contrast displays in the following ways:

• Routes expire only for active applications with discovered or exercised routes.
For route expiration purposes, Contrast views an application as active if it has had at least one route
observed or exercised within the configured time period. For example, if you set the route expiration
policy to 30 days, the application must have had at least one instance of route activity within the past
30 days for its routes to be eligible for expiration

• If Contrast does not see discovered or exercised routes in an active application after a specified
number of days, the route is considered expired.

Contrast Documentation

Use Contrast 539

• After the specified expiration date occurs, Contrast deletes the expired route.
The route coverage calculation doesn't include the deleted routes.

• Before Contrast deletes expired routes, it sets the status of vulnerabilities associated with the route to
Remediated-Auto-Verified.

• Routes do not expire if the application isn't active and has no discovered or exercised routes.

Before you begin

• The policy applies to all applications.
• Contrast applies the policy once per day.

Depending on the number of expired routes, it is possible that Contrast might not be able to delete all
of them on the same day that they expire.

Steps

1. From the user menu, select Organization settings.
2. Select Applications.
3. In the Default section, under Route expiration policy, select the Remove expired routes checkbox

and specify the number of days after which Contrast expires routes without activity.
The minimum value is one day. The maximum value is 365 days. The default value is 30 days.

Flow maps
The application flow map provides an interactive view of where data and resources are shared within
your organization and beyond it.

Every time you exercise an application, Contrast uses data reported from your Contrast agent to create
a detailed diagram of your application, the layers of technologies within it and the back-end systems
to which it connects. As more applications are exercised within your organization and their back-end
systems are identified by the agent, Contrast also identifies which applications are connected to the
application you're currently viewing by shared back-end systems.

When you view a flow map (page 540), you can see the entire landscape of systems and resources
that are associated with the application. By focusing on connections between individual systems and
applications, you can also determine if users and connected applications in your organization have
appropriate access to the current application and sensitive data potentially associated with it. Learn
more about understanding flow maps (page 541).

The agent performs application matching through string credentials. Other instrumented applications
that share common string credentials - for example, REST endpoints, database connection, or other
unique host and port combinations - are displayed as connected applications.

NOTE
Users who don't have access (page 818) to view details for a connected application,
won't see that application in the flow map.

View flow maps
The application flow map provides an interactive view of where data and resources are shared within
your organization and beyond it.

To view the flow map for an application:

Contrast Documentation

Use Contrast 540

1. Select Applications in the header and select the name of an application.
2. Click on the Flow map tab.
3. Here you will see three connected sections: Application Architecture, Back-End

Systems and Connected Applications. Learn more about understanding flow map
data (page 541).

Understand flow maps
The application flow map provides an interactive view of where data and resources are shared within
your organization and beyond it.

When you view a flow map (page 540) for an application, the information is organized into three
connected sections:

• Application architecture: This section breaks down the view, presentation and service layers of the
application's front end. You can also see foundational information about the application, including the
environments in which it's deployed, letter grade, vulnerability statuses and attack status. There are
three layers to this section:
• View: This column displays the layer of technologies that determine what a browser sees and

processes.
• Presentation: This column displays the layer of libraries that generates the application view.
• Service: This column displays the layer comprised of the database, LDAP driver or back-end code

performing the application logic.
Hover on an item in any of the lists to see how many instances of each type of library are used in the
application, or click on the library to go to the library's page. If the agent reports any vulnerabilities, a
warning icon appears beside the library in which they were found; hover over the icon for links to the
vulnerabilities' Overview pages.

• Back-end systems: These columns display each of the systems to which your application is
connected. Hover on the cylinder icon for databases, the globe icon for URLs, or the plug icon
for LDAP databases to see more details on each system; click on an icon to highlight its connection
to other applications. A solid line with lock indicates that the connection is encrypted; a dashed line
shows that the connection is unencrypted or the state of encryption is unknown.

• Connected applications: This column lists each of the applications that are connected to the
primary application by a back-end system. To see connected applications that meet specific criteria,
click the funnel icon to select filters from the dropdown, such as environment, application language
and custom tags. The menu also shows session metadata fields for the primary application (not
the connected applications), if available. Select See Flowmap to go to the Flow Map tab for that
application.

NOTE
If the agent isn't currently reporting data for the current application, the Back-end
systems and Connected applications sections are left blank.

TIP
 If the application is being accessed by another user while you're viewing the flow map,
the Browser tab appears with a list of the browsers on which it's being accessed.
Hover over the icons to see more details, such as the browser type and version.

Contrast Documentation

Use Contrast 541

Scans
Contrast Scan is a static application security testing (SAST) tool that lets you quickly scan code to
identify vulnerabilities in early stages of development.

You can use these types of scans:

• Hosted or CLI: Use this type of scan if you are able to upload code to the Contrast platform. To start
a scan, use either the Contrast web interface or the Contrast CLI.
This scan type supports Java binary and source code scanning.

• Contrast Scan local engine: Use this type of scan for artifacts on your local system. Contrast
receives the results but you don't upload local code. To use the local engine (page 562), request it
from Contrast support.
The Scan local engine supports Java binary scanning and source code scanning.

Depending on the type of code you submit for scanning, Contrast Scan uses one of these scan
engines:

• Java binary: Scans Java JAR or WAR files.
The Java binary scan supports only web applications (applications that handle HTTP traffic).
This type of scan has a more narrow focus than a source code scan. It looks for data that comes
from an untrusted source, such as user input and gets to a dangerous sink, like an SQL statement,
without sanitization. The scan doesn't report on code that is not security relevant. This type of scan
uses Scan policies (for example: the code contains dangerous potential sink calls or the calls or entry
points allow untrusted data to enter the application) to find security-relevant code.

• Source code Scans artifacts for most languages (page 553).
This type of scan has a wider focus than a Java binary scan. It searches the code for potential
vulnerabilities based on a rule set. The results are typically less accurate than a Java binary scan.

Scan tasks
In Contrast Scan, you can:

• Run scans locally (page 562)
• Create a scan project (page 556)
• Archive a scan project (page 583)
• Delete a scan project (page 558)
• Monitor scans (page 560)
• Analyze scan results (page 569)
• Start a new scan (page 559)
• Cancel a scan (page 559)
• Change scan settings (page 582)
• Use Contrast Scan with GitHub repositories (page 567)
• Generate SAST Attestation report (page 561)

See also
Scan supported languages (page 553)

Scan release notes

Scan engine and Scan local engine

Scan 1.0.9
Release date: March 15, 2024

Contrast Documentation

Use Contrast 542

NOTE
This version of the Scan local engine is available by request only. Contrast is not
publishing checksum information at this time.

To request access to this version of the Scan local engine, follow your normal Contrast
support process.

Contrast plans to make the new Scan local engine generally available in the near
future.

New and improved:

• Added a --timeout CLI option that lets you control the maximum time the multi-language source
code scan engine scans the specified source code.
The value for this option is a specified number of minutes. This option applies to each language. For
example, if you set the value of this option to 120 minutes and your repo contains four languages,
potentially, the scan can take up to eight hours (120 minutes x 4 languages).
This feature is only available for the Contrast local scan engine only.

• Added support for file and folder exclusions.
To use this feature, add a file named .contrast-scan.json to the root folder of the source code
you are going to scan. Exclude files and folders (page 567) describes how to use this feature.
This feature is only available for the Contrast local scan engine and is only supported for multi-
language source code scans.
The file format for the JSON file is:

// File name ".contrast-scan.json"
{
 "excludes": [
 "**/MavenWrapperDownloader.java",
 "**/*.js"
]
}

• Scans automatically fail if the multi-language source code scan engine doesn't find any technologies
in the submitted code.

Bug fixes:

• Fixed a bug that could cause a race condition, resulting in slow performance.
• Fixed a bug that caused incorrect date formats to be generated in the SARIF output. The incorrect

formats caused which caused errors when using the SARIF output in Github.

IMPORTANT
The new multi-language source code scan engine is now version 1.0.9. Versions 1.0.0,
1.0.1, and 1.0.2, 1.0.5, and 1.0.6 are considered internal test and beta versions of the
multi-language scan engine and are not available for download by Contrast customers.

Application signing verification

Contrast Documentation

Use Contrast 543

To verify that Contrast created and signed the local scan engine that you downloaded, use this
command:

jarsigner -verify -verbose -certs sast-local-scan-runner-0.0.XX.jar

Replace XX with the version of the local scan engine that you want to verify.

Scan 1.0.8
Release date: February 15, 2024

NOTE
This version of the local scan engine is available by request only. Contrast is not
publishing checksum information at this time.

To request access to this version of the local scan engine, follow your normal Contrast
support process.

Contrast plans to make the new local scan engine generally available in the near
future.

New and improved:

• Added support for scanning in the repo for Github customers.
Starting with 1.0.8, Scan supports a new Github action that supports main branch scanning in a
Github repo. This feature supports failing builds based on the presence of a specified vulnerability
severity (or higher). Learn more at Use Contrast Scan with GitHub repositories (page 567).

• Increased the minimum memory requirement for the multi-language scan engine to 8 GB and the
timeout setting to 60 minutes. This does not replace the minimum memory requirement of 12 GB
when scanning .JAR and .WAR files using the Java binary scanner. We continue to recommend that
all users of the local scan engine should ensure that 12 GB of memory is available when running
scans.

Bug fixes:

• Addressed a number of issues that prevented some languages from being correctly identified by
the multi-language source code scan engine when scanned by the local scan engine. All languages
identified by the mult- language source code scan engine should now correctly identify and be
scanned.

IMPORTANT
The new multi-language source code scan engine is now version 1.0.8. Versions 1.0.0,
1.0.1, and 1.0.2, 1.0.5, and 1.0.6 are considered internal test and beta versions of the
multi-language scan engine and are not available for download by Contrast customers.

Application signing verification

To verify that Contrast created and signed the local scan engine that you downloaded, use this
command:

Contrast Documentation

Use Contrast 544

jarsigner -verify -verbose -certs sast-local-scan-runner-0.0.XX.jar

Replace XX with the version of the local scan engine that you want to verify.

Scan 1.0.7
Release date: January 25, 2024

NOTE
This version of the local scan engine is available by request only. Contrast is not
publishing checksum information at this time.

To request access to this version of the local scan engine, follow your normal Contrast
support process.

Contrast plans to make the new local scan engine generally available in the near
future.

New and improved:

• Increased the memory that the multi-language source code scan engine uses to 2G to better support
larger code bases. The minimum memory requirement when using the local scan engine is still 12GB.

• Added a --memory parameter to the CLI that you can use to override the allocated memory for the
multi-language source code scan engine.

• Added additional logging to capture the parameters used when invoking the local scan engine. This
logging captures the entire invocation command for the local scan engine (for example, -r, -p and
so forth) for use when troubleshooting errors.

IMPORTANT
The new multi-language source code scan engine is now version 1.0.7. Versions 1.0.0,
1.0.1, and 1.0.2, 1.0.5, and 1.06 are considered internal test and beta versions of the
multi-language scan engine and are not available for download by Contrast customers.

Bug fixes:

• Addressed an issue when scanning .NET applications that resulted in source code being incorrectly
identified

• Addressed an issue that caused the multi-language scan engine to ignore ABAP code when
presented in a code artifact

Application signing verification

To verify that Contrast created and signed the local scan engine that you downloaded, use this
command:

jarsigner -verify -verbose -certs sast-local-scan-runner-0.0.XX.jar

Replace XX with the version of the local scan engine that you want to verify.

Contrast Documentation

Use Contrast 545

Scan 1.0.4
Release date: December 14, 2023

NOTE
This version of the local scan engine is available by request only. Contrast is not
publishing checksum information at this time.

To request access to this version of the local scan engine, follow your normal Contrast
support process.

Contrast plans to make the new local scan engine generally available in the near
future.

Bug fixes:

• Fixed a bug that prevented VB.NET and Scala source code from being correctly identified and
scanned by the multi-language engine.

IMPORTANT
The new multi-language source code scan engine is now version 1.0.4. Versions 1.0.0,
1.0.1, and 1.0.2 are considered internal test and beta versions of the multi-language
scan engine and are not available for download for Contrast customers.

Application signing verification

To verify that Contrast created and signed the local scan engine that you downloaded, use this
command:

jarsigner -verify -verbose -certs sast-local-scan-runner-0.0.XX.jar

Replace XX with the version of the local scan engine that you want to verify.

Scan 1.0.3
Release date: November 2023

NOTE
Local Scan Engine 1.0.3 is currently on restricted release. As a result, we are not
providing checksum information at this time.

To get access to this version, open a support ticket to request it. We apologize for this
inconvenience and are working hard to address this issue as soon as possible.

New and improved:

Contrast Documentation

Use Contrast 546

https://support.contrastsecurity.com/hc/en-us/requests/new

November 29, 2023

• Fixed an issue in role-based access control authentication that could trigger a 403 error when you
try to assign a project to an empty resource group or when a user has access to multiple resource
groups and they do not specify one.
If role-based access control is turned on, the -r <ResourceGroupName> option in the Contrast CLI
is now mandatory when you create a scan project.

November 8, 2023

• The Contrast local scan engine now supports the ability to scan source code for over 25 languages.
For a complete list of supported languages, see Contrast Scan supported languages (page 553).

• The local scan engine can now run natively under Windows environments running a suitable JVM.
• Fixed an issue where using spaces in the path for an artifact to be scanned caused a fatal scan error.
• Removed an unneeded log from the local scan engine, reducing overall disk space utilization when

scanning Java binary files (JAR or WAR files).
• Fixed an issue that caused the local scan engine to fail when running under Alpine Linux.

IMPORTANT
The new multi-language source code scan engine is now version 1.0.3. Versions 1.0.0,
1.0.1, and 1.0.2 are considered internal test and beta versions of the multi-language
scan engine and are not available for download for Contrast customers.

Application signing verification

To verify that Contrast created and signed the local scan engine that you downloaded, use this
command:

jarsigner -verify -verbose -certs sast-local-scan-runner-0.0.XX.jar

Replace XX with the version of the local scan engine that you want to verify.

Scan 0.0.63
Release date: July 24, 2023

Bug fixes:

• Fixed a bug that prevented the local scanner from reporting all vulnerabilities found across multiple
JAR files. Only the last JAR file scanned in the ZIP file was reported.

Checksum:

• MD5 checksum: f57f9174d0643832f9e38b95998fe280
• SHA checksum: 8b2f5680111c5a4e5999a3449ee871bb822d27f6

Contrast Documentation

Use Contrast 547

NOTE
How to generate a checksum

• MD5: Use the following command:

curl -L -H 'Accept: application/vnd.github.v3.raw' -s https://
$CONTRAST_GITHUB_PAT@maven.pkg.github.com/Contrast-Security-
Inc/sast-local-scan-runner/com.contrastsecurity.sast-local-
scan-runner/X.X.XX/sast-local-scan-runner-X.X.XX.jar.md5 -
o sastXX.md5

• SHA: Use the following command:

curl -L -H 'Accept: application/vnd.github.v3.raw' -s https://
$CONTRAST_GITHUB_PAT@maven.pkg.github.com/Contrast-Security-
Inc/sast-local-scan-runner/com.contrastsecurity.sast-local-
scan-runner/X.X.XX/sast-local-scan-runner-X.X.X.jar.sha1 -
o sastXX.sha

For both types of checksums, replace X.X.XX with the version of the engine you are
downloading and validating with a checksum. For example, for the 0.0.60 version of
the engine, replace X.X.XX with 0.0.60, and for the output (SastXX.sha or MD5), a
value to represent the current version, such as 60.

Application signing verification

To verify that Contrast created and signed the local scan engine that you downloaded, use this
command:

jarsigner -verify -verbose -certs sast-local-scan-runner-0.0.XX.jar

Replace XX with the version of the local scan engine that you want to verify.

Scan 0.0.60
Release date: May 22, 2023

New and improved:

• Added the ability to specify a resource group as a parameter in the local scan engine when you scan
a project for the first time.
To use this feature, your organization must have role-based access control enabled and you require
sufficient permissions to create a new project (Manage Project Role or higher).
Specify the resource group name using the -r parameter.

Checksum:

• MD5 checksum: 0fa38c5c9e46e3b2c6bdb2d2ed3baa20
• SHA checksum: 76fe00f7d70d45176904a2b62a9d1083f0731a03

Contrast Documentation

Use Contrast 548

NOTE
How to generate a checksum

• MD5: Use the following command:

curl -L -H 'Accept: application/vnd.github.v3.raw' -s https://
$CONTRAST_GITHUB_PAT@maven.pkg.github.com/Contrast-Security-
Inc/sast-local-scan-runner/com.contrastsecurity.sast-local-
scan-runner/X.X.XX/sast-local-scan-runner-X.X.XX.jar.md5 -
o sastXX.md5

• SHA: Use the following command:

curl -L -H 'Accept: application/vnd.github.v3.raw' -s https://
$CONTRAST_GITHUB_PAT@maven.pkg.github.com/Contrast-Security-
Inc/sast-local-scan-runner/com.contrastsecurity.sast-local-
scan-runner/X.X.XX/sast-local-scan-runner-X.X.X.jar.sha1 -
o sastXX.sha

For both types of checksums, replace X.X.XX with the version of the engine you are
downloading and validating with a checksum. For example, for the 0.0.60 version of
the engine, replace X.X.XX with 0.0.60, and for the output (SastXX.sha or MD5), a
value to represent the current version, such as 60.

Application signing verification

To verify that Contrast created and signed the local scan engine that you downloaded, use this
command:

jarsigner -verify -verbose -certs sast-local-scan-runner-0.0.XX.jar

Replace XX with the version of the local scan engine that you want to verify.

Scan 0.0.56 - 0.0.59
Release date: April 6, 2023

New and improved:

• Support for multi-JAR scanning
This release adds the ability to scan multiple JAR files as one artifact. You can add multiple JAR files
to a ZIP file and scan it as a single artifact.
To scan a multi-JAR ZIP file, package the JAR files at the top level in a ZIP file and scan it using the
Scan local engine, as normal. For example:

multiple-jar-artifact.zip
-> artifact1.jar
-> artifact2.jar
-> artifact3.jar

Once completed, the Contrast web interface displays the scan as a single project under the Scans
tab.

Bug fixes:

Releases 0.0.57 through 0.0.59 contained internal bug fixes that had no effect on the Scan behavior or
performance.

Contrast Documentation

Use Contrast 549

Scan web interface

March release: Scan web interface
Release date: March 2024

Bug fixes:

• Fixed a bug that could cause a race condition, resulting in slow performance in the Contrast web
interface.

• Fixed a bug in the Contrast web interface that resulted in an error when specifying an underscore (_)
as part of a search parameter when searching projects.

February release: Scan web interface
Release date: February 15, 2024

New and improved:

• Added a detected language column on the vulnerabilities tab for a scan project. This value identifies
the language associated with the vulnerability.

• On the vulnerabilities tab for a scan project, added the ability to filter the view by detected language.
• This release includes an automated Jira integration supporting SAST.

When you configure this Jira integration, you can automatically push notifications about vulnerabilities
to a Jira project. To configure this integration, specify a single Jira project and one or more severity
levels. Learn more in Jira Cloud (page 769).
Support for multiple Jira projects is planned for a future release.

Bug fixes:

• Addressed a number of issues preventing some languages from being correctly identified by the
multi-language source code scan engine.

January release: Scan web interface and CLI
Release date: January 2024

New and improved:

• January 25, 2024
New and improved;
• On the Scan project page in the Contrast web interface, you can view the languages that the

multi-language source code scan engine detected.
• Added the ability to search for scan projects based on detected languages.
Bug fixes:
• Fixed a bug in the CLI that suggested a scan had failed when it invoked the multi-language source

code scan engine.
• Fixed a bug in the CLI that prevented the list of found vulnerabilities from being displayed in the CLI

output once a scan completes.
• Addressed an issue when scanning .NET applications that resulted in source code

being incorrectly identified
• Addressed an issue that caused the multi-language scan engine to ignore ABAP code when

presented in a code artifact

December release: Scan web interface
Release date: December 2023

New and improved:

Contrast Documentation

Use Contrast 550

• December 14, 2023
• NEW: You can now generate an Attestation report for your scan projects from a scan project page

and from the vulnerability tab on the scan project page.
• Removed the ability for a user to change a vulnerability status to Fixed. The Scan engine

determines this status based on whether a vulnerability is still seen in the source code in
subsequent scans.

• Fixed a bug that prevented VB.NET and Scala source code from being correctly identified and
scanned by the multi-language engine.

November release: Scan web interface
Release date: November 2023

New and improved:

• November 28, 2023
• If role-based access control is turned on, creating a scan project now requires that you specify a

resource group. The Create your scan project screen has a dropdown that displays a list of the
resource groups assigned to the user who is creating the project. If users have a single resource
group assigned to their role, this resource group is the default selection.
In addition, users need a role that includes the Create project action.
Create a scan project (page 556) describes this new requirement.

• November 8, 2023
• NEW: Contrast Scan now provides two types of scans: Java binary for Java files, and source code

for most other languages and technologies.
When you select a source code scan, upload a ZIP file that contains the source code you want to
scan.

• NEW: Source code scanning is expanded to include over 25 additional languages and
technologies, as listed in Scan supported languages and technologies (page 553). To use the
expanded source code scanner, select the Source code option when you create a new project.

• For hosted customers: Contrast Scan now supports multi-language detection for source code
scanning. When you upload a ZIP file, the scan engine determines which languages are present in
the ZIP file and scans each file. Contrast displays the results in a single scan project.

• Removed the need to select a language when you create a scan project. Scan can now determine
the type of code artifact you are uploading. .Scan continues to support single JAR and WAR files
as well as ZIP files that contain multiple JAR files or source code.

• Added two fields to the CSV file you can download:
• Language: Identifies the language for a specific vulnerability.
• Comment: Shows the last comment made for a vulnerability.
The CSV file populates these fields after you run a new scan for an existing project.

June release: Scan web interface
Release date: June 2023

New and improved

• June 30, 2023
• Added the ability to add a comment for a vulnerability status without changing the current status.

The Activity tab for a specific vulnerability lets you add comments.
• June 12, 2023

• Added the ability to see who created a project by displaying the project creator's name at the top of
the Scans page and the Scan details page.

• Added the ability to see who ran a specific scan for a project.
The Scan history in the Scans page has a new Name column that shows the name of the individual
who ran a specific scan. The Summary section of the Scan details page also shows who ran the
scan.

Contrast Documentation

Use Contrast 551

NOTE
Both of these features apply to new projects and new scans. Existing projects or
scans do not display the new information.

May release: Scan web interface
Release date: May 2023

New and improved:

• Added support for multi-JAR scanning in the Java binary scanner.
You can now include multiple JAR files in a single ZIP file when you use the hosted Java binary
scanner (using the Contrast CLI or the Contrast web interface).
The maximum upload size limit for a ZIP file is 1 GB.

April release: Scan web interface
Release date: April 2023

New and improved:

• Added a vulnerability activity tab that shows information on status changes made to vulnerabilities
within a project.
To view this tab, select the Vulnerabilities tab for selected scan project and then, select a specific
vulnerability

• Added the requirement to add comments when you change the status of a vulnerability in a project.
• Added the ability to delete a project and all associated data in the Contrast web interface for users

with a Manage all projects role.

Scan process
This section provides details about the workflow for using Contrast Scan as well as the process Scan
uses when analyzing your code.

Scan workflow
This diagram illustrates the Scan workflow that you follow.

Data entry points for Java binary scans
When scanning JAR files (compiled java binaries), the Java binary scan engine looks for data entry
points typically found in web applications to find code to scan. If the compiled application does not

Contrast Documentation

Use Contrast 552

contain data entry points, the scan completes successfully, but does not find vulnerabilities. For these
scenarios, scan the uncompiled source code instead. If you previously scanned the JAR binary, create
a new project and then, scan the uncompiled source code.

Here are some examples of typical data entry points that the Java binary scan examines:

Contrast Scan supported languages and technologies
Contrast Scan supports these languages and technologies:

Technology Associated file extensions Artifacts to upload

Java binary scan

Java (for
example: J2EE,
JSP, and Spring
MVC)

java JAR and WAR files in the root directory or a ZIP file with multiple
JAR files in the root directory of the ZIP file.

Source code scan

ABAP abap ,bsp, asprog, aclass, aint,
asfinc, asfugr, appl, component

ZIP files or folders that contain files to scan. Contrast Scan
automatically detects the language of the files.

ActionScript as

ASP.NET asax, ascx, ashx, asmx, aspx,
master

C# cs, cshtml

C c, h, pc

C++ h, hh, cpp, hpp, cc, pc

COBOL cob, cbl, cpy, pco

Go go

HTML htm, html, xhtml

Informix sql, 4gl

Java java

Contrast Documentation

Use Contrast 553

Technology Associated file extensions Artifacts to upload

JavaScript/
TypeScript

js, xsjs, ts, tsx

JCL jcl,prc

JSP jsp,j spx, xhtml

Kotlin kt, kts, ktm

NATURAL nls, nlp, nlh, nlm, nss, nsp, nsh

Objective-C h, m

Oracle Forms oforms

PHP php,php3,php4,php5,php6,
phps,phtml

PL-SQL sql, sf, sps, spb, sp, fnc, spp, plsql,
trg, st, prc, pks, pkb, pck

PowerScript sru, sra, srw, srf, srs, srm, srx

Python python, py

RPG4 rpg, rpg3, rpg4, rpgle, dspf, mbr

Scala scala

Swift swift

Transact-SQL sql, tsql,sp

TypeScript js,xsjs,ts,tsx

Visual Basic 6 bas,frm,cls

VB.NET vb

XML xml

Scan package preparation
To get the best results from a scan, consider these best practices before you upload packages.

NOTE
This topic applies to the use of hosted scans, (page 559) where you upload files
to Contrast. Package preparation for local scans (page 563) describes the best
practices for the Scan local engine.

Artifact types

• For Java binary scans, upload either a WAR or JAR package.
• For source code scans, upload a ZIP package that contains the repository you want to scan.

You can include multiple JAR or WAR files in a ZIP package. Place these files at the root directory of
the ZIP package, not in subdirectories.

The maximum upload size limit for a ZIP file is 1 GB.

Access to class files and dependencies
If you package your files differently than suggested here, Scan has to make assumptions about your
code. The results might not be as precise as they could be. They could include false negatives and
positives.

When Scan has access to all the appropriate class files and dependencies, the results do not include
phantom classes. A phantom class is a referenced class but either scan is unable to find bytecode for it
or the scan was unable to decompile the code into intermediate representation (IR).

Contrast Documentation

Use Contrast 554

• Scan needs access to these files:
• Application class files
• Application dependency jar or class files

• Organize application and dependencies in WAR files as described in the Oracle Java™ Servlet
Specification.

• Organize applications and dependencies in JAR files similar to the way SpringBoot JAR files are
organized.
SpringBoot JAR files place applications and dependencies in well-known areas.

• Including standard JDK files and common servlet container-provided dependencies are not required.
Scan provides these dependencies for you.

Frameworks
To be able to deliver accurate results, Scan needs to understand the web framework that your
application uses.

• Source code scans: This scan type supports all frameworks for the supported languages.
• Java binary scans: This scan type supports these frameworks:

• Angular 8 or later
• J2EE
• Jakarta EE 2.0-3.0
• jQuery
• React 16 or later
• SpringBoot
• Spring MVC
• Vue.JS 2 or later

Avoid use of thin JAR files
Thin JAR files contain only application byte code. These files require special execution loaders to
dynamically access dependencies for loading. If you upload a thin JAR file, Scan does not execute any
of your application code. It cannot access the application dependencies for accurate scanning.

View scan projects
The Scan project list shows these details for each scan project in your organization:

• Score: A letter grade that represents the potential security risk for an application based on the most
recent scan in the project.
Scan uses the Contrast library scoring. (page 608).

• Scan project: The name of the scan project.
• Vulnerable languages: The languages in a project where Contrast detected vulnerabilities. The

project can include multiple languages or just a single language.
• Open vulnerabilities: The number of open vulnerabilities that Contrast detected.
• Last scan: The amount of time since the last scan completed.

Before you begin
If role-based access control is turned on for your organization, verify that users have the correct
actions (page 832), user access groups (page 856), and resource groups (page 843) assigned to
them.

Steps

1. Select Scans in the header.
Contrast displays a list of scan projects.

2. To filter the view, select the small triangle () at the top of the list and select a filter:

Contrast Documentation

Use Contrast 555

• All: Shows all scan projects except for archived ones.
• Archived: Shows only archived scan projects.

3. To find a specific scan project, select the magnifying glass icon () and enter a partial or full name
of the project in the search box.

4. To sort the view, select the sort box and select an option:
• Name: Sort the view by the project name.
• Last scan: Sort the view based on when the the last scan completed.
Use the green arrow to sort by ascending or descending order.

5. To view details for a specific project, select the project name in the Scan project column.
6. To view only the projects that include a specific vulnerable language, select the Filter icon () next

to the Vulnerable languages column.
7. To view the number of vulnerabilities with a specific severity, hover over a section in the

Vulnerabilities bar. To view vulnerabilities of a specific severity, select a section in the bar.

Create a scan project
Scan projects are containers for files that you want to scan.

Before you begin

• Identify the files that you want to upload for scanning.
Scan supports different files types for each programming language. For example, for Java, upload a
JAR or WAR file.

• If you are a hosted customer and role-based access control is turned on, your role must include the
Create project action.

• If role-based access control is turned on for your organization, verify that users have the correct
actions (page 832), user access groups (page 856), and resource groups (page 843) assigned to
them.

Steps

1. In the Contrast web interface, select Add New in the top right corner.

2. Select the Code card.

Contrast Documentation

Use Contrast 556

3. If you're a hosted customer and role-based access control (page 830) is turned on, select a
resource group from the dropdown.

• If you have access to only one resource group, you don't select a resource group. Instead, you
see the name of the resource group to which you have access.

• If you're an on-premises customer or role-based access control isn't turned on, no resource
group option is available.

4. Specify a name for the project.
Scan project names must be unique. Specify a name that lets you easily identify the scan project in
other Contrast lists.
As a best practice, consider naming the project to match the name of the file. For example, if your
file is webgoat.jar, name your project webgoat or webgoat.jar.

5. Select Create scan project.

Contrast Documentation

Use Contrast 557

NOTE
if you want to use an existing scan project instead of creating one, select View scan
projects. This action opens the Scan project tab with your existing projects.

Next step
Start a scan (page 559)

Delete scan projects

If you want to permanently remove a scan project, you can delete it. Contrast permanently deletes all
the data associated with the project.

You cannot undo this action.

Before you begin
If role-based access control is turned on for your organization, verify that users have the correct
actions (page 832), user access groups (page 856), and resource groups (page 843) assigned to
them.

Steps

1. Select Scans in the header.
2. Select a scan project.
3. Select the Settings icon ().
4. In the Scans projects settings window, select Delete.

5. In the Delete project window, confirm that you want to delete the project by selecting Delete.

Contrast Documentation

Use Contrast 558

Start a scan
Start a scan when you want to do the following tasks:

• Begin analysis of a new application.
• Test code changes you made to fix vulnerabilities on an application you scanned previously.

Before you begin

• Identify the scan project that contains the file you want to scan again or create one (page 556).

Steps

1. Select Scans in the header.
2. Select a scan project.
3. Select New Scan.

4. From the displayed window, select a file or folder to upload and select Open or Upload.
If the scan project contains a previous scan, select a new version of the file you previously
scanned.
The scan starts automatically after the file upload completes.

NOTE
Java binary scan: Upload a ZIP file that contains multiple JAR files or upload a
single JAR or WAR file.

Source code scan: Upload a ZIP file or a folder that contains the files you want
to scan. The ZIP file or folder can include files with different languages. Contrast
Scan automatically detects the languages for the files.

5. Monitor (page 560) the scan progress.

Cancel a scan
You can cancel a scan that is in progress.

Contrast Documentation

Use Contrast 559

After you cancel a scan, its status changes to Cancelled in Scan history.

Before you begin

Find a scan project that contains a scan that's in progress.

Steps
To cancel a scan:

1. Select Scans in the header.
2. Select a scan project that has a scan in progress.
3. In the activity bar, select Cancel scan.

The scan stops immediately.

Monitor scans
After you start a scan, you can monitor the progress of the file upload and the scan from any tab under
Scans.

You can view a history of the scans in a selected project under Scan history in the Overview tab.

Steps

1. Select Scans in the header.
The Scans page shows these scan details:
• The grade score for each scan project.
• The names of the scan projects.
• The number and status of open vulnerabilities.
• The time the last scan completed.

2. Select a scan project.
3. Start a scan (page 559).
4. While uploading a file or running a scan, you can monitor its progress at the top of a Scans page.

• During a file upload, you see a progress bar similar to this example:

• During a file scan, you see an activity bar similar to this example:

5. To view a history of the scans in a selected project, under Scans, select the Overview tab and view
the details under Scan history.

Contrast Documentation

Use Contrast 560

6. To see additional details about a scan, select a scan label or, under the Coverage. column, select
View.

Generate a SAST Attestation report

The SAST Attestation report for Contrast Scan provides evidence of vulnerability remediation based on
the most current scan information. The report is a PDF file.

Steps

1. Select Scans in the header.
2. Select a scan project.
3. Select the Reports icon () located at the top-right of the Scan project page.

You can also generate the report from the Vulnerabilities tab.
4. After Contrast generates the report, it prompts you to download it.

SAST attestation report details
For a selected project, the SAST Attestation report includes charts and details about the project score,
open vulnerabilities found during scans, and closed or remediated vulnerabilities.

Contrast Documentation

Use Contrast 561

Contrast Scan local engine
The Contrast Scan local engine lets you scan your application using a Java JAR file instead of the
Contrast CLI or the Contrast web interface. When a scan completes successfully, the Scan local engine
uploads the results to the Contrast platform where you can view them. The uploaded files include:

• Scan results in Static Analysis Results Format (SARIF) in a JSON file.
• Output from the scan in a LOG file.

This method of scanning is useful if you want to scan files locally without uploading them to the Contrast
platform.

Supported platforms
The Scan local engine is supported for Linux systems.

Proxy server settings for local scans
For security purposes, you might want to use a proxy server for communication between the local scan
engine and the Contrast platform. Use the following environment variables to enable a proxy server
when you run a local scan (page 564):

Variable Description

CONTRAST__API__PROXY__ENABLE Enables proxy settings.

Contrast Documentation

Use Contrast 562

Variable Description

CONTRAST__API__PROXY__URL Required.

The URL for the proxy server (for example, http://host:port)

CONTRAST__API__PROXY__TYPE Required.

The proxy server type (for example, BASIC)

CONTRAST__API__PROXY__USERNAME Optional.

Username for the proxy server

CONTRAST__API__PROXY__PASSWORD Optional.

Password for the proxy server

Package preparation for local scans
Consider these best practices when you prepare to run a local scan:

• JAR or WAR files: You can specify the specific binary file to be scanned or ensure that the binary is
the only file in the folder you specify.

• Source code scanning: Place the source code you want to scan in a folder and not in a ZIP file.
There is no limit to the size of this folder for the local scanner. However some large source
code repos may require more memory or a longer time to execute. Use the memory and timeout
options (page 566) to manage these situations.

• Multi-JAR scanning: You can specify a ZIP file that contains multiple JAR files. Place these files in
the root of the ZIP file.
There is no limit to the size of the JAR files in the ZIP file.

Scan process
To use the Scan local engine:

1. Contact Contrast Support to get the latest local engine application.
2. Decide if you want to use a proxy server for uploading results.
3. Run the scan on a local system (page 564).
4. View results (page 569) in the Contrast web interface.

Download the Java JAR file
Contact Contrast Support for the latest version of the Java JAR file for the Contrast Scan local engine.

Local scan engine environment variables

Use these environment variables with the local Scan engine:

Variable Required? Description

CONTRAST__API__URL Yes The address of the Contrast installation where
you want to report scan results. The URL should
include /api/sast at the end of the URL.

CONTRAST__API__USER_NAME Yes User name for the Contrast user account (in most
cases, your login ID)

CONTRAST__API__API_KEY Yes Contrast API key

CONTRAST__API__SERVICE_KEY Yes Contrast service key

CONTRAST__API__ORGANIZATION Yes Contrast organization ID

CONTRAST__API__PROXY__ENABLE No Enables proxy settings

CONTRAST__API__PROXY__URL Yes, if proxy settings
are enabled

The URL for the proxy server (for example, http://
host:port)

CONTRAST__API__PROXY__TYPE Yes, if proxy settings
are enabled

The proxy server type (for example, BASIC)

CONTRAST__API__PROXY__USERNAME No Username for the proxy server

Contrast Documentation

Use Contrast 563

https://support.contrastsecurity.com/hc/en-us
https://support.contrastsecurity.com/

Variable Required? Description

CONTRAST__API__PROXY__PASSWORD No Password for the proxy server

UMBRELLA_LAUNCHER_JAVA_PATH No Path for the umbrella Java scanner jar (for
example, /app/contrast-scan-java-cli.jar)

Run local scan

The Contrast Scan local engine is available as a Java JAR file. It requires the location of a build artifact
so it can process the scan.

Before you begin

• Identify where the build artifacts that you want to scan are located.
• Determine where you want to store scan results on your local system.

If you don't specify a path for output results, the Scan local engine writes results to the current
working directory in a file named results.sarif.

• Ensure that this software is installed on your system:
• Java 11
• If you are scanning JavaScript project files, Semgrep App version 0.114.0

• Internet access exists to let the Scan local engine upload scan results and scanner output to
Contrast.

• Verify that you have 1 CPU available (the Contrast Scan local engine is single threaded) and 12 GB
of RAM.

• Ensure the Scan local engine has read and write permissions for the directory where it runs or for the
specified output directory.

IMPORTANT
Make sure that the path for the files you want to scan does not include spaces.

Steps

1. Log in to the Contrast web interface.
2. Under the user menu, select User settings.
3. In Profile, under Your keys, get the following information:

• Organization ID
• Your API key
• Service key
• Contrast URL

Contrast Documentation

Use Contrast 564

4. Configure the environment variables that let the local scanner communicate with Contrast:

NOTE
If you want to use a proxy server for communication between the local
scan engine and the Contrast platform, include the proxy server environment
variables. (page 562)

export CONTRAST__API__URL=<URL>
export CONTRAST__API__USER_NAME=<Username>
export CONTRAST__API__API_KEY=<APIKey>
export CONTRAST__API__SERVICE_KEY=<ServiceKey>
export CONTRAST__API__ORGANIZATION=<OrgId>
export LOCAL_ARTIFACT_LOCATION=<LocalArtifactLocation>
export LOCAL_OUTPUT_LOCATION=<LocalOutputLocation>

• Replace <URL> with the address of the Contrast installation where you want to report scan
results. The URL should include Contrast/api/sast at the end of the URL. For example:

export CONTRAST__API__URL=https://app.contrastsecurity.com/
Contrast/api/sast

Contrast Documentation

Use Contrast 565

• Replace <Username> with your Contrast user account (in most cases your login ID).
• Replace <APIKey> with the Contrast API key.
• Replace <ServiceKey> with the Contrast service key.
• Replace <OrgID> with the Contrast organization ID.
• Replace <LocalArtifactLocation> with the path for the JAR or WAR files for Java scans.

For JavaScript scans, specify the folder containing the source code.
Optional: You can specify the path in the command instead of using a variable.

• Replace <LocalOutputLocation> with the path on the local system where you want to store
results files.
Optional You can specify the path in the command instead of using a variable.

5. Start the scan with a command similar to this one:

java -jar sast-local-scan-runner.jar <ScanArtifact> --project- \
name <ProjectName> --label <LabelName>

• Replace <ScanArtifact> with the path of the JAR, WAR, or ZIP file that you want to scan. You
can also specify folders.

• Replace <ProjectName> with a name for a project. For example: "my project name".
• Replace <LabelName> with a label for the scan. For example, you could specify a build number

as: "build:1.0.1".
6. Wait several minutes after the scan completes to view results in the Contrast web application.

Results are not immediately viewable due to upload and processing times.

Command options
Use any of these command options:

Option Description
-o, --output-results Specifies the location for output results.

If you don't specify a location, the local scanner writes the results to the current working
directory.

-V, --version Prints version information

--memory <value> Lets you override the default memory usage of 2 GB.

This option is only available for the multi-language source code scan engine.

--project-name
<ProjectName>

The name of a scan project.

If you specify a project name that already exists, the Scan local engine adds the scan to that
project. Otherwise, it creates a new project with the specified name.

If the project name includes spaces, enclose the name in double quotes ("). For example:
"My Scan Project".

This option is required if you don't use a project ID.

--project-ID The ID for an existing project.

This option is required if you don't use a project name.

-r <ResourceGroupName> The name of the resource group where you want to add the project.

If you are a hosted customer and role-based access control (page 830) is turned on, this
option is required.

--label <label> A label for the current scan.

--timeout <minutes> Lets you control the maximum time the source code scan engine scans the provided code.
Specify a value in minutes. The maximum value is 1440 minutes (24 hours).

This option is only available for the Scan local engine.

This option applies to each language found in the code to be scanned. For example if you
set this to 120 minutes and your repo contains four languages, there is a potential for the
scan to run for hours (4 languages x 120 minutes each).

Exit codes
The Scan local engine returns these exit codes when a scan completes:

Contrast Documentation

Use Contrast 566

Exit code Description

0 Scan completed successfully and uploaded results to Contrast

1 Input validation error

2 Error connecting to Contrast API server

3 Contrast API error returned

4 Scan local engine returned an error, details are in the log files

5 Unexpected error occurred, details are in the log files

Exclude files and folders for Contrast Scan

You have the option to exclude specified files or folders from scans. This feature is useful when you
want to exclude artifacts that generate a lot of noise or are irrelevant to the scan.

Before you begin

• This feature is available only for multi-language source code scans with the Scan local engine.

Steps

1. In the root folder of the source code you are scanning, create a file named .contrast-
scan.json.

2. In the JSON file, specify the files and folders you want to exclude using this format:

// File name ".contrast-scan.json"
{
 "excludes": [
 "**/MavenWrapperDownloader.java",
 "**/*.js"
]
}

Replace the examples of MavenWrapperDownloader.java and *.js with the names of your
files and folders.

Use Contrast Scan for GitHub repositories
Use the Contrast Local Scan to scan GitHub repositories for vulnerabilities without uploading your files
to Contrast.

Before you begin

• Get your Contrast authentication details by selecting the user menu > User settings in the Contrast
web interface. You need these details:
• Organization ID
• API key
• Service key

• You also need a valid Contrast username and the URL of your Contrast instance.

Steps

1. Configure these GitHub secrets:
• CONTRAST__API__API_KEY

• CONTRAST__API__ORGANIZATION

• CONTRAST__API__SERVICE_KEY

• CONTRAST__API__USER_NAME

• CONTRAST__API__URL

Contrast Documentation

Use Contrast 567

https://github.com/marketplace/actions/contrast-local-scan

2. Create a workflow or update an existing one to run this action against your code. This example
shows how to run the action on push.

 name: Scan with local scanner

 on:
 push:
 branches:
 - 'main'

 permissions:
 contents: read

 jobs:
 scan:
 runs-on: ubuntu-latest
 steps:
 - uses: actions/checkout@v3
 - uses: Contrast-Security-OSS/sast-local-scanner-action@v1.0.0
 with:
 apiUrl: ${{ secrets.CONTRAST__API__URL }}
 apiUserName: ${{ secrets.CONTRAST__API__USER_NAME }}
 apiKey: ${{ secrets.CONTRAST__API__API_KEY }}
 apiServiceKey: ${{ secrets.CONTRAST__API__SERVICE_KEY }}
 apiOrgId: ${{ secrets.CONTRAST__API__ORGANIZATION }}

The README contains additional examples of other inputs that you can add to your workflow.

Required inputs

• apiUserName : A valid Contrast username.
• apiKey: Your Contrast API key.
• apiServiceKey: The Contrast service key.
• apiOrgId: The Contrast organization ID,

Optional inputs

• apiUrl : The URL of your Contrast instance.
The default value is: https://app-agents.contrastsecurity.com/Contrast.

• checks: If set, adds GitHub checks to the current commit based on any vulnerabilities found.
• codeQuality: Passes the -q option to the Contrast local scan engine to include code quality rules

in the scan.
• label: A label to associate with the current scan.

The default value is the current ref , for example: refs/heads/main.
• memory: Memory setting passed to the underlying scan engine. The default value is 2G.
• path: The path the Contrast local scan engine uses for the scan.

The default value is the current repository path.
• projectName: The name of a project to associate with the scan.

The default value is the current GitHub repository name, for example, mycompany/myrepo
• resourceGroup: Passes the -r option to the Contrast local scan engine to associate newly created

projects with the specified resource group.
• severity: Set this to cause a build to fail if the scan finds vulnerabilities at this severity or higher.

Valid values are critical, high, medium, low, note.

See also
Contrast Contrast Local Scan for latest details.

Contrast Documentation

Use Contrast 568

https://github.com/marketplace/actions/sast-local-scanner-action/README.md
https://github.com/marketplace/actions/contrast-local-scan

Contrast Scan local engine (page 562)

View local scan results

View details and results of a local scan in the Contrast web interface.

If you specified a location for output results, you can view the SARIF file that the scan created on your
local system.

Steps

1. Log in to the Contrast web application.
2. Select the Scans tab.
3. In the scans list, select the scan project for the local scan.
4. To view results from the local scan, explore the Overview, Vulnerabilities, and Policy tabs.

The Contrast Documentation contains additional information on analyzing scan results.

Analyze scan results
A scan observes the data flow in an application and reports vulnerabilities that it discovers.

After you analyze the results, update your code and run the scan again to verify the vulnerability is
fixed.

Steps

After a scan completes, you can view information on vulnerabilities, the name of the project creator, and
the name of the person who ran each scan.

1. Select Scans in the header.
The Scans page shows a list of scan projects..

2. Select a scan project.
3. On the Overview tab, view a summary of the scan results as well as a list of scans in the project.

Contrast Documentation

Use Contrast 569

https://docs.contrastsecurity.com/en/analyze-results.html

The summary section shows these details:
• Score: A letter grade that represents the potential security risk for application based on the most

recent scan in the project.
Scan uses the Contrast library scoring. (page 608).

• Vulnerabilities: The number of vulnerabilities discovered in the most recent scan.To see details
about discovered vulnerabilities, select the number.

• New Vulnerabilities: The number of new vulnerabilities discovered in the most recent scan. This
value excludes vulnerabilities that previous scans discovered and are not fixed.
For example:
If Scan 1 discovered three vulnerabilities:
• The number of vulnerabilities is three.
• The number of new vulnerabilities is also three.
If code modifications introduce a new vulnerability but do not fix existing vulnerabilities, when you
run Scan 2:
• The vulnerabilities number changes to four (all discovered vulnerabilities).
• The new vulnerabilities number becomes one (the new one discovered in Scan 2).
To see details about new vulnerabilities, select the number.

• Remediated: The number of vulnerabilities that are fixed by changing source code or
configuration files within the application.
To see details about remediated vulnerabilities, select the number.

• Scans completed: The number of scans completed in the project.
To see details about completed scans, select the number.

• Days since last scan: The number of days since the last scan completed.
The Scan history shows these details:
• Vulnerabilities: A bar that shows the different types of detected vulnerabilities for a scan.

Contrast Documentation

Use Contrast 570

To view a filtered list of a specific type of vulnerability, select a section of the bar.
• Label: The label associated with the scan.

To view additional scan details (page 572), select the label.
• Scan date The date the scan completed.
• Name: The name of the person who ran the scan.
• Language: The languages detected in the scanned code.
• Coverage: A link to additional scan details (page 572).
To export the results to a SARIF file, select the Download icon () at the end of a scan's row.

4. To filter the Scan history by language, select the Filter icon () next to the Language column.
5. On the Vulnerabilities tab, to sort the vulnerabilities by status or severity, select the Filter icon ()

next to the Severity or Status columns and select one or more statuses.
Severity filters:

Status filters:

To clear a filter, select Clear next to the Severity or Status column.
6. To view more information about a specific vulnerability, in the Vulnerabilities tab, select the

vulnerability.
• The Overview tab for the selected vulnerability shows a description of the vulnerability, including

what happened in your code and the risk associated with the vulnerability.
a. To view the details about the vulnerability and its location in your code, select the Details tab:

• The method where a vulnerability exists.
• The file where the scan discovered the vulnerability.
• The first line in the code where the scan discovered the vulnerability.

b. To view suggestions for fixing the code, select the How to fix tab.

Contrast Documentation

Use Contrast 571

c. To view additional details about the vulnerability, select the Notes tab for these details:
• When the vulnerability is detected
• The code module where Contrast found the vulnerability
• The type of vulnerability (for example, injection)
• Severity
• Risk confidence
• Security standards that apply to the vulnerability

d. To view vulnerability activity, select the Activity tab for these details:
• The user who made changes
• Vulnerability status changes
• Comments

View scan details
Scan details include:

• A summary of the scan results
• Scan coverage details

Before you begin

• Identify the scan project that contains the scan you want to view.

Steps

1. In the header, select Scans.
2. Select a scan project.
3. To filter the view of the Scan history by language, select the Filter icon () next to the Language

column.
4. Under Scan history, select the link in the Label column for a specific scan or select View in the

Coverage column.
5. View the details:

Contrast Documentation

Use Contrast 572

• At the top of the list, view a summary of scan details.
The name of the person who ran the scan is displayed at the top of the summary.

NOTE
The ability to view the name of the person who ran the scan is available for scan
projects created after June 12, 2023.

To view the rules that the scan used, next to Policy, select Default.
• In the Vulnerabilities tab, view the vulnerabilities that the scan found.

Contrast has high confidence that the vulnerabilities in this list require remediation.
• To filter the view by language, select the Filter icon () next to the Language column.
• To download the vulnerability data to a CSV file, select the Download icon () at the top of

the vulnerability list.
• In the Other Findings tab, view additional vulnerabilities that the scan found.

Due to the assumptions the scan made when reporting these vulnerabilities, Contrast has lower
confidence that the vulnerabilities in this list require remediation.

• In the Coverage tab, view the classes that the scan included and excluded.

Edit Scan vulnerability status

When Contrast discovers a vulnerability during a scan, it assigns a status of Reported to the
vulnerability. This status indicates that the vulnerability could possibly be exploited.

You can change this status, based on how you are managing the vulnerability, to one of these values:

• Confirmed: You've confirmed that the vulnerability is a true finding by reviewing the source code or
exploiting it.

• Suspicious: You've confirmed that the vulnerability appears to be a true finding based on the details
provided, but it requires more investigation to determine its validity.

• Not a problem: You've determined that the vulnerability doesn't require code changes.

Steps

1. Select Scans in the header.
2. Select a Scan project.
3. Select the Vulnerabilities tab.
4. Change the status:

a. On the Vulnerabilities page, select a status in the Status column.

Alternatively, select a vulnerability from the Vulnerabilities list and select a status on the right
side of the view.

Contrast Documentation

Use Contrast 573

b. Optionally, enter a comment explaining why you are making the change and select Override.
5. Add comments for a vulnerability without changing its status:

a. From the Vulnerabilities tab, select a vulnerability.
b. Select the Activity tab.
c. Enter a comment and select Add comment.

Download scan results
You can download scan results to these file types:

• SARIF file: After a scan completes, you can download the results to a Static Analysis Results
Interchange Format (SARIF) file. This type of file is is a standard, JSON-based format for the output
of static analysis data.
To optimize storage usage, SARIF files are available for up to five days after the scan completes. No
download option is available for older scans.

• CSV file: You can download vulnerability data for a scan project to a Comma-separated Values
(CSV) file.

Before you begin
Identify the scan whose results you want to download.

Steps for SARIF download

1. Select Scans in the header.
2. Select a scan project.
3. In the Overview tab, under Scan history, select the Download icon () at the end of a scan row.
4. When prompted, select a location for the SARIF file.

Steps for CSV download

1. Select Scans in the header.
2. Select a scan project.

Contrast Documentation

Use Contrast 574

3. In the Vulnerabilities tab, select the Download icon (at the top of the page.
4. When prompted, select a location for the CSV file.

SARIF file data
When you download results, Scan writes the data to a SARIF file.

SARIF is a standard data model and serialization format for static analysis results. Understanding the
data in the SARIF file can help when you need a deeper understanding of scan results.

The SARIF file includes this type of information:

• Information about the scanner that Contrast uses
• Data on what was scanned and the scan composition
• Data on vulnerability findings
• Errors or notifications that are handled gracefully during the scan
• Scan coverage data

Scanner data
This example shows data about the scanner that Contrast uses:

Vulnerability data
The examples in this section show some of the data for a single vulnerability. The scan shows this data
in the results section.

• Single object
This example shows the scan results for a SQL injection vulnerability. The data in the threadFlows
section show the scanned data from the source to the data sink.

Contrast Documentation

Use Contrast 575

• Sink location
This example shows the sink or problem location for the vulnerability.

• Thread flow steps
This example shows some of the data for one execution step in the data flow:

Contrast Documentation

Use Contrast 576

• Physical and logical locations of the vulnerability
This examples shows data for physical and logical locations of a vulnerability:
The data for execution steps in this section includes a code snippet and rendered data from
intermediate representation (IR) data (user code is not usually displayed). Contrast uses this data
to analyze what the scan sees.
1. This example shows the execution statement from IR.
2. This example shows the general area where an execution step occurs in the application.

Contrast Documentation

Use Contrast 577

• Untrusted data location
These examples shows scan results for untrusted data.
Scan looks at executions steps from code source to data sink. The scan results include any execution
step that touches untrusted data.
If the importance result is essential, check this area of the code for vulnerabilities.
1. This example shows the location of tainted data that the scan is tracking.
2. This example shows the location of the tracked data that the execution step touches. The

scan results indicate the importance is essential. This code needs to be checked for
vulnerabilities.

Contrast Documentation

Use Contrast 578

Scan analysis
The examples in this section show how to identify content in the SARIF file that can help you analyze
scan results.

• Classes that scan uses to trace data
These classes affect scan execution time.

Contrast Documentation

Use Contrast 579

• Classes used for type hierarchy resolution
Scan uses these classes only for type hierarchy resolution.
The library classes are either not relevant to security issues or Contrast has a specific policy for the
relevant API.
If a class displayed in this section is related to custom code, it is possible that the scan results contain
false negatives.

Contrast Documentation

Use Contrast 580

• Phantom classes
Phantom classes are referenced classes but either Scan is unable to find bytecode for them or Scan
was unable to decompile the code into IR.
Ideally, the scan results should contain no phantom classes. If the results include phantom classes,
Scan was unable to find the data it needed to provide more accurate results. If you see application
code or libraries displayed in this section, look at your code to determine if an issue exists.

• Discovered routes for untrusted data
This example shows discovered routes where untrusted data enter the application.
Scan only looks at the data flow behavior from the functions displayed in this section. Scan does not
analyze other functions related to data flow, such as weak cryptography.

Contrast Documentation

Use Contrast 581

View scan policies
Policies determine which vulnerabilities Contrast looks for in your code. At this time, editing or adding
polices is not supported.

NOTE
The policy view applies to Java binary scanning only.

1. Select Scans in the header.
2. Select a scan project.
3. Select Policy.

The policy list displays the Java binary scan policies.
4. In the Policy tab, search for a specific policy by entering one or more characters in the Find box.

Change scan settings
Scan settings let you change the name of a scan project.

Before you begin

• An Admin role is required.

Steps

1. Select Scans in the header.
2. Select a Scan project.

Contrast Documentation

Use Contrast 582

3. Select the Settings icon () at the top of the list.
4. Enter a new name for the project.
5. Select Save.

Archive scan projects
If you want to exclude a specific scan project from the list of scan projects (for example, you are no
longer using that project), you can archive it.

Contrast keeps the data associated with the archived project.

Steps

1. Select Scans in the header.
2. Select a scan project.
3. Select the settings icon ().
4. In the Scan project settings window, select Archive.

5. In the Archive project window, select Archive.
The archived project is no longer visible in the list unless you use the Archived filter.

Unarchive scan projects
To use or view details for an archived scan project, unarchive it.

Before you begin

• An Organization Admin role is required.

Steps

1. Select Scans in the header.
2. Display archived projects by selecting the small triangle () at the top of the list and then, selecting

Archived.
3. Hover over the end of a project row and select the Unarchive icon ().
4. In the Unarchive project window, select Unarchive.

Integrate scans with build pipelines
The Contrast CLI (page 673) has commands that let you run a scan without using the Contrast web
interface.

This topic provides instructions for using the Contrast CLI to integrate scans into any build pipeline.

Contrast Documentation

Use Contrast 583

You can also use the Contrast Maven plugin (page 770) to integrate Contrast Scan into your project's
Maven build,

Before you begin

• In the Contrast web interface, under user menu > User settings > Profile, locate and copy this
information:
• API key
• Organization ID
• Contrast URL
• Authorization header

• Ensure that a WAR or JAR file is available in an accessible location.

Steps

1. In your build pipeline workflow, add the command to download the latest version of the Contrast
CLI .

npm install --location=global @contrast/contrast@2

2. Set environment variables for the API key, the organization ID, the Contrast URL, and the
Authorization header.
This example shows how to set the environment variables with GitHub secrets. Use the appropriate
method for your environment.

CT_API_KEY: ${{ secrets.CONTRAST__API__API_KEY }}
CT_AUTH_TOKEN: ${{ secrets.CONTRAST__API__AUTH_TOKEN }}
ORG_ID: ${{ secrets.CONTRAST__API__ORGANIZATION_ID }}
URL: ${{ secrets.CONTRAST__API__URL }}

3. Add a command similar to the following to start each scan:

contrast --scan ../scan-cli-testing/java/apps/param.war \
--api_key $CT_API_KEY \
--authorization $CT_AUTH_TOKEN \
--organization_id $ORG_ID \
--host $URL \
--project_name MY-Project \
--language JAVA --wait_for_scan

When this command runs for the first time, Scan creates a project using the name specified in the
--project_name option.
The output from the command looks similar to this example:

project created ID is 788f9734-b933-4f05-b391-c130931baf88
 Uploaded file successfully.
 Response: {
 id: '5091d134-93ea-4873-8110-8cf99d14606e',
 organizationId: '74f4cd04-6ca9-4eb7-a7a7-78909c2101cc',
 projectId: '788f9734-b933-4f05-b391-c130931baf88',
 filename: 'param.war',
 createdTime: '2022-04-04T10:06:16.952+00:00'
}
Timeout set to 5 minutes
Waiting for results...
New Results: 5
Fixed Results: 0
Total Results: 5

Contrast Documentation

Use Contrast 584

The next time you run the command for the same project, Scan adds the uploaded files to the
original project. The output from the command looks similar to this example:

project already exists with this name. Getting ID...
 project ID is 788f9734-b933-4f05-b391-c130931baf88
 Uploaded file successfully.
 Response: {
 id: '94b4e065-0e0f-46bb-b1d8-9f85bd03c602',
 organizationId: '74f4cd04-6ca9-4eb7-a7a7-78909c2101cc',
 projectId: '788f9734-b933-4f05-b391-c130931baf88',
 filename: 'param.war',
 createdTime: '2022-04-04T10:07:01.230+00:00'
}
Timeout set to 5 minutes
Waiting for results...
New Results: 5
Fixed Results: 0
Total Results: 5

4. After the scan completes, go to the Contrast web interface to view the Scan project details and
results.

Examples
• Scan integration with GitHub (page 585)
• Scan integration with Jenkins (page 586)
• Scan integration with GitLab (page 586)

Example: Scan integration with GitHub
Review the Scan integration steps (page 583) before you integrate Contrast Scan with GitHub.

This example shows how to set up a GitHub workflow.

- name: Set up contrast-cli
 run: |

Contrast Documentation

Use Contrast 585

 npm install --location=global @contrast/contrast@2.0.0
- name: Scan file
 env:
 CT_API_KEY: ${{ secrets.CONTRAST__API__API_KEY }}
 CT_AUTH_TOKEN: ${{ secrets.CONTRAST__API__AUTH_TOKEN }}
 ORG_ID: ${{ secrets.CONTRAST__API__ORGANIZATION_ID }}
 URL: ${{ secrets.CONTRAST__API__URL }}
 run: |
 contrast-cli --scan ./target/${{ inputs.SERVICE_NAME }}-${{ steps.build-
service.outputs.version }}.jar \
 --api_key $CT_API_KEY \
 --authorization $CT_AUTH_TOKEN \
 --organization_id $ORG_ID \
 --host $URL \
 --project_name MY-Project \
 --language JAVA --wait_for_scan

Example: Scan integration with Jenkins
Review the Scan integration steps (page 583) before you integrate Scan with Jenkins.

Contrast Security can share this script to integrate scans with a Jenkins pipeline (contact Contrast
Support to access these scripts):

• Jenkins Pipelines script: The Jenkins_Script_SCAN script uses the Contrast Scan local engine
JAR file. The project JAR file is expected to be in a GitHub repository.

Integration setup
This example describes how to set up a Jenkins integration for Scan.

1. Set up a Jenkins instance in your local environment (use the Jenkins documentation).
If you already have a Jenkins instance, you can skip this step.

2. Install this software (if not already installed):
• Java 11
• Plugins for your environment (for example, the Docker plugin)

3. Create a new pipeline and copy the Contrast script.
4. Set the Contrast credentials as global or environment variables:

For example: URL, USER_NAME, API_KEY,SERVER_KEY, ORGANIZATION.
• To add credential to Jenkins, select Manage Jenkins > Manage Credentials > Add

Credentials as Secret Text.
5. Refer to all credentials and variables in your pipeline scripts.

Example: Scan integration with GitLab
Review the Scan integration steps (page 583) before you integrate Scan with GitLab.

This example shows how to set up a GitLab pipeline for these actions:

• Pulling code from a repository.
This action might not be necessary if you're using GitLab as a code repository.

• Building the code
• Scanning a generated JAR file.

Pipeline setup example
This sample YAML file shows the steps to set up the GitLab pipeline.

stages: # List of stages for jobs, and their order of execution
 - pull

Contrast Documentation

Use Contrast 586

https://support.contrastsecurity.com/hc/en-us/requests/new?ticket_form_id=360000011243
https://support.contrastsecurity.com/hc/en-us/requests/new?ticket_form_id=360000011243
https://www.jenkins.io/doc/pipeline/tour/hello-world/

 - build
 - scan
- deploy

pull:
 stage: pull
 artifacts:
 paths:
 - WebGoat
 script:
 - git clone -b main https://github.com/WebGoat/WebGoat.git

build:
 stage: build
 image: maven:3.8.1-openjdk-17-slim
 artifacts:
 paths:
 - $CI_PROJECT_DIR
 dependencies:
 - pull
 script:
 - apt-get update && apt-get install -y jq
 - VERSION=$(echo "$(curl --
fail --silent "https://search.maven.org/solrsearch/select?
q=g:"com.contrastsecurity"&a:"contrast-agent"&rows=20&wt=json" | jq -r
'.response.docs[0].latestVersion')") && curl --
silent https://repo1.maven.org/maven2/com/contrastsecurity/contrast-agent/$
{VERSION}/contrast-agent-${VERSION}.jar -o
 /tmp/contrast.jar
 - ls -l /tmp
 - cd WebGoat
 - export MAVEN_OPTS="-javaagent:/tmp/contrast.jar -
Dcontrast.api.url=$AGENT_URL -Dcontrast.api.api_key=$AGENT_API_KEY -
Dcontrast.api.service_key=$AGENT_SERVICE_KEY -
Dcontrast.api.user_name=$AGENT_USER_NAME -
Dcontrast.agent.java.standalone_app_name=Webgoat-gitlab -
Dcontrast.server.name=Gitlab -
Dcontrast.application.version=$CI_COMMIT_SHORT_SHA"
 - mvn -DskipTests clean install

scan: # This is the step for Contrast Scan
 stage: scan
 image: node:18.19-slim
 dependencies:
 - build
 script:
 - ls -la
 - npm install -g @contrast/contrast@2
 - contrast version
 - contrast auth --api-key $API_KEY --authorization $AUTH --organization-
id $ORG_ID --host $URL
 - contrast scan -f $CI_PROJECT_DIR/WebGoat/target/webgoat-2023.7.jar --
fail --severity high

deploy: #TODO

Contrast Documentation

Use Contrast 587

Servers
In Contrast, you can see servers and configure how they function in development, test (QA), and
production environments. You are then able to compare the differences across environments as code
travels. Contrast sets up a shell for you to designate servers. Once that’s in place, Contrast can begin
to find weaknesses.

Server settings
Each server entry in Contrast represents a Contrast agent that you installed for an application. Contrast
creates a new, unique server entry when you configure these settings for each agent:

To define custom settings for servers, use these entries in the Contrast configuration file:

• Server name: The default value is the host name.
• Server path: The path from which the agent process is running.
• Server type: The type of server hosting your application.

Using custom values for these settings instead of default ones is useful if you want to avoid duplicate
server entries.

Configure the server environment with this setting:

• Server environment: The environment in which you want to use this server.
The valid values are DEVELOPMENT, QA, and PRODUCTION. These values are case-insensitive. The
default value is DEVELOPMENT.

Contrast agents automatically recognize all supported server types. If the server type is not
automatically recognized, it may be due to the agent running with an unsupported technology. Please
review the Supported Technologies section for the respective agent (page 47). Running in unsupported
environments may affect the functionality of some features like route discovery.

Settings in a configuration file
These are the server settings that you customize in a configuration file.

server
Use the settings in this section to set
metadata for the server hosting this agent.

server:

 # Override the reported server name.
 name: localhost

 # Override the reported server path.
 path: NEEDS_TO_BE_SET

 # Override the reported server type.
 type: NEEDS_TO_BE_SET

 # Override the reported server environment.
 # environment: DEVELOPMENT

Agent configuration instructions
When you define custom settings for servers, use the configuration instructions for the agent you are
using:

• .NET Core configuration (page 251)

Contrast Documentation

Use Contrast 588

• .NET Framework configuration (page 190)
• Go configuration (page 477)
• Java configuration (page 112)
• Node.js configuration (page 306)
• Python configuration (page 363)
• Ruby configuration (page 418)

Contrast options
The Contrast web interface provides additional options for server configuration:

• Configure a server (page 592)
• Output data to syslog (page 595)

View servers
The Servers list shows details about the servers in your organization:

• Name: The name of the server.
• Last Seen: The last time the agents for the applications associated with the server reported activity

to Contrast.
• Environment: The environment where the server is deployed: Development, QA, or Production.
• Applications: The applications associated with the server.

The Servers list also lets you manage Assess and Protect settings for individual servers.

Steps

1. Select Servers in the header to view a list of all servers in your organization.
2. To filter the list by server status, select the small triangle () at the top of the list.

Alternatively,search for specific servers by name by selecting the magnifying glass icon ().

The filters are:
• All: Shows all servers in the organization.
• Protected: Servers with Protect turned on.
• Unprotected: Servers with Protect turned off.
• Online: Servers that Contrast can reach.
• Offline: Servers that Contrast is unable to reach.
• Out-of-Date: The agent version for applications associated with the server is old. Consider

updating the agent to a newer version.
• Partially protected: Servers with Protect turned on but require a restart.

If you change the agent configuration for an application associated with the server, you might
need to restart it for Protect to take effect.

Contrast Documentation

Use Contrast 589

3. To filter the list of servers, select the filter icon () next to the Server column header.

The filters are:
• Server tags: Tags you assigned for each server.

To assign a tag to a server, hover over the end of a row for a server and select the Tag () icon.
• Log levels: Log levels (page 952) assigned to each server.
• Agent version: The version of the agents that the applications associated with the server are

using.
4. To filter by environment, select the filter icon () next to the Environment column header.

The filters are: Development, QA, and Production.
5. Use the settings in the Assess (page 809) and Protect (page 811) columns to turn them on or

off.
• If you use only the Contrast web interface to turn Assess or Protect on or off, the setting for a

specific server is green if ON and gray if OFF. You can change this setting in the Contrast web
interface.

Contrast Documentation

Use Contrast 590

• If you used a method external to the Contrast web interface to configure the setting for Assess or
Protect (for example, an agent configuration file), the setting is green but disabled if ON and grey
but disabled if OFF. You cannot change this setting in the Contrast web interface.

• If the setting in the Contrast web interface is disabled, hover over the setting to see where it is
configured. The order of precedence (page 72) determines which setting Contrast uses as the
effective configuration.

6. To view details about a specific server (page 591), select the server name.

Server details
When you select a server from the Servers list and view the Overview tab, you see details about the
server configuration and activity for applications associated with the server.

You can also manage the settings for Protect and Assess.

Summary
The Summary at the top of the Overview tab shows these values:

• Assess and Protect settings
You can use configuration files, variables, or the Contrast web interface to configure the Protect
and Assess settings. The. method you use to configure these settings determines whether you can
change them in the Contrast web interface.
• If you used only the Contrast web interface to turn Protect or Assess on or off, the setting is green if

ON and gray if OFF. You can change this setting in the Contrast web interface.

• If you used a method external to the Contrast web interface to configure the setting for Protect or
Assess (for example, an agent configuration file), the setting is green but disabled if ON and grey
but disabled if OFF. You cannot change this setting in the Contrast web interface.

If the setting in the Contrast web interface is disabled, hover over it to see where the setting is
configured. The order of precedence (page 72) determines which setting Contrast uses as the
effective configuration.

• Agent version: The version of the agent associated with this server.
• Libraries: The number of open-source libraries that Contrast identifies for the applications associated

with the selected server. It also displays the number of vulnerable libraries.
Select the displayed number to view the libraries list.

• Time since last startup: The amount of time since the server last started.
• Since last seen: Time since the agent associated with this server reported activity to Contrast.

Statistics
The statistics section shows these values:

Contrast Documentation

Use Contrast 591

• Vulnerabilities: If Assess is turned on, the number of vulnerabilities it identified for the applications
associated with this server.
Use the filter to change the view. Hover over the vulnerability bar to see additional details.

• Attacks: If Protect is turned on, the number of attacks identified in the applications for this server.
Use the filter to change the view. Hover over the attacks bar to see additional details.

• Application: The applications associated with this server.
Select an application link to see application details.

Activity
The activity graph shows an aggregate of agent reports that Contrast received during the selected time
frame.

Configure server settings
Server settings let you configure how a server functions in each environment (development, test, and
production).

Steps

1. Select Servers in the header.
2. Find the server you want to modify using either of these methods:

• Select the Filter icon () at the top of the Server column.
• Use the magnifying glass () to search.

3. Go to Server settings using either of these methods:
• Hover over the end of the server's row and select the Settings icon ().
• Select the name of the server and then, select the Settings icon () at the top of the list.

4. Modify the settings, as needed:
• Modify the server name.
• Designate the environment in which the server will be running: Development, QA (test), or

Production.
• In the Server log file, override the existing server log file path by entering the preferred path.

NOTE
Server log files are restricted to file types of LOG or TXT only.

• Set the log level (page 952) for the server.
• Set bot blocking.

Bot blocking blocks traffic from scrapers, attack tools, and other unwanted automation.
To view blocked bot activity, under Attacks > Attack Events, use the Automated filter options.
Supported languages: Java, .NET Framework, .NET Core, Ruby, and Python.

NOTE
You can configure bot blocking in the YAML files (page 73)for Java, .NET
Framework, .NET Core, Ruby, and Python.

• Select Enable sampling for higher performance (page 593).
This setting is available when Assess is enabled.
Configure the following settings:
• Baseline: The number of times that Contrast analyzes URLs to complete sampling. The

default setting is 5.
• Frequency: The number of times that Contrast analyzes URLs after the baseline is achieved.

The default setting is 10.

Contrast Documentation

Use Contrast 592

• Window: The number of seconds that Contrast retains samples before reverting to the
baseline. The default setting is 180.

For example:

contrast.assess.sampling.request_frequency 25
contrast.assess.sampling.window_ms 360_000
contrast.assess.sampling.baseline 1

• Select Enable output of Protect events to syslog. (page 595)
This setting is available when Protect is enabled.
Select the syslog message severity levels that the server outputs to syslog. Contrast offers
syslog message categories according to the syslog RFC 3164 specification for severity.

Application sampling
If you notice performance issues after you instrument your application with a Contrast agent, consider
enabling application sampling.

When enabled, sampling selectively turns the agent off for a short amount of time, based on uniquely
identified requests. If an application is responding to the same request often, the agent doesn't need to
analyze it multiple times. This behavior ensures that the agent analyzes code only when it's in different
contexts.

Best practice: Consider enabling sampling when you run long-duratiion tests in a test environment.
Due to the high-level of activity that occurs in this situation, enabling sampling can improve application
performance.

If sampling is appropriate for your environment, enable it as part of your server
configuration (page 592).

How sampling works

1. If the Contrast agent sees the same URL being called multiple times, it analyzes the URL based on
the the number of times specified in the Baseline setting.

2. Afterwards, if the Contrast agent continues to see the same URL, it only checks the URL based on
the Frequency setting.

3. Contrast retains samples for the number of seconds specified for the Window setting. After the
time specified for the Window setting elapses, Contrast analyzes the URL again, according to the
Baseline setting.

Use automatic diagnostic collection

Automatic diagnostic collection lets Contrast collect diagnostic information without requiring you to find
or upload this information manually. Automatic collection makes it easier for you to work with Contrast
support when you are troubleshooting technical issues.

NOTE
Currently, this feature is in preview mode. Contrast Support contacts you if they need
this feature enabled during troubleshooting activity.

When you turn on this feature, Contrast collects logs, system data, and other diagnostic information
from Contrast agents and sends them to Contrast servers. Contrast support representatives access this
information during troubleshooting tasks.

Contrast Documentation

Use Contrast 593

https://www.ietf.org/rfc/rfc3164.txt

Before you begin

• Currently, only Java agents support automatic diagnostic collection.
• The time span for diagnostic collection is one to 25 hours, based on the value you specify.

Steps

1. Select Servers in the header.
2. Hover over the end of the row of a server and select the diagnostic () icon.
3. In Diagnostic collection, select the log level for the logs you want Contrast support to access:

• Trace logs: Includes the trace messages generated during one or more sessions.
• Debug logs: Includes information that helps to identify bugs or other issues.

4. Specify the collection time span, from one to 25 hours. Contrast support can advise you regarding
the amount of time required for troubleshooting tasks.

5. Select Enable diagnostic collection.
The color of the diagnostic icon changes to green () when you hover over the end of the server
row.

6. Select the diagnostic icon () and copy the displayed key in Diagnostic Collection.. Give this key
to your Customer support representative.

Contrast Documentation

Use Contrast 594

7. To turn off diagnostic collection, repeat steps 1 and 2. Then, select Stop diagnostic collection..

Send output to syslog
Contrast allows you to send security logs to a remote syslog server in addition to the Contrast Security
log. Syslog data is in common event format (CEF) and can be parsed by most security incident event
management (SIEM) software.

Contrast Documentation

Use Contrast 595

IMPORTANT
You must apply a Protect license to the server that has syslog output enabled.

You may have to enable remote logging so that your syslog can receive outside
messages.

Syslog messages for a server are sent by the agent.

Syslog output isn't supported over TCP.

1. When configuring the default organization server settings (page 825), select the checkbox
to Enable output of Protect events to syslog, which reveals additional fields, and then enter
the appropriate settings.

2. Select Servers in the header to enable and configure syslog output to an individual server
or multiple servers at one time. If syslog defaults have already been set at an organization
level (page 825), the values will be pre-populated for server-level settings.
• Individual server: To enable syslog on an individual server, hover over the grid row, and select

the Server settings icon.
• Multiple servers: Use the check marks to select multiple servers, and select the Server

Settings icon in the batch action menu that appears at the bottom of the page.

NOTE
If one or more of the selected servers is not eligible to have syslog enabled, it
will only be enabled on eligible servers.

3. In the Server settings window, select the box to Send output of Protect events to syslog. (For
multiple servers, you will need to select Edit next to the checkbox first).

NOTE
If eligible servers selected are in different environments, you can choose to use
the default settings for the applicable servers or manually configure the settings for
all servers.

Contrast Documentation

Use Contrast 596

4. Enter the Syslog server host. This can be the full qualified domain name (not just the hostname)
or the IP address. For example: email.mydomainname.com or 38.124.154.50.

5. Enter the Port.

Contrast Documentation

Use Contrast 597

6. Enter the Facility.
7. Enter the Syslog message severity.
8. Save the settings to enable syslog on the server.
9. When syslog is enabled, the server has a gray arrow icon beside its name in the grid. Hover over

the icon to see the output location of Protect events.
To edit server settings, repeat the steps above to update the values in the appropriate configuration
form, and save your changes.

Syslog receivers
When you configure receivers for syslog output, consider these resources:

• Contrast Protect connector for Microsoft Sentinel
• Configure Field Extraction Modules (mmfields) for rsyslog to parse CEF formatted logs
• Configure syslog-ng OSE for CEF formatted logs

Libraries
The security of the libraries used by an application impacts the security of your application as a whole.

Libraries can be public or private. Public libraries are identified with a score (page 608) (A-F),
public libraries are open-source libraries sourced from Maven (Java), NuGet (.NET), npm (Node.js),
RubyGems (Ruby), PyPI (Python), pkg.go (Go), Composer (PHP). Private libraries are commercial
third-party libraries or custom-built libraries. Private libraries do not have a score assigned in Contrast.

Contrast agents automatically identify open-source libraries included in an application. Contrast
identifies any vulnerabilities found in your libraries and also confirms if the library is used at runtime.

To do this, Contrast creates a hash of the library file, which is used to compare the file's content
to a database of known library files. If the hash is in the database, Contrast is able to assign a
score (page 608) to the library, provide library version information and report on the total vulnerabilities
(CVE's) that have been found in the library.

NOTE
If your library is a custom file, the hash won't be found in the database and the agent
reports the library as "unknown" to the Contrast application. This may also happen
if the library has recently been released or if you are using an airgap on-premises
installation and have not recently updated library definitions (page 897).

For Java clients, WebSphere repackages libraries at runtime, so their SHA-1 hash is
different than anything known to Contrast. To preserve the SHA-1 during deployment,
set the JVM system
property org.eclipse.jst.j2ee.commonarchivecore.ignore.web.fragmen
t to "true".

Also, any wsadmin calls must have the same parameter:

wsadmin -javaoption "-
Dorg.eclipse.jst.j2ee.commonarchivecore.ignore.web.fragment=true
"

In Contrast, select Libraries in the header to see an overview of all libraries across your portfolio and
manage them in bulk.

Contrast Documentation

Use Contrast 598

https://learn.microsoft.com/en-us/azure/sentinel/data-connectors/contrast-protect
https://www.rsyslog.com/doc/configuration/modules/mmfields.html
https://www.syslog-ng.com/technical-documents/doc/syslog-ng-open-source-edition/3.38/administration-guide/76#TOPIC-2026417

• View libraries (page 599)
• View open-source licenses (page 607)
• Learn about library scoring (page 608)

See also
CVE search (page 609)

SCA release notes

September release
Release date: September 2023

New and improved:

• Added support for GOLANG library analysis in static SCA.
• Added a new report format (XLSX) that allows users to export (page 606) a two-tab report that

contains the same information as the standard CSV report in the first tab and lists all libraries, each
individual CVE affecting that library, the CVSS score, and the Contrast criticality in the second tab.

August release
Release date: August 2023

New and improved:

• Added the ability to filter libraries based on a specific vulnerability severity in Contrast. This can be
done at both the organizational level as well as at the individual application level.

• Added a hyperlink to the CVEs entry in the NVD database to a vulnerability card. This allows an
organization to see the latest information pertaining to a specific CVE.

View libraries
There are multiple ways to get library information:

• Select Libraries in the header to view a grid list of all libraries used by your organization. Select a
library name from that list for more details.

• You can also see library information for an individual application or server:
• Select Applications in the header, then select an application name to see its details page. Select

the Libraries tab.
• Select Servers in the header, then select a server name to see its details page. Select the

Libraries tab.
• Select the small triangle at the very top of the libraries grid to filter the libraries view. You can also

click on the magnifying glass icon to search for specific libraries.

Contrast Documentation

Use Contrast 599

The filters include:
• All: Shows all libraries.
• Vulnerable: Shows only libraries that Contrast identified as containing CVEs.
• Policy violation: Shows only the libraries that violate a library policy.
• Private: Shows only commercial third-party libraries or custom-built libraries that Contrast

discovered in your code.
• Public: Shows only the open-source libraries that Contrast discovered in your code.
• High risk: Shows only the libraries with a score (page 608) of C or below.
• Remediated: Shows any libraries marked as remediated.

• Select Show library stats above the grid to analyze library data for your organization. Each graphic
displays the statistical average as well as breakdowns for each category, including library scores and
the number of years by which they are high risk.
A library is considered high risk if it has a score (page 608) that is grade C or below.

Static and runtime tabs
Library information in Contrast is divided into two tabs:

• Static: Contains results from a manifest (for example, package.json or pom.xml) analyzed with
Contrast CLI (page 674).

• Runtime: Contains results for applications analyzed at runtime

You can use the column headers with filters in the grid to filter by score, library, severity, and project.
The libraries grid shows:

• Score: Visible only under the Runtime tab. Shown as a letter grade using this scoring
guide (page 608).

• Severity: Visible only under the Static tab. This represents the maximum severity level for all
vulnerabilities (CVEs) present in the library. Use the filters to locate libraries based on severity level.
Note that the Other filter option locates any libraries with CVEs whose maximum severity is None
(where CVSS score is 0) AND libraries without a CVE AND private or unknown libraries.

Contrast Documentation

Use Contrast 600

• Library: Click a library name in the grid to go to its details panel. This is where any known
vulnerabilities (CVEs) that Contrast has found within the library will be listed along with a list of
the applications and servers where the library appears.
Use the filters to narrow the results:
• Languages: Locate vulnerable libraries by a specific language
• Licenses: View libraries by licensed applications
• Environments: Helps to easily locate any vulnerable libraries in production
• Servers: Find vulnerable libraries by server type

• Latest version: Most recent library version.

NOTE
For .NET libraries. The Latest version value relates to the package upgrade
recommendation. The library version and hash are determined by the file the
Contrast agent detects. The hash represents the library file version while the
upgrade version represents the package version.

• Vulnerabilities (CVES): This shows the CVEs found in the library and can help prioritize
remediation. Hover over the thermometer section to see the number of CVEs by severity. Click the
thermometer to open the details panel.

If vulnerabilities exist, they display as a list and are color-coded by severity. Vulnerabilities with a
critical severity status appear at the top of the list and are coded red.
Select a CVE link to view the CVE details card. Select See NVD for latest information to view
information about the specific CVE. Note that the NVD site only provides a snapshot of information
at the time the CVE was raised and may not be the most current description of the CVE. The EPSS
(Exploit Prediction Scoring System) calculation provides a probability range between 0 to 1 (0 and
100%). A higher score indicates a vulnerability likely will be exploited within 30 days.

• Applications: Visible only under the Runtime tab. Lists applications using the library.
• Usage: Visible only under the Runtime tab. This shows the total number of classes used at runtime

out of the total number of classes that are in the library. If none of the classes have been used
at runtime, this column shows "Unused." When your application loads a class, the Contrast agent
reports usage. If the class has not been used before, the usage decreases. Click the number to
analyze the library usage (page 604). There you can see information on classes loaded as well as
the risks and policy violations associated with the library.

• Actions: Visible only under the Runtime tab. This is where you can tag (page 602),
send (page 603), or delete (page 602) the library.

• Status: Visible only under the Runtime tab and requires a minimum of the Edit (page 947)
organization role to be able to change the status. (Contact Support to request enabling this column
if not visible for your organization). Visible under the Applications > Application name > Libraries
tab. There are three types to view/apply:
• Not a problem: This library has acknowledged vulnerabilities and the risks are acceptable, or the

library is unused.
• Remediated: The vulnerable library has been remediated.
• Reported: When a library with vulnerabilities is detected by Contrast.

• Projects: Visible only under the Static tab. Lists the projects using the library.

Contrast Documentation

Use Contrast 601

Discover or delete libraries

NOTE
Visible under Runtime view only. Not available for libraries statically analyzed.

Libraries are associated with the applications that use them and the servers where these applications
are deployed.

If an agent checks in with a library list that no longer includes a previously reported library, that library
will no longer be associated with that server.

A library will be removed from an application once all servers reporting it have either checked
in without it or the servers reporting it have been deleted. (Servers check in according to their
settings (page 825)).

Libraries can also be manually deleted from an application.

To delete libraries:

1. Select Libraries in the header and locate the row in the grid for the library you want to delete.
2. Click the Delete icon under the Actions column. You can also find the icon in the top right of the

library details page.
To delete multiple libraries at once, use the check marks in the left column to select the libraries
you want to delete, then select the Delete icon from the batch action bar that appears at the bottom
of the page.

3. In the window that appears, select Delete to confirm your choice. Once confirmed, the library is
removed and no longer appears in your list. If an agent reports a previously deleted library, this will
be added to the list of libraries again as this library is included in an application.

Add tags to libraries

NOTE
Visible under Runtime view only. Not available for libraries statically analyzed.

To add tags to libraries:

1. Select Libraries in the header and locate the row in the grid for the library you want to tag.
2. Select the Tag icon under the Actions column. This option is also available from the library details

page in the top right corner.

Contrast Documentation

Use Contrast 602

3. In the window that appears, begin typing to see a list of tags. Select one or more from the
dropdown, and/or type a new tag. To remove tags, select the X. Select Save.

4. To tag multiple libraries, use the check marks in the left column of the libraries grid to select
libraries. In the batch action menu that appears at the bottom of the page, select the Tag icon.

5. To filter by tags, select the filter next to the Library column of the grid, then select the tags to filter.

6. You can also see tags next to the library name on the library's details page, and remove them by
selecting the X.

Send library information

NOTE
Visible under Runtime view only. Not available for libraries statically analyzed.

Send library details to your email address or to an integrated bugtracker service (that creates tickets for
your developers) to track vulnerable libraries.

Contrast Documentation

Use Contrast 603

Contrast sends the following data to your email address or integrated bugtracker for each library that
you choose.

• Name
• Version
• Vulnerabilities details
• Impacted applications and servers
• Versions behind (compared to the current/latest version)
• Usage (Currently available for Java and .NET only.)
• Score (page 608)

To receive this information for a particular library:

1. Select Libraries in the header and locate the row in the grid for the library you want to track.
2. Click the Send icon under the Actions column and select either Send by Email or Send to

Bugtracker.
This option is also available from the library details page in the top right corner.

3. In the window that appears, select the integrations (page 724) you want to use. Select the options
then select Send to create the ticket. For email, enter the email address then select Send to send
the email.

4. To receive information for multiple libraries, use the check marks in the left column of the libraries
grid to select libraries. In the batch action menu that appears at the bottom of the page, select the
Send icon. All libraries selected must have at least one application in common.

Analyze runtime library usage
Runtime library usage gives insight into which parts of a library are actually used by your applications,
which can reduce investigation time for CVEs by showing how much a library impacts your application.
This also improves collaboration because security teams can confirm with development teams that an
application uses a vulnerable library at runtime.

NOTE
Only organizations with a Contrast SCA license (page 26) can see full usage details.
To learn more, contact our sales department at sales@contrastsecurity.com.

Select Libraries in the header, click Runtime and view the Usage column to see if, and how much, a
library is used at runtime. The usage number represents the number of items used by any instrumented
applications, out of the total number of items known to be available in that library.

Contrast Documentation

Use Contrast 604

Items loaded may be classes, files, or functions, depending on the languages of the applications using
this library. If a primary application contains multiple applications that use the same library, the classes
loaded will be representative of each merge application.

When an application uses a library, the Contrast agent reports the items loaded within the library. As the
application uses more items within a library, usage counts increase in Contrast.

If you have the appropriate license, you can also view full library usage details for a particular
application:

1. Under Applications, select a specific application to see the details view.
2. Select the Libraries tab for the application.
3. Select the usage counts for a specific library. This opens an overview and usage panel.

4. Click the Usage tab to view each class, file, or function used. Click the search icon to search
for specific classes. You will also see the first time and last time Contrast observed it in use.
Library exports (page 606) will also include full usage data. Click the Overview tab to view What
happened (describes the issue(s)), as well as What’s the risk (lists the Severity badge, CVSS
Score, CVE title, and policy violations).

NOTE
For a merged application, Contrast will report when a class was first seen and last
seen for all applications it contains within the corresponding Last Seen and First
Seen columns.

Contrast Documentation

Use Contrast 605

5. You can also tag (page 602) and send (page 603) information about the library.
6. Click the More menu () to view package details, repository location, delete (page 602) the library,

or export usage details in CSV format.
7. Select the X to close the details panel.

Export library details
Use the export function to download library details.

To export library details:

1. Select Libraries in the header, then use the check marks in the left column of the libraries grid to
select the library or libraries you want to use for the export. You can also click an individual library
name to open the details panel.

2. In the batch action menu that appears at the bottom of the page, or in the upper right of the details
panel, select the Export icon, then select the format you want to use for the export.

The export will download to your desktop. Note that the XLSX format export will contain two tabs:
Libraries and Vulnerabilities.

Data fields
Exports contain the following data fields for each library:

• Library Name
• Language
• Version
• Release Date
• Latest Version
• Grade
• SHA1
• CVE Count
• Application Count
• Server Count
• Number of Classes
• Number of Used Classes
• Licenses
• App Name
• Server Name
• Server Environment
• Policy Violation
• Severity
• Tags

Contrast Documentation

Use Contrast 606

In addition to the above, the XLSX format export also contains a Vulnerabilities tab with the Hash,
Library Name, CVE Name, Severity, and Severity Code fields.

TIP
To create more complex custom software composition analysis reports about your
applications, you can use the Libraries API to access Contrast library data. You might
also explore additional details on your libraries by using a manual method.

For example, this curl request retrieves a list of libraries in which each library includes
a list of applications that use the library. The jq tool formats the data as CSV for use in
a custom report.

$ curl -H "Authorization: $(echo -n $username:$servicekey
base64)" -H "API-Key: $apikey" https://app.contrastsecurity.com/
Contrast/api/ng/$org_id/libraries/filter?expand=apps
jq -r '.libraries[]
{name: .file_name, app_name: .apps[].name}
[.name, .app_name]
@csv'

View open-source licenses

IMPORTANT
Open-source license display is available to Contrast SCA customers only. Contact your
Organization Administrator to enable SCA.

To view license details for your open-source libraries in SPDX format, select Libraries in the header.
There are multiple ways to view license information:

• To view an individual library's license, hover over the library name in the grid.
• To find libraries with specific licenses, select the filter icon next to the Library column header and

select the licenses you want to filter by.
• If you select a library name you will see details of that library. License information is also at the top of

that page.
• Select Package details (either from the hover tip on the Libraries page, or by selecting the library

name, then the information icon in the top right) to see the title, version and creator of that package.
• License details for each library are also included in any CSV or XML files exported from

Contrast (page 606).

View dependency trees
When an open-source library is added to an application, all of the library's dependencies are also
inherited. Some of these transitive dependencies may introduce vulnerable code into your applications.
The Contrast CLI (page 665) identifies all library dependencies and sends the data to Contrast where
you can visualize these libraries as a hierarchical dependency tree.

To display library hierarchy for your application, Contrast must have access to your application code
at pre-compile time—a different stage of the software development lifecycle (SDLC) than the Contrast

Contrast Documentation

Use Contrast 607

https://api.contrastsecurity.com/

agents collect. To do this, you must have installed and run the Contrast CLI (page 665) for your
applications.

To view an application's library dependency tree:

1. Select Applications in the navigation bar.
2. Select an application.
3. From the application's Overview page, select the Libraries tab.
4. Select the dependency tree  icon in the upper right to view the analysis of your application.

In this view, Contrast displays the dependency tree for your application's libraries based on the data
collected by the Contrast CLI (page 665).

• Use the quick view menu to view only the vulnerabilities. By default, all libraries are displayed. You
can use the right arrows to expand individual sections for more information or you can select the
Expand All option to view all the information at once.

• Libraries with known vulnerabilities are also identified with a vulnerabilities warning icon . View
vulnerability details by clicking the icon.

• Click the search icon to search for a specific library.
• You can also view a dependency tree's history by choosing a custom date.
• Click the filter icon to view the dependencies based on developer and/or production libraries. By

default, the production option is selected.
• The Application dropdown appears for merged (page 528) applications so you can see how

vulnerable libraries were introduced for the merged application. You can view the dependency tree by
parent and child applications.

Library scoring guide
Contrast provides letter grades for the security of your application's libraries so that you can use them
as a reference point during analysis. The grades map to scores as follows:

• A: 90 - 100
• B: 80 - 89
• C: 70 - 79
• D: 60 - 69
• F: 35 - 59

Scores are based on three penalty factors:

• Time: The age of the library is calculated based on the number of full years between the release of
the latest version and the version used in the application, multiplied by 2.5.

• Status: The status is calculated based on the number of versions that have been released since the
current library in your application, multiplied by 10.

• Security: The CVE penalty of the library is the highest severity of all known CVEs for this library,
multiplied by 10.

NOTE
Organization administrators can adjust the scoring method (page 830) to include only
security criteria.

Contrast Documentation

Use Contrast 608

TIP
For example:

If you're using a library from January 2010 and the latest version came out
in September 2013, the number of full years passed is two. So your time penalty would
be:

2 x 2.5 = 5

If you're using Version 1.1.1, but Versions 1.1.2 and 1.1.3 have been released, your
penalty would be:

2 x 10 = 20

If you have a library with the scores 2.4 and 2.2, the penalty would be:

2.4 x 10 = 24

The final score of the library is calculated by subtracting each of the three penalty
values from 100.

100 - 5 - 20 - 24 = 51

A score of 51 maps to a letter grade of F.

CVE search
Use the search bar to locate specific CVEs in libraries (page 598).

• Enter a CVE number in the search bar and the search results will auto-populate with the libraries
where the CVE is found.

• You can then select the relevant library and the library details will open.
• Search supported in Organization (page 807), Application (page 523), and Server (page 588)

libraries.

Contrast Serverless
Contrast Serverless features dynamic scanning, static scanning, graph visualization, and resource
observability that help you maintain awareness of your environments.

With Contrast Serverless you can:

Contrast Documentation

Use Contrast 609

• Scan functions on demand (page 647)
• View results (page 648)
• Change inventory criteria (page 653)
• Change Serverless scan settings (page 654)
• View function and service relationships (page 655)

See also

• Integrate Contrast Serverless with JIRA (page 766)

Contrast Serverless release notes

• IDS release notes (page 610)

IDS release notes

• IDS Layer version 1.5.0 (page 610)
• IDS Layer version 1.4.0 (page 611)
• IDS Layer version 1.3.0 (page 611)
• IDS Layer version 1.2.0 (page 612)
• IDS Layer version 1.1.0 (page 612)
• IDS Layer version 1.0.0 (page 613)

IDS Layer version 1.5.0
Release date: September 4, 2023

Language versions currently supported:

• Node.js 12, Node.js 14, Node.js 16
• Python 3.8, Python 3.9

Minimum requirements:

• Memory: 256 MB
• Timeout: 5 seconds

Included third-party packages: See here (page 614).

New and improved:

• Added a new ReDOS attack in Node.js
• Enhanced ReDOS instrumentation for Python to support more possible sinks
• Added a new Unvalidated Input attack In both Node.js and Python
• Added detection for Lambda triggers to enhance traces support
• Fixed false-positives in NOSQLI in DynamoDB
• We made several enhancements and addressed issues to enhance the overall performance and

stability

Security fixes:

• Fixed CVE-2023-36665 protobufjs v7.1.1 in the Node.js layer
• Fixed CVE-2023-38704 import-in-the-middle v1.4.1 in the Node.js layer

Possible issues:

• Dependencies collision
• See the included third-party packages (page 614)

Contrast Documentation

Use Contrast 610

• Node.js
• Handler function that is defined with both async and a callback like async function
(event, context, callback) is not supported

• Webpack library target to commonjs2, with typescript compiler option module different than
Commonjs is not supported

IDS Layer version 1.4.0
Release date: August 3, 2023

Language versions currently supported:

• Node.js 12, Node.js 14, Node.js 16
• Python 3.8, Python 3.9

Minimum requirements:

• Memory: 256 MB
• Timeout: 5 seconds

Included third-party packages: See here (page 614).

New and improved:

• Added a new ReDOS attack in Python (Node.js is coming in the next release)
• Added a new NoSQLI attack for DynamoDB and MongoDB in both Python and NodeJS
• Added support to improve validation of DAST attacks if the Lambda is instrumented with IDS
• Improved performance of the CMDI rule
• We made several enhancements and addressed issues to enhance overall performance and stability

Possible issues:

• Dependencies collision:
• See the included third-party packages (page 614).

• Node.js:
• Handler function that is defined with both async and a callback like async function
(event, context, callback), is not supported

• Webpack library target to commonjs2 with typescript compiler option module different than
Commonjs is not supported

IDS Layer version 1.3.0
Release date: July 4, 2023

Language versions currently supported:

• Node.js 12, Node.js 14, Node.js 16
• Python 3.8, Python 3.9

Minimum requirements:

• Memory: 256 MB
• Timeout: 5 seconds

Included third-party packages: See here (page 614).

New and improved:

• Improved layer size (reduced by 10MB)

Contrast Documentation

Use Contrast 611

• Optimized the array input evaluation
• Added support for SQLI in DynamoDB
• Optimized array evaluation in nested keys
• Improved event type identification and handling

Possible issues:

• Dependencies collision:
• See the included third-party packages (page 614)

• Node.js:
• Handler function that is defined with both async and a callback like async function
(event, context, callback), is not supported

• Webpack library target to commonjs2 with typescript compiler option module different than
Commonjs is not supported

IDS Layer version 1.2.0
Release date: June 4, 2023

Language versions currently supported:

• Node.js 12, Node.js 14, Node.js 16
• Python 3.8, Python 3.9

Minimum requirements:

• Memory: 256 MB
• Timeout: 5 seconds

Included third-party packages: See here (page 614).

New and improved:

• Added support for events from service with "Records" like SQS, SNS, S3, etc.
• Optimized the rules evaluation during the attack phase
• Added initial support for traces
• Optimized the performance of Cold Starts

Bug fixes:

• Fixed unsupported syntax error in the NodeJS layer
• Fixed the evaluation of the rules - continue the evaluation even if one rule failed

Possible issues:

• Dependencies collision:
• See the included third-party packages

• Node.js:
• Handler function that is defined with both async and a callback like async function
(event, context, callback), is not supported

• Webpack library target to commonjs2 with typescript compiler option module different than
Commonjs is not supported

IDS Layer version 1.1.0
Release date: May 22, 2023

Language versions currently supported:

Contrast Documentation

Use Contrast 612

• Node.js 12, Node.js 14, Node.js 16
• Python 3.8, Python 3.9

Minimum requirements:

• Memory: 256 MB
• Timeout: 5 seconds

Included third-party packages: See here (page 614).

New and improved:

• Removed false positive from LFI in Node.js
• Various performance optimizations

Security fixes:

• Prometheus vulnerability CVE-2019-3826

Possible issues:

• Dependencies collision:
• See the included third-party packages

• Node.js
• Handler function that is defined with both async and a callback like async function
(event, context, callback), is not supported

• Webpack library target to commonjs2 with typescript compiler option module different than
Commonjs is not supported

IDS Layer version 1.0.0
Release date: May 11, 2023

Language versions currently supported:

• Node.js 12, Node.js 14, Node.js 16
• Python 3.8, Python 3.9

Minimum requirements:

• Memory: 256 MB
• Timeout: 5 seconds

Included third-party packages: See here (page 614).

New:

• The initial release of the IDS (Instrumented Dynamic Scan)
• Supported attacks:

• OWASP Top 10 Serverless

Possible issues:

• Dependencies collision:
• See the included third-party packages

• Node.js:
• Handler function that is defined with both async and a callback like async function
(event, context, callback), is not supported

• Webpack library target to commonjs2 with typescript compiler option module different than
Commonjs is not supported

Contrast Documentation

Use Contrast 613

Third-party packages
Layer Wrapper Dependencies

• IDS Layer version 1.5.0 (page 614)
• IDS Layer version 1.4.0 (page 620)
• IDS Layer version 1.0.0 - 1.3.0 (page 626)

IDS Layer version 1.5.0
The following are tables for the IDS Layer version 1.5.0.

Node.js

Name Version

@cspotcode/source-map-support 0.8.1

@grpc/grpc-js 1.9.1

@grpc/proto-loader 0.7.9

@jridgewell/resolve-uri 3.1.1

@jridgewell/sourcemap-codec 1.4.15

@jridgewell/trace-mapping 0.3.9

@opentelemetry/api 1.4.1

@opentelemetry/api-logs 0.41.2

@opentelemetry/context-async-hooks 1.15.2

@opentelemetry/core 1.15.2

@opentelemetry/exporter-jaeger 1.15.2

@opentelemetry/exporter-metrics-otlp-http 0.41.2

@opentelemetry/exporter-metrics-otlp-proto 0.41.2

@opentelemetry/exporter-trace-otlp-grpc 0.41.2

@opentelemetry/exporter-trace-otlp-http 0.41.2

@opentelemetry/exporter-trace-otlp-proto 0.41.2

@opentelemetry/exporter-zipkin 1.15.2

@opentelemetry/instrumentation 0.41.2

@opentelemetry/instrumentation-aws-lambda 0.37.0

@opentelemetry/instrumentation-aws-sdk 0.36.0

@opentelemetry/instrumentation-fs 0.8.1

@opentelemetry/instrumentation-http 0.41.2

@opentelemetry/instrumentation-mongodb 0.37.0

@opentelemetry/instrumentation-mysql2 0.34.1

@opentelemetry/otlp-exporter-base 0.41.2

@opentelemetry/otlp-grpc-exporter-base 0.41.2

@opentelemetry/otlp-proto-exporter-base 0.41.2

@opentelemetry/otlp-transformer 0.41.2

@opentelemetry/propagation-utils 0.30.1

@opentelemetry/propagator-aws-xray 1.3.1

@opentelemetry/propagator-b3 1.15.2

@opentelemetry/propagator-jaeger 1.15.2

@opentelemetry/resource-detector-aws 1.3.1

@opentelemetry/resources 1.15.2

@opentelemetry/sdk-logs 0.41.2

@opentelemetry/sdk-metrics 1.15.2

@opentelemetry/sdk-node 0.41.2

@opentelemetry/sdk-trace-base 1.15.2

@opentelemetry/sdk-trace-node 1.15.2

Contrast Documentation

Use Contrast 614

@opentelemetry/semantic-conventions 1.15.2

@opentelemetry/sql-common 0.40.0

@protobufjs/aspromise 1.1.2

@protobufjs/base64 1.1.2

@protobufjs/codegen 2.0.4

@protobufjs/eventemitter 1.1.0

@protobufjs/fetch 1.1.0

@protobufjs/float 1.0.2

@protobufjs/inquire 1.1.0

@protobufjs/path 1.1.2

@protobufjs/pool 1.1.0

@protobufjs/utf8 1.1.0

@tsconfig/node10 1.0.9

@tsconfig/node12 1.0.11

@tsconfig/node14 1.0.3

@tsconfig/node16 1.0.4

@types/aws-lambda 8.10.119

@types/node 20.5.7

@types/shimmer 1.0.2

abbrev 1.1.1

accepts 1.3.8

acorn 8.10.0

acorn-import-assertions 1.9.0

acorn-walk 8.2.0

ansi-color 0.2.1

ansi-regex 5.0.1

ansi-styles 4.3.0

anymatch 3.1.3

arg 4.1.3

array-flatten 1.1.1

asynckit 0.4.0

available-typed-arrays 1.0.5

aws-sdk 2.1450.0

axios 1.5.0

balanced-match 1.0.2

base64-js 1.5.1

binary-extensions 2.2.0

body-parser 1.20.1

body-parser 1.20.2

brace-expansion 1.1.11

braces 3.0.2

buffer 4.9.2

bufrw 1.3.0

bytes 3.1.2

call-bind 1.0.2

chokidar 3.5.3

cjs-module-lexer 1.2.3

cliui 8.0.1

cn-otel-node 0.0.1

color-convert 2.0.1

color-name 1.1.4

combined-stream 1.0.8

Contrast Documentation

Use Contrast 615

concat-map 0.0.1

content-disposition 0.5.4

content-type 1.0.5

cookie 0.5.0

cookie-signature 1.0.6

create-require 1.1.1

debug 2.6.9

debug 3.2.7

debug 4.3.4

delayed-stream 1.0.0

depd 2.0.0

destroy 1.2.0

diff 4.0.2

ee-first 1.1.1

emoji-regex 8.0.0

encodeurl 1.0.2

error 7.0.2

escalade 3.1.1

escape-html 1.0.3

etag 1.8.1

events 1.1.1

express 4.18.2

fill-range 7.0.1

finalhandler 1.2.0

follow-redirects 1.15.2

for-each 0.3.3

form-data 4.0.0

forwarded 0.2.0

fresh 0.5.2

fsevents 2.3.3

function-bind 1.1.1

get-caller-file 2.0.5

get-intrinsic 1.2.1

glob-parent 5.1.2

gopd 1.0.1

has 1.0.3

has-flag 3.0.0

has-proto 1.0.1

has-symbols 1.0.3

has-tostringtag 1.0.0

hexer 1.5.0

http-errors 2.0.0

iconv-lite 0.4.24

ieee754 1.1.13

ignore-by-default 1.0.1

import-in-the-middle 1.4.2

inherits 2.0.4

ipaddr.js 1.9.1

is-arguments 1.1.1

is-binary-path 2.1.0

is-callable 1.2.7

is-core-module 2.13.0

Contrast Documentation

Use Contrast 616

is-extglob 2.1.1

is-fullwidth-code-point 3.0.0

is-generator-function 1.0.10

is-glob 4.0.3

is-number 7.0.0

is-typed-array 1.1.12

isarray 1.0.0

jaeger-client 3.19.0

jmespath 0.16.0

lodash.camelcase 4.3.0

lodash.merge 4.6.2

long 2.4.0

long 5.2.3

lru-cache 6.0.0

make-error 1.3.6

media-typer 0.3.0

merge-descriptors 1.0.1

methods 1.1.2

mime 1.6.0

mime-db 1.52.0

mime-types 2.1.35

minimatch 3.1.2

minimist 1.2.8

module-details-from-path 1.0.3

ms 2.0.0

ms 2.1.2

ms 2.1.3

negotiator 0.6.3

node-int64 0.4.0

nodemon 3.0.1

nopt 1.0.10

normalize-path 3.0.0

object-inspect 1.12.3

on-finished 2.4.1

opentracing 0.14.7

parseurl 1.3.3

path-parse 1.0.7

path-to-regexp 0.1.7

picomatch 2.3.1

process 0.10.1

protobufjs 7.2.5

proxy-addr 2.0.7

proxy-from-env 1.1.0

pstree.remy 1.1.8

punycode 1.3.2

qs 6.11.0

querystring 0.2.0

range-parser 1.2.1

raw-body 2.5.1

raw-body 2.5.2

readdirp 3.6.0

require-directory 2.1.1

Contrast Documentation

Use Contrast 617

require-in-the-middle 7.2.0

resolve 1.22.4

safe-buffer 5.2.1

safer-buffer 2.1.2

sax 1.2.1

semver 7.5.4

send 0.18.0

serve-static 1.15.0

setprototypeof 1.2.0

shimmer 1.2.1

side-channel 1.0.4

simple-update-notifier 2.0.0

statuses 2.0.1

string-template 0.2.1

string-width 4.2.3

strip-ansi 6.0.1

supports-color 5.5.0

supports-preserve-symlinks-flag 1.0.0

thriftrw 3.11.4

to-regex-range 5.0.1

toidentifier 1.0.1

touch 3.1.0

ts-node 10.9.1

tsc 2.0.4

type-is 1.6.18

typescript 4.9.5

undefsafe 2.0.5

unpipe 1.0.0

url 0.10.3

util 0.12.5

utils-merge 1.0.1

uuid 8.0.0

uuid 8.3.2

v8-compile-cache-lib 3.0.1

vary 1.1.2

which-typed-array 1.1.11

wrap-ansi 7.0.0

xml2js 0.5.0

xmlbuilder 11.0.1

xorshift 1.2.0

xtend 4.0.2

y18n 5.0.8

yallist 4.0.0

yargs 17.7.2

yargs-parser 21.1.1

yn 3.1.1

Python

Name Version

Deprecated 1.2.14

asgiref 3.7.2

Contrast Documentation

Use Contrast 618

backoff 2.2.1

certifi 2023.7.22

charset-normalizer 3.2.0

dnspython 2.4.2

googleapis-common-protos 1.60.0

idna 3.4

importlib-metadata 6.8.0

opentelemetry-api 1.19.0

opentelemetry-distro 0.40b0

opentelemetry-exporter-otlp-proto-common 1.19.0

opentelemetry-exporter-otlp-proto-http 1.19.0

opentelemetry-instrumentation 0.40b0

opentelemetry-instrumentation-aiohttp-client 0.40b0

opentelemetry-instrumentation-asgi 0.40b0

opentelemetry-instrumentation-asyncpg 0.40b0

opentelemetry-instrumentation-boto 0.40b0

opentelemetry-instrumentation-botocore 0.40b0

opentelemetry-instrumentation-celery 0.40b0

opentelemetry-instrumentation-dbapi 0.40b0

opentelemetry-instrumentation-django 0.40b0

opentelemetry-instrumentation-elasticsearch 0.40b0

opentelemetry-instrumentation-falcon 0.40b0

opentelemetry-instrumentation-fastapi 0.40b0

opentelemetry-instrumentation-flask 0.40b0

opentelemetry-instrumentation-grpc 0.40b0

opentelemetry-instrumentation-jinja2 0.40b0

opentelemetry-instrumentation-mysql 0.40b0

opentelemetry-instrumentation-psycopg2 0.40b0

opentelemetry-instrumentation-pymemcache 0.40b0

opentelemetry-instrumentation-pymongo 0.40b0

opentelemetry-instrumentation-pymysql 0.40b0

opentelemetry-instrumentation-pyramid 0.40b0

opentelemetry-instrumentation-redis 0.40b0

opentelemetry-instrumentation-requests 0.40b0

opentelemetry-instrumentation-sqlalchemy 0.40b0

opentelemetry-instrumentation-sqlite3 0.40b0

opentelemetry-instrumentation-starlette 0.40b0

opentelemetry-instrumentation-tornado 0.40b0

opentelemetry-instrumentation-urllib 0.40b0

opentelemetry-instrumentation-urllib3 0.40b0

opentelemetry-instrumentation-wsgi 0.40b0

opentelemetry-propagator-aws-xray 1.0.1

opentelemetry-proto 1.19.0

opentelemetry-sdk 1.19.0

opentelemetry-semantic-conventions 0.40b0

opentelemetry-util-http 0.40b0

packaging 23.1

protobuf 4.24.2

pymongo 4.5.0

requests 2.31.0

setuptools 68.1.2

typing_extensions 4.7.1

Contrast Documentation

Use Contrast 619

urllib3 2.0.4

wrapt 1.15.0

zipp 3.16.2

IDS Layer version 1.4.0
The following are tables for the IDS Layer version 1.4.0.

Node.js

Name Version

@cspotcode/source-map-support 0.8.1

@grpc/grpc-js 1.9.1

@grpc/proto-loader 0.7.9

@jridgewell/resolve-uri 3.1.1

@jridgewell/sourcemap-codec 1.4.15

@jridgewell/trace-mapping 0.3.9

@opentelemetry/api 1.4.1

@opentelemetry/api-logs 0.41.2

@opentelemetry/api-metrics 0.32.0

@opentelemetry/context-async-hooks 1.15.2

@opentelemetry/core 1.14.0

@opentelemetry/core 1.15.2

@opentelemetry/core 1.9.1

@opentelemetry/exporter-jaeger 1.15.2

@opentelemetry/exporter-metrics-otlp-http 0.41.2

@opentelemetry/exporter-metrics-otlp-proto 0.41.2

@opentelemetry/exporter-trace-otlp-grpc 0.35.1

@opentelemetry/exporter-trace-otlp-grpc 0.41.2

@opentelemetry/exporter-trace-otlp-http 0.35.1

@opentelemetry/exporter-trace-otlp-http 0.41.2

@opentelemetry/exporter-trace-otlp-proto 0.41.2

@opentelemetry/exporter-zipkin 1.15.2

@opentelemetry/instrumentation 0.32.0

@opentelemetry/instrumentation 0.35.1

@opentelemetry/instrumentation 0.40.0

@opentelemetry/instrumentation 0.41.2

@opentelemetry/instrumentation-aws-lambda 0.34.1

@opentelemetry/instrumentation-aws-sdk 0.36.0

@opentelemetry/instrumentation-fs 0.7.4

@opentelemetry/instrumentation-http 0.40.0

@opentelemetry/instrumentation-mongodb 0.36.1

@opentelemetry/instrumentation-mysql2 0.32.1

@opentelemetry/otlp-exporter-base 0.35.1

@opentelemetry/otlp-exporter-base 0.41.2

@opentelemetry/otlp-grpc-exporter-base 0.35.1

@opentelemetry/otlp-grpc-exporter-base 0.41.2

@opentelemetry/otlp-proto-exporter-base 0.41.2

@opentelemetry/otlp-transformer 0.35.1

@opentelemetry/otlp-transformer 0.41.2

@opentelemetry/propagation-utils 0.30.1

@opentelemetry/propagator-aws-xray 1.3.1

@opentelemetry/propagator-b3 1.15.2

Contrast Documentation

Use Contrast 620

@opentelemetry/propagator-jaeger 1.15.2

@opentelemetry/resource-detector-aws 1.3.1

@opentelemetry/resources 1.15.2

@opentelemetry/resources 1.9.1

@opentelemetry/sdk-logs 0.41.2

@opentelemetry/sdk-metrics 1.15.2

@opentelemetry/sdk-metrics 1.9.1

@opentelemetry/sdk-node 0.41.2

@opentelemetry/sdk-trace-base 1.15.2

@opentelemetry/sdk-trace-base 1.9.1

@opentelemetry/sdk-trace-node 1.15.2

@opentelemetry/semantic-conventions 1.14.0

@opentelemetry/semantic-conventions 1.15.2

@opentelemetry/semantic-conventions 1.9.1

@protobufjs/aspromise 1.1.2

@protobufjs/base64 1.1.2

@protobufjs/codegen 2.0.4

@protobufjs/eventemitter 1.1.0

@protobufjs/fetch 1.1.0

@protobufjs/float 1.0.2

@protobufjs/inquire 1.1.0

@protobufjs/path 1.1.2

@protobufjs/pool 1.1.0

@protobufjs/utf8 1.1.0

@tsconfig/node10 1.0.9

@tsconfig/node12 1.0.11

@tsconfig/node14 1.0.3

@tsconfig/node16 1.0.4

@types/aws-lambda 8.10.81

@types/node 20.5.7

@types/shimmer 1.0.2

abbrev 1.1.1

accepts 1.3.8

acorn 8.10.0

acorn-import-assertions 1.9.0

acorn-walk 8.2.0

ansi-color 0.2.1

ansi-regex 5.0.1

ansi-styles 4.3.0

anymatch 3.1.3

arg 4.1.3

array-flatten 1.1.1

asynckit 0.4.0

available-typed-arrays 1.0.5

aws-sdk 2.1448.0

axios 1.5.0

balanced-match 1.0.2

base64-js 1.5.1

binary-extensions 2.2.0

body-parser 1.20.1

body-parser 1.20.2

brace-expansion 1.1.11

Contrast Documentation

Use Contrast 621

braces 3.0.2

buffer 4.9.2

bufrw 1.3.0

bytes 3.1.2

call-bind 1.0.2

chokidar 3.5.3

cjs-module-lexer 1.2.3

cliui 8.0.1

cn-otel-node 0.0.1

color-convert 2.0.1

color-name 1.1.4

combined-stream 1.0.8

concat-map 0.0.1

content-disposition 0.5.4

content-type 1.0.5

cookie 0.5.0

cookie-signature 1.0.6

create-require 1.1.1

debug 2.6.9

debug 3.2.7

debug 4.3.4

delayed-stream 1.0.0

depd 2.0.0

destroy 1.2.0

diff 4.0.2

ee-first 1.1.1

emoji-regex 8.0.0

encodeurl 1.0.2

error 7.0.2

escalade 3.1.1

escape-html 1.0.3

etag 1.8.1

events 1.1.1

express 4.18.2

fill-range 7.0.1

finalhandler 1.2.0

follow-redirects 1.15.2

for-each 0.3.3

form-data 4.0.0

forwarded 0.2.0

fresh 0.5.2

fsevents 2.3.3

function-bind 1.1.1

get-caller-file 2.0.5

get-intrinsic 1.2.1

glob-parent 5.1.2

gopd 1.0.1

has 1.0.3

has-flag 3.0.0

has-proto 1.0.1

has-symbols 1.0.3

has-tostringtag 1.0.0

Contrast Documentation

Use Contrast 622

hexer 1.5.0

http-errors 2.0.0

iconv-lite 0.4.24

ieee754 1.1.13

ignore-by-default 1.0.1

import-in-the-middle 1.3.5

import-in-the-middle 1.4.2

inherits 2.0.4

ipaddr.js 1.9.1

is-arguments 1.1.1

is-binary-path 2.1.0

is-callable 1.2.7

is-core-module 2.13.0

is-extglob 2.1.1

is-fullwidth-code-point 3.0.0

is-generator-function 1.0.10

is-glob 4.0.3

is-number 7.0.0

is-typed-array 1.1.12

isarray 1.0.0

jaeger-client 3.19.0

jmespath 0.16.0

lodash.camelcase 4.3.0

lodash.merge 4.6.2

long 2.4.0

long 5.2.3

lru-cache 6.0.0

make-error 1.3.6

media-typer 0.3.0

merge-descriptors 1.0.1

methods 1.1.2

mime 1.6.0

mime-db 1.52.0

mime-types 2.1.35

minimatch 3.1.2

minimist 1.2.8

module-details-from-path 1.0.3

ms 2.0.0

ms 2.1.2

ms 2.1.3

negotiator 0.6.3

node-int64 0.4.0

nodemon 3.0.1

nopt 1.0.10

normalize-path 3.0.0

object-inspect 1.12.3

on-finished 2.4.1

opentracing 0.14.7

parseurl 1.3.3

path-parse 1.0.7

path-to-regexp 0.1.7

picomatch 2.3.1

Contrast Documentation

Use Contrast 623

process 0.10.1

protobufjs 7.2.5

proxy-addr 2.0.7

proxy-from-env 1.1.0

pstree.remy 1.1.8

punycode 1.3.2

qs 6.11.0

querystring 0.2.0

range-parser 1.2.1

raw-body 2.5.1

raw-body 2.5.2

readdirp 3.6.0

require-directory 2.1.1

require-in-the-middle 5.2.0

require-in-the-middle 7.2.0

resolve 1.22.4

safe-buffer 5.2.1

safer-buffer 2.1.2

sax 1.2.1

semver 7.5.4

send 0.18.0

serve-static 1.15.0

setprototypeof 1.2.0

shimmer 1.2.1

side-channel 1.0.4

simple-update-notifier 2.0.0

statuses 2.0.1

string-template 0.2.1

string-width 4.2.3

strip-ansi 6.0.1

supports-color 5.5.0

supports-preserve-symlinks-flag 1.0.0

thriftrw 3.11.4

to-regex-range 5.0.1

toidentifier 1.0.1

touch 3.1.0

ts-node 10.9.1

tsc 2.0.4

type-is 1.6.18

typescript 4.9.5

undefsafe 2.0.5

unpipe 1.0.0

url 0.10.3

util 0.12.5

utils-merge 1.0.1

uuid 8.0.0

uuid 8.3.2

v8-compile-cache-lib 3.0.1

vary 1.1.2

which-typed-array 1.1.11

wrap-ansi 7.0.0

xml2js 0.5.0

Contrast Documentation

Use Contrast 624

xmlbuilder 11.0.1

xorshift 1.2.0

xtend 4.0.2

y18n 5.0.8

yallist 4.0.0

yargs 17.7.2

yargs-parser 21.1.1

yn 3.1.1

Python

Name Version

Deprecated 1.2.14

asgiref 3.7.2

backoff 2.2.1

certifi 2023.7.22

charset-normalizer 3.2.0

dnspython 2.4.2

googleapis-common-protos 1.60.0

idna 3.4

importlib-metadata 6.0.0

importlib-metadata 6.8.0

opentelemetry-api 1.19.0

opentelemetry-distro 0.40b0

opentelemetry-exporter-otlp-proto-common 1.19.0

opentelemetry-exporter-otlp-proto-http 1.19.0

opentelemetry-instrumentation 0.40b0

opentelemetry-instrumentation-aiohttp-client 0.40b0

opentelemetry-instrumentation-asgi 0.40b0

opentelemetry-instrumentation-asyncpg 0.40b0

opentelemetry-instrumentation-boto 0.40b0

opentelemetry-instrumentation-botocore 0.40b0

opentelemetry-instrumentation-celery 0.40b0

opentelemetry-instrumentation-dbapi 0.40b0

opentelemetry-instrumentation-django 0.40b0

opentelemetry-instrumentation-elasticsearch 0.40b0

opentelemetry-instrumentation-falcon 0.40b0

opentelemetry-instrumentation-fastapi 0.40b0

opentelemetry-instrumentation-flask 0.40b0

opentelemetry-instrumentation-grpc 0.40b0

opentelemetry-instrumentation-jinja2 0.40b0

opentelemetry-instrumentation-mysql 0.40b0

opentelemetry-instrumentation-psycopg2 0.40b0

opentelemetry-instrumentation-pymemcache 0.40b0

opentelemetry-instrumentation-pymongo 0.40b0

opentelemetry-instrumentation-pymysql 0.40b0

opentelemetry-instrumentation-pyramid 0.40b0

opentelemetry-instrumentation-redis 0.40b0

opentelemetry-instrumentation-requests 0.40b0

opentelemetry-instrumentation-sqlalchemy 0.40b0

opentelemetry-instrumentation-sqlite3 0.40b0

opentelemetry-instrumentation-starlette 0.40b0

Contrast Documentation

Use Contrast 625

opentelemetry-instrumentation-tornado 0.40b0

opentelemetry-instrumentation-urllib 0.40b0

opentelemetry-instrumentation-urllib3 0.40b0

opentelemetry-instrumentation-wsgi 0.40b0

opentelemetry-propagator-aws-xray 1.0.1

opentelemetry-proto 1.19.0

opentelemetry-sdk 1.19.0

opentelemetry-semantic-conventions 0.40b0

opentelemetry-util-http 0.40b0

packaging 23.1

protobuf 4.24.2

pymongo 4.5.0

requests 2.31.0

setuptools 68.1.2

typing_extensions 4.7.1

urllib3 2.0.4

wrapt 1.15.0

zipp 3.16.2

IDS Layer version 1.0.0 - 1.3.0
The following are tables for the IDS Layer versions 1.0.0 to 1.3.0.

Node.js

name version

@babel/code-frame 7.12.11

@babel/helper-validator-identifier 7.19.1

@babel/highlight 7.18.6

@cspotcode/source-map-support 0.8.1

@eslint/eslintrc 0.4.3

@grpc/grpc-js 1.8.14

@grpc/proto-loader 0.7.7

@humanwhocodes/config-array 0.5.0

@humanwhocodes/object-schema 1.2.1

@isaacs/cliui 8.0.2

@jridgewell/resolve-uri 3.1.1

@jridgewell/sourcemap-codec 1.4.15

@jridgewell/trace-mapping 0.3.9

@nodelib/fs.scandir 2.1.5

@nodelib/fs.stat 2.0.5

@nodelib/fs.walk 1.2.8

@opentelemetry/api 1.3.0

@opentelemetry/api 1.4.1

@opentelemetry/api-metrics 0.32.0

@opentelemetry/context-async-hooks 1.13.0

@opentelemetry/core 1.13.0

@opentelemetry/exporter-jaeger 1.13.0

@opentelemetry/exporter-metrics-otlp-http 0.34.0

@opentelemetry/exporter-metrics-otlp-proto 0.34.0

@opentelemetry/exporter-trace-otlp-grpc 0.35.1

@opentelemetry/exporter-trace-otlp-http 0.35.1

Contrast Documentation

Use Contrast 626

@opentelemetry/exporter-trace-otlp-proto 0.34.0

@opentelemetry/exporter-zipkin 1.8.0

@opentelemetry/instrumentation 0.35.1

@opentelemetry/instrumentation 0.39.1

@opentelemetry/instrumentation-aws-lambda 0.34.1

@opentelemetry/instrumentation-aws-sdk 0.33.0

@opentelemetry/instrumentation-fs 0.7.2

@opentelemetry/instrumentation-mysql2 0.32.1

@opentelemetry/otlp-exporter-base 0.34.0

@opentelemetry/otlp-grpc-exporter-base 0.35.1

@opentelemetry/otlp-proto-exporter-base 0.34.0

@opentelemetry/otlp-transformer 0.34.0

@opentelemetry/propagation-utils 0.29.3

@opentelemetry/propagator-aws-xray 1.2.0

@opentelemetry/propagator-b3 1.13.0

@opentelemetry/propagator-jaeger 1.13.0

@opentelemetry/resource-detector-aws 1.2.3

@opentelemetry/resources 1.13.0

@opentelemetry/sdk-metrics 1.8.0

@opentelemetry/sdk-node 0.34.0

@opentelemetry/sdk-trace-base 1.13.0

@opentelemetry/sdk-trace-node 1.13.0

@opentelemetry/semantic-conventions 1.13.0

@pkgjs/parseargs 0.11.0

@protobufjs/aspromise 1.1.2

@protobufjs/base64 1.1.2

@protobufjs/codegen 2.0.4

@protobufjs/eventemitter 1.1.0

@protobufjs/fetch 1.1.0

@protobufjs/float 1.0.2

@protobufjs/inquire 1.1.0

@protobufjs/path 1.1.2

@protobufjs/pool 1.1.0

@protobufjs/utf8 1.1.0

@tsconfig/node10 1.0.9

@tsconfig/node12 1.0.11

@tsconfig/node14 1.0.3

@tsconfig/node16 1.0.4

@types/aws-lambda 8.10.81

@types/json-schema 7.0.11

@types/long 4.0.2

@types/minimist 1.2.2

@types/mocha 10.0.1

@types/mysql git+ssh://git@github.com/types/
mysql.git#c26b1bc2bac17010081455e3127a90fb2eafcec9

@types/mysql2 git+ssh://git@github.com/types/
mysql2.git#89378b2cb3974ea8cdd1d633b8f056e54e5d2384

@types/node 18.16.9

@types/node 20.1.4

@types/normalize-package-data 2.4.1

@types/semver 7.5.0

@typescript-eslint/eslint-plugin 4.33.0

Contrast Documentation

Use Contrast 627

@typescript-eslint/experimental-utils 4.33.0

@typescript-eslint/parser 4.33.0

@typescript-eslint/scope-manager 4.33.0

@typescript-eslint/types 4.33.0

@typescript-eslint/typescript-estree 4.33.0

@typescript-eslint/visitor-keys 4.33.0

abbrev 1.1.1

accepts 1.3.8

acorn 7.4.1

acorn 8.8.2

acorn-jsx 5.3.2

acorn-walk 8.2.0

ajv 6.12.6

ansi-color 0.2.1

ansi-colors 4.1.3

ansi-escapes 4.3.2

ansi-regex 5.0.1

ansi-styles 4.3.0

anymatch 3.1.3

arg 4.1.3

argparse 1.0.10

array-flatten 1.1.1

array-union 2.1.0

arrify 1.0.1

astral-regex 2.0.0

asynckit 0.4.0

available-typed-arrays 1.0.5

aws-sdk 2.1378.0

axios 1.4.0

balanced-match 1.0.2

base64-js 1.5.1

binary-extensions 2.2.0

body-parser 1.20.2

brace-expansion 1.1.11

braces 3.0.2

buffer 4.9.2

bufrw 1.3.0

bytes 3.1.2

call-bind 1.0.2

callsites 3.1.0

camelcase 5.3.1

camelcase-keys 6.2.2

chalk 4.1.2

chardet 0.7.0

chokidar 3.5.3

cli-cursor 3.1.0

cli-width 3.0.0

cliui 8.0.1

color-convert 2.0.1

color-name 1.1.4

combined-stream 1.0.8

concat-map 0.0.1

Contrast Documentation

Use Contrast 628

content-disposition 0.5.4

content-type 1.0.5

cookie 0.5.0

cookie-signature 1.0.6

create-require 1.1.1

cross-spawn 7.0.3

debug 2.6.9

debug 4.3.4

decamelize 1.2.0

decamelize-keys 1.1.1

deep-is 0.1.4

delayed-stream 1.0.0

denque 1.5.1

depd 2.0.0

destroy 1.2.0

diff 4.0.2

dir-glob 3.0.1

doctrine 3.0.0

eastasianwidth 0.2.0

ee-first 1.1.1

emoji-regex 8.0.0

encodeurl 1.0.2

enquirer 2.3.6

error 7.0.2

error-ex 1.3.2

escalade 3.1.1

escape-html 1.0.3

escape-string-regexp 4.0.0

eslint 7.32.0

eslint-config-prettier 7.2.0

eslint-plugin-es 3.0.1

eslint-plugin-node 11.1.0

eslint-plugin-prettier 3.4.1

eslint-scope 5.1.1

eslint-utils 3.0.0

eslint-visitor-keys 2.1.0

espree 7.3.1

esprima 4.0.1

esquery 1.5.0

esrecurse 4.3.0

estraverse 4.3.0

esutils 2.0.3

etag 1.8.1

events 1.1.1

execa 5.1.1

express 4.18.2

external-editor 3.1.0

fast-deep-equal 3.1.3

fast-diff 1.2.0

fast-glob 3.2.12

fast-json-stable-stringify 2.1.0

fast-levenshtein 2.0.6

Contrast Documentation

Use Contrast 629

fastq 1.15.0

figures 3.2.0

file-entry-cache 6.0.1

fill-range 7.0.1

finalhandler 1.2.0

find-up 4.1.0

flat-cache 3.0.4

flatted 3.2.7

follow-redirects 1.15.2

for-each 0.3.3

foreground-child 3.1.1

form-data 4.0.0

forwarded 0.2.0

fresh 0.5.2

fs.realpath 1.0.0

fsevents 2.3.2

function-bind 1.1.1

functional-red-black-tree 1.0.1

generate-function 2.3.1

get-caller-file 2.0.5

get-intrinsic 1.2.1

get-stream 6.0.1

glob 10.2.4

glob-parent 5.1.2

globals 13.20.0

globby 11.1.0

gopd 1.0.1

gts 3.1.1

hard-rejection 2.1.0

has 1.0.3

has-flag 3.0.0

has-flag 4.0.0

has-proto 1.0.1

has-symbols 1.0.3

has-tostringtag 1.0.0

hexer 1.5.0

hosted-git-info 4.1.0

http-errors 2.0.0

human-signals 2.1.0

iconv-lite 0.4.24

ieee754 1.1.13

ignore 5.2.4

ignore-by-default 1.0.1

import-fresh 3.3.0

imurmurhash 0.1.4

indent-string 4.0.0

inflight 1.0.6

inherits 2.0.4

inquirer 7.3.3

ipaddr.js 1.9.1

is-arguments 1.1.1

is-arrayish 0.2.1

Contrast Documentation

Use Contrast 630

is-binary-path 2.1.0

is-callable 1.2.7

is-core-module 2.12.0

is-extglob 2.1.1

is-fullwidth-code-point 3.0.0

is-generator-function 1.0.10

is-glob 4.0.3

is-number 7.0.0

is-plain-obj 1.1.0

is-property 1.0.2

is-stream 2.0.1

is-typed-array 1.1.10

is-typedarray 1.0.0

isarray 1.0.0

isexe 2.0.0

jackspeak 2.2.0

jaeger-client 3.19.0

jmespath 0.16.0

js-tokens 4.0.0

js-yaml 3.14.1

json-parse-even-better-errors 2.3.1

json-schema-traverse 0.4.1

json-stable-stringify-without-jsonify 1.0.1

json5 2.2.3

kind-of 6.0.3

levn 0.4.1

lines-and-columns 1.2.4

locate-path 5.0.0

lodash 4.17.21

lodash.camelcase 4.3.0

lodash.merge 4.6.2

lodash.truncate 4.4.2

long 4.0.0

lru-cache 6.0.0

make-error 1.3.6

map-obj 4.3.0

media-typer 0.3.0

meow 9.0.0

merge-descriptors 1.0.1

merge-stream 2.0.0

merge2 1.4.1

methods 1.1.2

micromatch 4.0.5

mime 1.6.0

mime-db 1.52.0

mime-types 2.1.35

mimic-fn 2.1.0

min-indent 1.0.1

minimatch 3.1.2

minimist 1.2.8

minimist-options 4.1.0

minipass 6.0.0

Contrast Documentation

Use Contrast 631

module-details-from-path 1.0.3

ms 2.0.0

ms 2.1.2

mute-stream 0.0.8

mysql2 2.3.0

named-placeholders 1.1.3

natural-compare 1.4.0

ncp 2.0.0

negotiator 0.6.3

node-int64 0.4.0

nodemon 2.0.22

nopt 1.0.10

normalize-package-data 3.0.3

normalize-path 3.0.0

npm-run-path 4.0.1

object-inspect 1.12.3

on-finished 2.4.1

once 1.4.0

onetime 5.1.2

opentracing 0.14.7

optionator 0.9.1

os-tmpdir 1.0.2

p-limit 2.3.0

p-locate 4.1.0

p-try 2.2.0

parent-module 1.0.1

parse-json 5.2.0

parseurl 1.3.3

path-exists 4.0.0

path-is-absolute 1.0.1

path-key 3.1.1

path-parse 1.0.7

path-scurry 1.9.1

path-to-regexp 0.1.7

path-type 4.0.0

picomatch 2.3.1

prelude-ls 1.2.1

prettier 2.8.8

prettier-linter-helpers 1.0.0

process 0.10.1

progress 2.0.3

protobufjs 7.2.3

proxy-addr 2.0.7

proxy-from-env 1.1.0

pstree.remy 1.1.8

punycode 1.3.2

punycode 2.3.0

qs 6.11.0

querystring 0.2.0

queue-microtask 1.2.3

quick-lru 4.0.1

range-parser 1.2.1

Contrast Documentation

Use Contrast 632

raw-body 2.5.2

read-pkg 5.2.0

read-pkg-up 7.0.1

readdirp 3.6.0

redent 3.0.0

regexpp 3.2.0

require-directory 2.1.1

require-from-string 2.0.2

require-in-the-middle 5.2.0

require-in-the-middle 7.1.0

resolve 1.22.2

resolve-from 4.0.0

restore-cursor 3.1.0

reusify 1.0.4

rimraf 5.0.0

run-async 2.4.1

run-parallel 1.2.0

rxjs 6.6.7

safe-buffer 5.2.1

safer-buffer 2.1.2

sax 1.2.1

semver 7.5.1

send 0.18.0

seq-queue 0.0.5

serve-static 1.15.0

setprototypeof 1.2.0

shebang-command 2.0.0

shebang-regex 3.0.0

shimmer 1.2.1

side-channel 1.0.4

signal-exit 3.0.7

simple-update-notifier 1.1.0

slash 3.0.0

slice-ansi 4.0.0

spdx-correct 3.2.0

spdx-exceptions 2.3.0

spdx-expression-parse 3.0.1

spdx-license-ids 3.0.13

sprintf-js 1.0.3

sqlstring 2.3.3

statuses 2.0.1

string-template 0.2.1

string-width 4.2.3

string-width-cjs npm:string-width@4.2.3

strip-ansi 6.0.1

strip-ansi-cjs npm:strip-ansi@6.0.1

strip-final-newline 2.0.0

strip-indent 3.0.0

strip-json-comments 3.1.1

supports-color 5.5.0

supports-color 7.2.0

supports-preserve-symlinks-flag 1.0.0

Contrast Documentation

Use Contrast 633

table 6.8.1

text-table 0.2.0

thriftrw 3.12.0

through 2.3.8

tmp 0.0.33

to-regex-range 5.0.1

toidentifier 1.0.1

touch 3.1.0

trim-newlines 3.0.1

ts-node 10.9.1

tsc 2.0.4

tslib 1.14.1

tsutils 3.21.0

type-check 0.4.0

type-fest 0.20.2

type-is 1.6.18

typedarray-to-buffer 3.1.5

typescript 4.9.5

typescript 5.0.4

undefsafe 2.0.5

unpipe 1.0.0

uri-js 4.4.1

url 0.10.3

util 0.12.5

utils-merge 1.0.1

uuid 8.0.0

v8-compile-cache 2.3.0

v8-compile-cache-lib 3.0.1

validate-npm-package-license 3.0.4

vary 1.1.2

which 2.0.2

which-typed-array 1.1.9

word-wrap 1.2.3

wrap-ansi 7.0.0

wrap-ansi 8.1.0

wrap-ansi-cjs npm:wrap-ansi@7.0.0

wrappy 1.0.2

write-file-atomic 3.0.3

xml2js 0.5.0

xmlbuilder 11.0.1

xorshift 1.2.0

xtend 4.0.2

y18n 5.0.8

yallist 4.0.0

yargs 17.7.2

yargs-parser 20.2.9

yargs-parser 21.1.1

yn 3.1.1

Python

name version

Contrast Documentation

Use Contrast 634

deprecated 1.2.13

asgiref 3.6.0

backoff 2.2.1

certifi 2023.5.7

charset-normalizer 3.1.0

googleapis-common-protos 1.59.0

idna 3.4

importlib-metadata 6.0.1

opentelemetry-api 1.17.0

opentelemetry-distro 0.38b.0

opentelemetry-distro 0.38b0

opentelemetry-exporter-otlp-proto-http 1.17.0

opentelemetry-instrumentation 0.38b0

opentelemetry-instrumentation-aiohttp-client 0.38b0

opentelemetry-instrumentation-asgi 0.38b0

opentelemetry-instrumentation-asyncpg 0.38b0

opentelemetry-instrumentation-boto 0.38b0

opentelemetry-instrumentation-botocore 0.38b0

opentelemetry-instrumentation-celery 0.38b0

opentelemetry-instrumentation-dbapi 0.38b0

opentelemetry-instrumentation-django 0.38b0

opentelemetry-instrumentation-elasticsearch 0.38b0

opentelemetry-instrumentation-falcon 0.38b0

opentelemetry-instrumentation-fastapi 0.38b0

opentelemetry-instrumentation-flask 0.38b0

opentelemetry-instrumentation-grpc 0.38b0

opentelemetry-instrumentation-jinja2 0.38b0

opentelemetry-instrumentation-mysql 0.38b0

opentelemetry-instrumentation-psycopg2 0.38b0

opentelemetry-instrumentation-pymemcache 0.38b0

opentelemetry-instrumentation-pymongo 0.38b0

opentelemetry-instrumentation-pymysql 0.38b0

opentelemetry-instrumentation-pyramid 0.38b0

opentelemetry-instrumentation-redis 0.38b0

opentelemetry-instrumentation-requests 0.38b0

opentelemetry-instrumentation-sqlalchemy 0.38b0

opentelemetry-instrumentation-sqlite3 0.38b0

opentelemetry-instrumentation-starlette 0.38b0

opentelemetry-instrumentation-tornado 0.38b0

opentelemetry-instrumentation-wsgi 0.38b0

opentelemetry-propagator-aws-xray 1.0.1

opentelemetry-proto 1.17.0

opentelemetry-sdk 1.17.0

opentelemetry-semantic-conventions 0.38b0

opentelemetry-util-http 0.38b0

protobuf 4.23.0

requests 2.30.0

setuptools 67.7.2

typing_extensions 4.5.0

urllib3 2.0.2

wrapt 1.15.0

zipp 3.15.0

Contrast Documentation

Use Contrast 635

Contrast Serverless supported languages
The following programming languages are supported for Contrast Serverless.

Language Runtime version

Java 8.x, 11.x

.NET .NET 5.x, 6.x

.NET Core 3.1

Node.js 12.x, 14.x, 16.x, 18.x

Python 3.6, 3.7, 3.8, 3.9

Contrast Serverless supported platforms
The following platforms are supported for Contrast Serverless.

• AWS Lambda
• Microsoft Azure

Multi-region support
Contrast Serverless provides support for multiple regions in a single AWS account to help organizations
with teams that work within different regions.

With this, you will be able to onboard agents to multiple regions within the same AWS account. You will
also be able to view and manage the account and region separately for each combination of account
and region.

NOTE
All supported regions can be added to a single AWS account.

Supported regions
Contrast Serverless supports the following regions:

Serverless
environment name

Site Supported regions

AppUS https://cs001.contrastsecurity.com
https://app.contrastsecurity.com
https://eval.contrastsecurity.com
https://security-research.contrastsecurity.com
https://ce.contrastsecurity.com

us-east-1
us-east-2
eu-west-1
eu-west-2
eu-central-1
eu-north-1
ap-northeast-1
ap-northeast-3
ap-southeast-1
us-west-1
us-west-2
ca-central-1

AppTWO https://apptwo.contrastsecurity.com us-east-1
eu-central-1
eu-west-1

AppJAPAN https://app.contrastsecurity.jp ap-northeast-1
ap-northeast-3

AppUK https://cs002.contrastsecurity.com eu-west-2

Contrast Documentation

Use Contrast 636

Serverless
environment name

Site Supported regions

AppEU https://eval003.contrastsecurity.com
https://cs003.contrastsecurity.com

eu-west-1
eu-west-2
eu-central-1
us-east-1

Staging (dev1eu) https://teamserver-staging.contsec.com eu-central-1
us-east-1
eu-west-1

How it works

• With one AWS account for an organization, onboard the first region, then onboard the next region
and so on.
Example: A development team has to onboard an account in us-east-1, which has the same
applications (but different modules/code packages) used by another development team in eu-
central-1.

• Once the regions are set up, you can run scans as usual and then see the results and graphs in
Contrast.
• In Contrast, you will see the different on-boarded accounts based on region location.
• All account details including the region details, the number of functions in the account, the severity,

and so on will be visible as usual in Contrast.
• You can also continue to manage the functions used by the team/region (based on tagging), and

the ability to see all application functions on the graph, regardless of the different regions.

Contrast Documentation

Use Contrast 637

Inventory
When you connect to an AWS account from Contrast, it automatically discovers all Lambda functions
and their relationships with different resources (such as S3, API Gateway, and DynamoDB) within the
tested environment.

By default, Contrast scans all functions in the inventory unless you specify otherwise. (page 653)

Inventory criteria
Contrast lets you specify criteria that determine the scope of functions to be scanned, based on these
criteria:

• Tag: This option lets you include or exclude functions associated with a specified tag and, optionally,
a tag value.

• Name: This option lets you include or exclude functions with a specific name, prefix, or suffix.

Scan types and monitoring
Contrast Serverless supports these types of scans and monitoring:

Static scans
This scan automatically scans, in close to real-time, relevant static code and configuration assessments
to discover new vulnerabilities in the following categories:

• Least privilege: Discovers IAM vulnerabilities (over permissive functions) within serverless workload
before deployment and recommends permission remediations.

• Contrast SCA - Provides SCA for open-source libraries using the Contrast SCA engine.

The scan has no permanent effect on your code.

Dynamic scans
This scan type looks at dynamic assessments based on a specific update introduced to the tested
environment. These scans are invoked with S3, API Gateway, and Dynamo DB functions.

It executes automatically, close to real-time, providing dynamic assessments, based on the specific
update introduced to the tested environment. The dynamic scans are based on the interpretation of the
OWASP Top 10 benchmark. For example:

• SQL injection
• Code injection
• Local file inclusion (LFI)

During a dynamic scan, Contrast tries to send malicious input to the code and then, exercises the
code to discover vulnerabilities. This action does not affect your code, however, a scanned function is
invoked.

Instrumented Dynamic analysis

NOTE
It is required to use testing coverage when performing an instrumented dynamic scan.

This option is recommended for selection when specifying scan settings.

Contrast Documentation

Use Contrast 638

In AWS accounts, instrumented dynamic analysis uncovers all exploitable AWS Lambda functions. With
support for the latest AWS Lambda services you can uncover security issues in AWS Step Functions –
a service that coordinates multiple Lambda functions into flexible workflows.

Uncover OWASP Top Ten vulnerabilities including:

• Injections (content, OS command, limited SQL, code)
• Cross-site scripting (XSS)
• Local file inclusion (LFI)

In addition, it provides improved AWS account observability and increased security coverage by
uncovering all serverless account assets including unused functions (shadow functions). These
unused functions are usually not maintained and contain outdated dependencies leading to potential
vulnerabilities.

Continuous monitoring
Once you connect to an account from Contrast, Contrast Serverless monitors this account. As you
make changes to your functions' code or configurations, Contrast automatically initiates a new scan.

Get started with Contrast Serverless for AWS
To start using Contrast Serverless, open Contrast and connect to your AWS account to create a new
stack.

Before you begin

• Have your AWS account information available.
• Minimum permissions (page 641) required to deploy/update/delete a Contrast Serverless stack.

Steps

1. In the Contrast application, select Add New at the top of the page.

2. Select the Serverless card.

Contrast Documentation

Use Contrast 639

3. Select the AWS option under the Cloud provider section.
4. (Optional) Specify scan settings:

• Inventory: Inventory consists of the functions that you want Contrast to scan.
The default value is to scan all functions in your AWS account.

• Initial scan: This setting determines actions that Contrast takes to scan your functions.

Static analysis Dynamic analysis

Covers:

• Least Privilege: Detects unused permissions. For
Java, .NET Core 6, .NET Core 7, Node.js, and Python.

• CVEs: Detects vulnerable dependencies. For
Java, .NET Core 6, .NET Core 7, Node.js, and Python.

• SAST: Detects custom-code vulnerabilities. For Java.
• Malware: Detects malicious files. For Python.

Covers:

• The stress testing of an application to detect any
possible vulnerabilities.

• The Instrumented Dynamic analysis option enables
Contrast Serverless to find function exploits in the entire
account environment and across all services. See Scan
types and monitoring (page 638) for more information.
To get the analysis fully configured for your accounts,
follow the steps under the Instrumented Dynamic Scan
Instructions section. For Node.js and Python.

• Deployment: Deploy with a new stack in AWS or download the CFT to use in your pipeline.
You can change these settings (page 654) at any time in the Settings tab.

5. Select Create new stack.
6. On the displayed AWS page, enter your account information and select Create stack. Alternatively,

you can download a CloudFormation template and use it in your development pipeline.
This action connects to the AWS CloudFormation Stacks console for your account and starts the
first scan.

7. Approve the stack deployment in your account.
The stack deployment takes approximately two minutes to complete.

8. Return to the Contrast application and verify that the Account is connected and the Scan started
messages are displayed.

9. To view details about functions and scan results, select function in the Account connected
message or select the Serverless tab.

Contrast Documentation

Use Contrast 640

Next steps
• Scan functions on demand (page 647)
• View results (page 648)
• Change inventory criteria (page 653)
• Change scan settings (page 654)

AWS policy and permissions for running Contrast Serverless
This is a sample of how to obtain the policy and permissions for your AWS account with Contrast
Serverless.

Obtain a policy
This is a sample updated policy for an account.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "CustomResources",
 "Effect": "Allow",
 "Action": [
 "sns:Publish"
],
 "Resource": "*"
 },
 {
 "Sid": "SNS2",
 "Effect": "Allow",
 "Action": [
 "sns:CreateTopic",
 "sns:GetTopicAttributes",
 "sns:DeleteTopic",
 "sns:TagResource"
],
 "Resource": "*"
 },
 {
 "Sid": "IAM",
 "Effect": "Allow",
 "Action": [
 "iam:AttachRolePolicy",
 "iam:CreatePolicy",
 "iam:CreateRole",
 "iam:CreateServiceLinkedRole",
 "iam:DeletePolicy",
 "iam:DeleteRole",
 "iam:DeleteRolePolicy",
 "iam:DetachRolePolicy",
 "iam:GetPolicy",
 "iam:GetRole",
 "iam:GetRolePolicy",
 "iam:ListPolicyVersions",
 "iam:ListRoleTags",
 "iam:PassRole",
 "iam:PutRolePolicy",
 "iam:TagRole",

Contrast Documentation

Use Contrast 641

 "iam:UntagRole"
],
 "Resource": "*"
 },
 {
 "Sid": "S3",
 "Effect": "Allow",
 "Action": [
 "s3:CreateBucket",
 "s3:DeleteBucket",
 "s3:DeleteBucketPolicy",
 "s3:GetBucketPolicy",
 "s3:PutBucketPolicy",
 "s3:PutBucketPublicAccessBlock",
 "s3:PutBucketTagging",
 "s3:PutEncryptionConfiguration",
 "s3:PutLifecycleConfiguration",
 "s3:PutBucketNotification"
],
 "Resource": "*"
 },
 {
 "Sid": "Lambda",
 "Effect": "Allow",
 "Action": [
 "lambda:GetFunction",
 "lambda:CreateFunction",
 "lambda:DeleteFunctionEventInvokeConfig",
 "lambda:DeleteFunction",
 "lambda:TagResource",
 "lambda:PutFunctionEventInvokeConfig"
],
 "Resource": "*"
 },
 {
 "Sid": "S3LambdaCode",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": "*"
 },
 {
 "Sid": "EventsRule",
 "Effect": "Allow",
 "Action": [
 "events:DeleteRule",
 "events:DescribeRule",
 "events:PutRule",
 "events:PutTargets",
 "events:RemoveTargets"
],
 "Resource": "*"
 },
 {

Contrast Documentation

Use Contrast 642

 "Sid": "CloudTrail",
 "Effect": "Allow",
 "Action": [
 "cloudtrail:AddTags",
 "cloudtrail:CreateTrail",
 "cloudtrail:DeleteTrail",
 "cloudtrail:StartLogging",
 "cloudtrail:PutEventSelectors"
],
 "Resource": "*"
 },
 {
 "Sid": "CloudFormation",
 "Effect": "Allow",
 "Action": [
 "cloudformation:GetTemplateSummary",
 "cloudformation:CreateStack",
 "cloudformation:DescribeStackEvents"
],
 "Resource": "*"
 }
]
}

Run the AWS iam create-policy:

```aws iam create-policy --policy-name Contrast-create-stack --policy-
document '{
    "Version": "2012-10-17",
    "Statement": [
      {
        "Sid": "CustomResources",
        "Effect": "Allow",
        "Action": ["sns:Publish"],
        "Resource": "*"
      },
      {
        "Sid": "SNS2",
        "Effect": "Allow",
        "Action": [
          "sns:CreateTopic",
          "sns:GetTopicAttributes",
          "sns:DeleteTopic",
          "sns:TagResource"
        ],
        "Resource": "*"
      },
      {
        "Sid": "IAM",
        "Effect": "Allow",
        "Action": [
          "iam:AttachRolePolicy",
          "iam:CreatePolicy",
          "iam:CreateRole",
          "iam:CreateServiceLinkedRole",
          "iam:DeletePolicy",

Contrast Documentation

Use Contrast 643



          "iam:DeleteRole",
          "iam:DeleteRolePolicy",
          "iam:DetachRolePolicy",
          "iam:GetPolicy",
          "iam:GetRole",
          "iam:GetRolePolicy",
          "iam:ListPolicyVersions",
          "iam:ListRoleTags",
          "iam:PassRole",
          "iam:PutRolePolicy",
          "iam:TagRole",
          "iam:UntagRole"
        ],
        "Resource": "*"
      },
      {
        "Sid": "S3",
        "Effect": "Allow",
        "Action": [
          "s3:CreateBucket",
          "s3:DeleteBucket",
          "s3:DeleteBucketPolicy",
          "s3:GetBucketPolicy",
          "s3:PutBucketPolicy",
          "s3:PutBucketPublicAccessBlock",
          "s3:PutBucketTagging",
          "s3:PutEncryptionConfiguration",
          "s3:PutLifecycleConfiguration",
          "s3:PutBucketNotification"
        ],
        "Resource": "*"
      },
      {
        "Sid": "Lambda",
        "Effect": "Allow",
        "Action": [
          "lambda:GetFunction",
          "lambda:CreateFunction",
          "lambda:DeleteFunctionEventInvokeConfig",
          "lambda:DeleteFunction",
          "lambda:TagResource",
          "lambda:PutFunctionEventInvokeConfig"
        ],
        "Resource": "*"
      },
      {
        "Sid": "S3LambdaCode",
        "Effect": "Allow",
        "Action": ["s3:GetObject"],
        "Resource": "*"
      },
      {
        "Sid": "EventsRule",
        "Effect": "Allow",
        "Action": [

Contrast Documentation

Use Contrast 644



          "events:DeleteRule",
          "events:DescribeRule",
          "events:PutRule",
          "events:PutTargets",
          "events:RemoveTargets"
        ],
        "Resource": "*"
      },
      {
        "Sid": "CloudTrail",
        "Effect": "Allow",
        "Action": [
          "cloudtrail:AddTags",
          "cloudtrail:CreateTrail",
          "cloudtrail:DeleteTrail",
          "cloudtrail:StartLogging",
          "cloudtrail:PutEventSelectors"
        ],
        "Resource": "*"
      },
      {
        "Sid": "CloudFormation",
        "Effect": "Allow",
        "Action": [
            "cloudformation:GetTemplateSummary",
            "cloudformation:CreateStack",
            "cloudformation:DescribeStackEvents"
        ],
        "Resource": "*"
    }
    ]
  }```

And obtain a response:

Then attach a user policy:

aws iam attach-user-policy --policy-arn
arn:aws:iam::402181209224:policy/Contrast-serverless-create-stack --user-
name
<USER-NAME></USER-NAME>

Contrast Documentation

Use Contrast 645



And obtain a response:

You can now run a deployment.

Get started with Contrast Serverless for Azure
To start using Contrast Serverless with Azure, open Contrast and connect to your Azure account to
create a new stack.

Before you begin

• Make sure you have an Azure account with an active subscription.
• Make sure you have permission to create an App registration on the Active Directory Tenant.
• Make sure you have an Owner role in the account. This allows for assigning roles to the App

registrations.

Steps

1. In the Contrast application, select Add New at the top of the page.

2. Select the Serverless card.

3. Select the Azure option under the Cloud provider section.
4. (Optional) Specify scan settings:

Contrast Documentation

Use Contrast 646



• Inventory: Not available for Azure.
• Initial scan: This setting determines actions that Contrast takes to scan your functions.

Static analysis Dynamic analysis

Covers:

• Least Privilege- Detects unused permissions. For Java, .NET Core 6, .NET Core 7, Node.js,
and Python.

• CVEs - Detects vulnerable dependencies. For Java, .NET Core 6, .NET Core 7, Node.js, and
Python.

• SAST - Detects custom-code vulnerabilities. For Java.
• Malware - Detects malicious files. For Python.

Not available for
Azure.

You can change these settings (page 654) at any time in the Settings tab.
5. Continue with the steps under the Deployment section.
6. Return to the Contrast application and verify that the Account is connected and Scan started

messages are displayed.

Next steps

• Scan functions on demand (page 647)
• View results (page 648)

Scan functions on demand
Although scans of all functions in your accounts occur automatically, you can also scan a specific
function on demand.

Before you begin

• Identify the functions that you want to scan.

Steps

1. Select Serverless in the header.
2. Select the account from the list.
3. Select the check box next to one or more functions that you want to scan.

4. Select Scan.
5. In the Confirm Scan window, verify or change the scan type settings for the selected functions and

select OK.

Contrast Documentation

Use Contrast 647



The Scan Initiated message displays.

6. To view the scan results, select View scan in the Scan initiated message to view the scan results.
Alternatively, select the Scan tab and select an Ad hoc scan.
If Contrast detects multiple occurrences of the same vulnerabilities in scanned functions, Contrast
updates the existing reported vulnerabilities with new data (for example, timestamp or use), rather
than creating new vulnerabilities.

Functions table explained
The Functions table contains information about:

• Score: The contextual risk score (page 659) for the function
• Name: The function name
• Triggers: The service that triggered the event
• Version: The function version
• Runtime: The runtime language
• Last Modified: The last time the function was modified
• Last Scanned: The last execution time of the scan
• Issues: The items found during the scan that may or may not require attention. These results are

generated from the Contrast Serverless and AWS Inspector sources. This displays only if you have
Contrast Serverless and AWS Inspector support for the results.

View results
View results to see details about vulnerabilities for permissions, dependencies, exploits, and CVEs.

Before you begin

• Ensure that at least one scan is complete.

Steps

1. Select Serverless in the header.
2. To view results for all scans, select Results. See Scan status details (page 651) for more

information about the meaning of the scan results.
3. To filter results in the Results tab, select the Filter icon ( ) next to the column headers.

a. The Severity is based on vulnerabilities in the application. See the Application scoring
guide (page 950) for information about the levels.

b. The Category is based on vulnerabilities in the type of function.
c. The Function is based on the function found in your account.

Note that results can also be grouped by Category or Function by selecting the option under
Group results on the upper-right side of the screen.

d. The Source is based on the platform providing the results. It is either from Contrast or AWS
Inspector. Click the icon to view details about the results. Note that AWS Inspector results will
display only if you have AWS Inspector support for your accounts.

To clear the filters, select the green Filter icon ( ) icon next to the column headers and select
Reset in the filter window.

Contrast Documentation

Use Contrast 648



4. To search for a function in the Results tab, type a search term in the search field.

5. To view results for a single scan, from the Scans tab, select a scan row.
This action shows a scan details page.

6. To view result details for a function:
a. From the Results tab, select a row in the list.
b. From the scan details page, select a number in the Results column for a function.

The results detail page looks similar to this example:

Contrast Documentation

Use Contrast 649



Result details
The result details displayed here depend on the category of a vulnerability.

Contrast Documentation

Use Contrast 650



All results include this information:

• Description: A description of the vulnerability.
• What happened: What occurred when the scan discovered the vulnerability
• Remediation: Steps to take to fix the vulnerability.

You might also see these details:

• Violated policies: Policies that the vulnerability violates.
• Impact: The area that the vulnerability affects, for example ses, s3, logs, or dynamodb.
• Severity and metrics: A severity score calculated to the vulnerability as well as metrics for the areas

that the vulnerability impacts.

Scan status details
Under the Serverless Scan tab, you can see what the system is scanning as well as the types of scans
the functions are tested against.

Once on the Scan page, click the scan name to open the scan status details tab.

Here's a list of the static and dynamic scan statuses with their details.

Status Description

Scanning….. Scan in progress

Pending Pending static scan results

Queued Waiting for X active scans to complete

Where X is the number of active scans. Scan is queued and will start soon.

Completed Scan complete

Unsupported Unsupported Lambda runtime

The function runtime language is unsupported.

Unsupported Lambda trigger

The function has an unsupported trigger configuration OR no identified trigger configuration.

Excluded Scan disabled in Settings (page 654)

To scan, change the Inventory settings or run an ad-hoc scan on the function.

Contrast Documentation

Use Contrast 651



Status Description

Canceled Newer scan initiated

A newer version of the function is already in queue.

Lambda state inactive

Lambda reached limit of 5 layers

Contrast cannot scan functions that already contain the maximum limit of 5 layers.

Lambda scan already in progress

Lambda last update status failed

Failed Unable to verify agent

Unable to decrypt/encrypt the environment variables

Agent failure

Contrast unable to invoke the Cloud Agent function OR scan failed during static analysis.

Agent modified

Misconfigured Lambda handler

Parsing error

• Click the arrow icon to expand the details to view the dependencies, files, and classes found in the
scan.

• Click the number under the Results column to open the Results (page 648) tab.

Download serverless scan results
After a scan completes, you can download the results as a CSV file.

Before you begin

• Identify the scan with results you want to download.

Steps

1. Select Serverless in the header.
2. Select either the Scans tab or the Results tab.
3. To download scan results from the Scans tab, hover over the end of a row for a scan and select

the download icon.
4. To download scan results from the Results tab:

Contrast Documentation

Use Contrast 652



a. Hover over the end of a row for a scan and select the download icon

( ).
OR

b. Click the scan row to open the details page and then select the download icon

( ) on the right-hand side.

Results are downloaded as CSV files.

Change inventory criteria
The inventory criteria that you specify determine the functions scanned by Contrast Serverless. By
default, Contrast scans all functions discovered in your AWS account.

Excluding a function excludes it from the inventory and scan results.

Contrast Documentation

Use Contrast 653



Before you begin

• Identify the functions you want to include or exclude in scans.

Steps

1. Select Serverless in the header.
2. Select the Settings tab.
3. Under Inventory, specify the criteria:

• Include or exclude a tag associated with one or more functions. Optionally, specify a value for the
tag to further refine the inventory.

• Include or exclude functions by name. The options are: Name is, Name starts with, or Name
ends with.

4. Select Save and Rescan.
Contrast rescans the inventory automatically based on the new criteria.

Change serverless scan settings
The scan settings affect the type of scan that Contrast Serverless performs on all functions.

You can change these settings (page 647) for a manual scan of selected functions.

Before you begin

• Determine if you want to use static scans, dynamic scans, or both.

Steps

1. Select Serverless in the header.
2. Select the Settings tab.
3. Under Scan, select the types of scans that you want to use:

• Static analysis: This scan type looks at relevant static code and configuration assessments to
discover new vulnerabilities.
During a static scan, Contrast adds a Lambda function to your account. Once the scan
completes, the function exits.

• Dynamic analysis: For AWS accounts only. This scan type looks at dynamic assessments
based on the specific update introduced to the tested environment.
During a dynamic scan, Contrast tries to send malicious input to the code and then exercises the
code to discover vulnerabilities.
For more information about the Instrumented Dynamic analysis option see Scan types and
monitoring (page 638).

Contrast Documentation

Use Contrast 654



IMPORTANT
Serverless scans do not change your function code.

4. Select Save.

View function and service relationships
The Graph tab displays a diagram that shows the relationship between functions and services. You can
also view details about each element in the diagram, including:

• Tags
• Vulnerability results
• Permissions
• Security posture score: The security posture score is based on the function's trigger configuration.

Internet-accessible triggers and misconfigurations, such as open buckets and unauthenticated APIs,
receive lower scores.

• Unused functions (shadow functions) from dynamic instrumented analysis

WARNING
There is a limit to the results available in this graph. See Graph limits (page 657) for
more information.

Contrast Documentation

Use Contrast 655



Steps

1. Select Serverless in the header.
2. Select the Graph tab.
3. To adjust the view, use the options at the bottom of the graph.

• Fit: This allows you to resize the graph to fit your display
• View: This allows you to filter the view by nodes and services. You can also hide or unhide

nodes.
• Group: You can group services together

4. Select the element to view details about individual elements.
Contrast displays a details window for the selected element. Select the tags to filter the view.

Contrast Documentation

Use Contrast 656



Graph limits
Due to performance considerations, we currently disable graph rendering when the element count
exceeds a specific number of 8000.

What is the element count?
Since this is a performance, rather than a product measure, the elements count is not the number of
AWS/Azure resources but rather the number of renderable elements; this means all Nodes and Edges
(connections). Therefore it is not possible to predict the specific number of elements that will result from
rendering any single Function and its related components as the actual element number depends solely
on the graph structure, which is unique to each environment.

What can I do if I have too many elements and the graph does not render?
To allow you to still render the graph even if your account is too large, we added a filtering option (tag
filters) using resource tags.

Contrast Documentation

Use Contrast 657



Using the filter will reduce the number of returned resources and will display only the functions that
contain the selected tags and their related resources. This will help you stay under the element limit but
if the selection is too large, you may run into the same problem. The tag selection works the same way
as the Functions tab.

IMPORTANT
The tag filter is currently the only approach that will actually limit the number of
rendered elements that count against the limit. Search or hiding certain elements will
have no effect.

Adding/updating tags
If you have functions that do not have a tag assigned, you will not be able to see them using the
tag filter. To properly utilize this feature, all your functions need to have tags assigned using a few
different values so you can filter down to parts of your system. Potential tag ideas are application,
service, runtimeLanguage, team or some other custom groupings depending on your needs.

Use the method that suits you best, either adding them directly in the AWS Console or using your IaC
solution.

When will I see the new tags in the graph?
While we do a near-immediate update of the Functions tab based on change events such as
TagResource, this does not apply to the graph as we do not currently support partial updates and
only run full scheduled discoveries. In most environments, this would be at 6 AM GMT. This means that
you have to wait until the next discovery for the tags to appear.

CloudNative developers can also trigger the graph discovery prematurely using the
Resources_Utils_TriggerGraphDiscovery_V1 Lambda function.

Alternatively, changing Inventory settings (page 653) will trigger both Resources and Graph
discoveries over the entire account. If the Inventory settings are empty, adding a dummy Exclude
rule would be considered a change but would still include everything.

Contrast Documentation

Use Contrast 658



In summary, new tags will appear if either:

• Graph discovery runs daily on schedule at 6 AM GMT (some regions may have different time
settings)

• Resources_Utils_TriggerGraphDiscovery_V1 Lambda function is triggered with the specific
organization ID/account ID

• Changes in Inventory settings

Account Inventory Settings
During onboarding or later in Settings, you can change the Inventory settings to limit the scope of
what you see in the system and what is scanned. Here you can use both Function tags and names.

However, keep in mind that modifying this will change the scope of the whole system, including what
you see in Functions and what is actually scanned and protected. Depending on your use case it could
also be a reasonable way to limit the size of the graph.

Contextual risk scores
Contrast’s contextual risk scoring system provides insight into where there are actual risk points and
what should be prioritized. The function contextual score helps you gauge the general performance of
each function.

Functions will have a letter grade A to F, which represents the overall posture of the function, and a
numeric score from 35 to 100.

• A: 90 -100
• B: 80-89
• C: 70-79
• D: 60-69
• F: 35-59

The overall contextual Risk Score is calculated as follows: Average = (Vulnerability score + Impact
score + Likelihood score) / 3.

Vulnerability score
The vulnerabilities identified during the function scans (static and dynamic).

Contrast Documentation

Use Contrast 659



• Types of vulnerabilities:
• Custom code exploits (Static and Dynamic)
• Dependencies (CVEs)
• Least Privilege violations

• To calculate the custom code vulnerability score, start with 100 points and subtract penalty points for
the number of vulnerabilities found in a function multiplied by a penalty weight for their severity.
• Critical: Multiply the number of vulnerabilities by 20
• High: Multiply the number of vulnerabilities by 10
• Medium: Multiply the number of vulnerabilities by 5
• Low: Multiply the number of vulnerabilities by 1

• For example: If the function has 0 Critical, 1 High, 0 Medium and 2 Low vulnerabilities,the score
would be: 100 - (20 X 0) - (10 X 1) - (5 X 0) - (1 X 2) = 88

Impact (access level) score
The permission (IAM roles) given to the function. The more permissions the function has, the higher the
risk.

To calculate the impact score, we inspect and score each of the 5 permission categories: List, Read,
Write, Tagging, and Permissions Management for each service. Then, we start with 100 points and
subtract penalty points for the access level of each service.

For example, given the following IAM policy:

{
    "Effect": "Allow" ,
    "Action": [
        "s3:GetObject",
        "sqs:*"
    ],
    "Resource": "*"
}

The score for each service access level would be calculated as the following:

{ 
  "s3": {
    "Read": 6,
    "Write": 3,
    "List": 3,
    "Tagging": 1,
    "Permissions management": 12
  },
  "sqs": {
    "Read": 3,
    "Write": 3,
    "List": 1,
    "Tagging": 1,
    "Permissions management": 6
  }
}

The overall score would be calculated as follows:

• s3: [6], sqs: [3,3,1,1,6] --> 100 - (6+3+3+1+1+6) = 80

Likelihood (accessibility) score
The likelihood of an attacker reaching the function is based on the function trigger configuration.

Contrast Documentation

Use Contrast 660



Each service has a different score based on the ability of attackers to access the function as well as
based on the trigger configuration (for example, authenticated/unauthenticated).

For example:

If the function has an EventBus set as a trigger, the chances for a potential attacker to access the
Lambda function would be lower than accessing a Lambda with an API Gateway set as a trigger.
Moreover, if the API Gateway is configured without any authentication (i.e., Open), then the function can
be accessible by anyone, anywhere.

So the likelihood score for a function:

• with an EventBus as a trigger would be: 90
• with an (authenticated) API Gateway as a trigger would be: 75
• with an unauthenticated API Gateway as a trigger would be: 5 (the lowest possible score)
• without a trigger would be: 100 (the highest possible score)

Upgrade Contrast Serverless
Contrast Serverless is set to auto-update in most cases. If there is a need to manually upgrade you can
follow the steps listed on this page.

Before you begin

• Create a role/user with the minimum required policies. See this example (page 641) for how to set it
up.

Steps

1. If you have not made any manual changes to the Contrast Serverless stack before your previous
deployment, simply uninstall (page 665) the current Contrast Serverless stack.
If you made manual changes to the previous Contrast Serverless stack, it is recommended that you
create a stack change-set (page 663) and then continue with the following steps.

2. Click Add New in the toolbar.
3. Download a new template from Contrast by selecting Download CFT.

Contrast Documentation

Use Contrast 661



4. Select either JSON or YAML.
5. Update the stack.

6. Click Submit on the resulting screen.

Contrast Documentation

Use Contrast 662



Stack change-set
To create a stack change-set, follow these steps.

Before you begin

• Identify Contrast Serverless stack on the AWS CloudFormation console.

Steps

1. Log in to your Contrast dashboard and download a new template from Contrast by selecting
Download CFT.

2. Select either JSON or YAML.
3. Log in to your AWS account or use the AWS CLI/API.
4. Select Contrast Serverless Stack.
5. Select Stack actions > Create change set for current stack.

Contrast Documentation

Use Contrast 663



6. Select Replace current template > Upload a template file and upload the template downloaded
in step 1.

Block accounts
You can block all Contrast Serverless activities for an account.

1. Select Serverless in the header.
2. Select the Settings tab.
3. Scroll to the bottom of the page and click Block Account.

This will block all activities including automatic and user-requested scans and function updates.

NOTE
Contact Contrast Support to unblock accounts.

Contrast Documentation

Use Contrast 664

https://support.contrastsecurity.com/hc/en-us


Offboard Contrast Serverless
Offboarding a Contrast Serverless account from Azure requires the use of a script to remove the
deployment.

Before you begin

• Identify the objects that you want to remove

Steps

1. Select Serverless in the header.
2. Select the account to be offboarded.
3. Select the Settings tab.
4. Scroll down to the Offboard Account section and copy the script.
5. Execute in a shell with an authenticated az command. For example, Azure CloudShell in

Bash mode.

Uninstall Contrast Serverless
Uninstalling Contrast Serverless requires the deletion of a stack in the AWS console.

Before you begin

• Identify the objects that you want to remove

Steps

1. Log in to your AWS account or use the AWS CLI/API.
2. Continue with the steps for deleting a stack. See  AWS Stack deletion.

Contrast CLI
Contrast CLI delivers SCA, SAST, and serverless capabilities at the command line. Use the CLI locally
or automated in your CI/CD pipeline.

Before you start
A few things to keep in mind:

• CodeSec users start here.
• Enterprise Contrast users can install (page 666) and then start using the Contrast CLI.
• The legacy Contrast CLI will be deprecated as of October 2022.

About Contrast CLI
Contrast Security brings security testing right to the developer's laptop. Make code and serverless
security simple and efficient with quick scan times, market-leading accuracy, actionable results, and
seamless integration.

Contrast Documentation

Use Contrast 665

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-delete-stack.html
https://www.contrastsecurity.com/developer/codesec


Contrast CLI delivers:

• The fastest and most accurate SAST scanner
• Immediate and actionable results ‑ scan code and serverless environments
• SCA capabilities by showing dependencies between open-source libraries, including where

vulnerabilities were introduced

Get started scanning with easy-to-follow steps. If you already have a Contrast account, you can start by
installing the Contrast CLI (page 666).

Contrast CLI supported languages and package managers
Contrast CLI supports these languages when using the audit command.

Package manager Language Files required Notes

RubyGems Ruby gemfile and gemfile.lock

Composer PHP composer.json and compos
er.lock 

PyPI Python pipfile and pipfile.lock

NuGet .NET Core

.NET Framework

MSBuild 15.0 or greater and
packages.lock.json.

If the packages.lock.json file
is unavailable it can be
generated by
setting RestorePackages
WithLockFile to true
within each *.csproj file and
running dotnet build

.NET is only supported
using the --legacy option

Maven Central Java pom.xml Maven build platform
including the dependency
plugin

build.gradle gradlew dependencies or ./
gradlew dependencies

npm

This includes client-side
and server-side JavaScript
packages.

JavaScript package.json and a
lockfile (either package-
lock.json or yarn.lock)

V2 and V3 lock files are
supported

Gopm Go go.mod

Install Contrast CLI
Use these procedures to Install Contrast CLI.

With Homebrew
Install from Contrast's tap with Homebrew by running the following commands.

brew tap contrastsecurity/tap
brew install contrast

With NPM/YARN

NOTE
Currently, only Node.js 18+ is supported.

Contrast Documentation

Use Contrast 666

https://www.contrastsecurity.com/developer/codesec


Install using npm or yarn @contrast/contrast.

Use this command:

npm install --location=global @contrast/contrast@2

With Binaries

• Go to artifacts.
• Download the latest package.
• You must allow execute permissions on the file depending on your OS.

Once installed, continue by authenticating your account (page 667).

Authenticate your credentials
Authenticate to store your credentials before scanning for vulnerabilities.

Run the following auth command to store your credentials locally.

contrast auth
--api-key <your API key> 
--authorization <your authorization header> 
--host <your host domain> 
--organization-id <your organization ID> 

In Contrast, under user menu > User settings > Profile, locate and copy this information:

• API key
• Organization ID
• Authorization header

You will also need your Contrast URL for the --host line.

Once authenticated, perform an analysis (page 667).

Security analysis
Use Contrast CLI to perform security analysis.

Run a SAST scan

1. In the terminal, type the following code: contrast scan -f <file name>.
2. In the results click the link to view the scan results (page 569).

Find vulnerable libraries

1. In the terminal, type the following code: contrast audit.
2. If you used the --track flag with the audit command, click the link in the results to open

the library view (page 599).

Find vulnerabilities in your AWS lambda functions

1. In the terminal, type the following code: contrast lambda--function-name [option].
2. In the results, review any recommendations and update policies based on the provided information.

Find vulnerabilities with Contrast Assess

1. Install or update a Contrast agent:

Contrast Documentation

Use Contrast 667

https://pkg.contrastsecurity.com/ui/repos/tree/General/cli


• Use Assess CLI with Java agents (page 668)
• Use Assess CLI with .NET agents (page 669)
• Use Assess CLI with Node.js agents (page 670)
• Use Assess CLI with Python agents (page 671)
• Use Asses CLI with Ruby agents (page 671)
• Use Assess CLI with Go agents (page 672)

2. In the terminal, type the following code: contrast assess
This command generates the agent configuration file that the Contrast CLI and the agent share.
The default locations for the configuration file are:
• MacOS and Linux
/etc/contrast/contrast_security.yaml

• Windows
%ProgramData%\Contrast\contrast_security.yaml

You have the option of specifying a different location with --config-path.

NOTE
If your user does not have write permissions to the directory where the
configuration file is located, use sudo or a similar mechanism to create the folder.
For example:

sudo mkdir /etc/contrast

Then, grant all users read and write permissions. For example:

sudo chmod 777 /etc/contrast

3. Run your application in your IDE or a second terminal window.
4. Exercise your application, either interactively or using automated API or end-to-end tests.
5. View the results in the terminal where you entered the Contrast Assess CLI command.

Use Assess CLI with Java agents

Use this procedure if you are using Contrast Java agents and want to use the CLI to find vulnerabilities
while running API or end-to-end testing.

Before you begin

• Verify your application can use the Assess CLI by checking the Java supported
technologies (page 85).

Steps

1. To install the latest Java agent , download it from from Maven Central.

IMPORTANT
Do not create a configuration (YAML) file for the agent. The Assess CLI generates
this file automatically.

2. Open a terminal window and enter the Assess CLI command:

contrast assess

Contrast Documentation

Use Contrast 668

https://central.sonatype.com/artifact/com.contrastsecurity/contrast-agent/


This command generates the agent configuration file that the Contrast CLI and the agent share.
CLI commands (page 673) describes the options for this command, including the path for the
configuration file.
You see output similar to this:
�Configuration file found at "user_path"
� Waiting for the session to be created.

3. In your IDE or a second terminal window. run your application with this command:

java -javaagent:<YourContrastJarPath> -jar <AppName>.jar

Alternative methods:
• IntelliJ: Modify the run configuration to include the following command as a VM argument:

-javaagent:<YourContrastJarPath>

Replace <YourContrastJarPath> with the path for the Java agent's contrast.jar file.
Using the updated run configuration automatically runs your Java application with the Contrast
agent.

• VS code: Modify vmArgs setting in your launch configuration to include the following command
as a VM argument:

 -javaagent:<YourContrastJarPath>

Replace <YourContrastJarPath> with the path for the Java agent's contrast.jar file.
Add the agent under the vmArgs setting

4. Exercise your application, either interactively or using automated API or end-to-end tests.
5. View the results in the terminal window where you entered the Assess CLI command.

Use Assess CLI with .NET agents

Use this procedure if you are using Contrast .NET agents and want to find vulnerabilities while running
API or end-to-end testing.

Before you begin

• Verify that your application can use the Assess CLI by checking the .NET Core supported
technologies (page 232) or .NET Framework supported technologies (page 174).

Steps

1. Install or update your agent manually.
• .NET Core (page 234)
• .NET Framework (page 176)

IMPORTANT
Do not create a configuration (YAML) file for the agent. The Assess CLI creates
this file automatically.

2. Open a terminal window and enter the Assess CLI command.

contrast assess

This command generates the agent configuration file that the Contrast CLI and the agent share.
CLI commands (page 673) describes the options for this command, including the path for the
configuration file.
You see output similar to this:

Contrast Documentation

Use Contrast 669



�Configuration file found at "user_path"
� Waiting for the session to be created.

3. Run your application using your IDE or a second terminal window.
4. Exercise your application, either interactively or using automated API or end-to-end tests.
5. In the terminal window where you entered the Assess CLI command, view the results.

Use Assess CLI with Node.js agents

Use this procedure if you are using Contrast Node.js agents and want to find vulnerabilities while
running API or end-to-end testing..

Before you begin

• Verify your application can use the Assess CLI by checking the Node.js supported
technologies (page 290).

• Contrast Assess is intended for server-side applications only. Assess does not detect vulnerabilities
in client-side code.

• The Node.js agent can only instrument JavaScript applications. If you are using TypeScript for your
server-side code, transpile it to JavaScript (page 342).

Steps

1. Install the latest version of the agent from the application's root directory with this command:

npm install @contrast/agent

If you want to use yarn, use this command:

yarn add @contrast/agent

IMPORTANT
Do not create a configuration (YAML) file for the agent. The Assess CLI creates
this file automatically.

2. Open a terminal window and enter the Assess CLI command.

contrast assess

This command generates the agent configuration file that the Contrast CLI and the agent share.
CLI commands (page 673) describes the options for this command, including the path for the
configuration file.
You see output similar to this:
�Configuration file found at "user_path"
� Waiting for the session to be created.

3. In your IDE or a second terminal window, run your application with a command similar to this one:

node -r @contrast/agent <server.js>

Replace <server.js> with your Node.js application's server start command. Adjust the command
based on your application specifics.
This command requires the Contrast agent for Node.js and instruments your application’s source
code as it is read by the Node.js engine.

4. Exercise your application, either interactively or using automated API or end-to-end tests.
5. View the results in the terminal window where you entered the Assess CLI command.

Contrast Documentation

Use Contrast 670



Use Assess CLI with Python agents

Use this procedure if you are using Contrast Python agents and want tto find vulnerabilities while
running API or end-to-end testing..

Before you begin

• Verify your application can use the Assess CLI by checking the Python supported
technologies (page 360).

Steps

1. Install the agent using pip:

pip install contrast-agent

TIP
If you have a  requirements.txt  file, you can add  contrast-agent  to that
file, and install with  pip install -r requirements.txt .

IMPORTANT
Do not create a configuration (YAML) file for the agent. The Assess CLI creates
this file automatically.

2. Verify that  autoconf  is installed on the system where you will run the agent.
3. Open a terminal window and enter the Assess CLI command:

contrast assess

This command generates the agent configuration file that the Contrast CLI and the agent share.
CLI commands (page 673) describes the options for this command, including the path for the
configuration file.
You see output similar to this:
�Configuration file found at "user_path"
� Waiting for the session to be created.

4. Run your application using your IDE or a second terminal window.
5. Exercise your application, either interactively or using automated API or end-to-end tests.
6. In the terminal window where you entered the Assess CLI command, view the results.

Use Assess CLI with Ruby agents

Use this procedure if you are using Contrast Ruby agents and want to find vulnerabilities while running
API or end-to-end testing..

Before you begin

• Verify your application can use the Assess CLI by checking the Ruby supported
technologies (page 414).

Steps

1. Add this entry to your gemfile:

Contrast Documentation

Use Contrast 671



gem 'contrast-agent'

2. Install or update your agent:
• Install the agent with this command:

bundle install

• Update the agent with this command:

bundle update contrast-agent

IMPORTANT
Do not create a configuration (YAML) file for this agent. The Assess CLI creates
this file automatically.

3. Configure middleware (Grape, Rails, or Sinatra)
• Grape: Add the middleware directly to your application class extending the Grape::API or to

your config.ru file if a class is not available.

require 'contrast-agent'
use Contrast::Agent::Middleware, true

• Rails: No code change required.
• Sinatra: Add the middleware directly to your application class extending the Sinatra::Base or

to your config.ru file if a class is not available.

require 'contrast-agent'
use Contrast::Agent::Middleware, true

4. Verify that autoconf is installed on the system where you will run the agent.
5. Open a terminal window and enter the Assess CLI command:

contrast assess

This command generates the agent configuration file that the Contrast CLI and the agent share.
CLI commands (page 673) describes the options for this command, including the path for the
configuration file.
You see output similar to this:
�Configuration file found at "user_path"
� Waiting for the session to be created.

6. Run your application using your IDE or a second terminal window.
7. Exercise your application, either interactively or using automated API or end-to-end tests.
8. In the terminal window where you entered the Assess CLI command, view the results.

Use Assess CLI with Go agents

Use this procedure if you are using Contrast Go agents and want to find vulnerabilities while running
API or end-to-end testing.

Running an application with the Go agent is different than most other Contrast agents. The Go agent is
injected into the application’s source code at compile time.

Before you begin

• You can use the Contrast Go Test Bench application to test the Assess CLI. For details about using
this test application, go to the Contrast CodeSec website.

• Verify your application can use the Assess CLI by checking the Go supported
technologies (page 473).

Contrast Documentation

Use Contrast 672

https://github.com/Contrast-Security-OSS/go-test-bench
https://www.contrastsecurity.com/developer/codesec/


Steps

1. Open a terminal window and install the Contrast Go agent (page 474) in your environment (version
1.19 minimum),

IMPORTANT
Do not create a configuration (YAML) file for the agent. The Assess CLI creates
this file automatically.

2. Verify that the compiler is installed using this command:

go version
go version go1.19.1 darwin/arm6

3. Install, compile, and run your application.
To verify that the application is running without Contrast implementation, open a browser and
navigate to the application. Enter CTRL-C to stop the application.
For example, if you are using the Contrast Go Test Bench application, you would navigate to
localhost:8080.

4. Enter the Assess CLI command:

contrast assess

This command generates the agent configuration file that the Contrast CLI and the agent share.
CLI commands (page 673) describes the options for this command, including the path for the
configuration file.
You see output similar to this:
�Configuration file found at "user_path"
� Waiting for the session to be created.

5. In your IDE or in a second terminal window, compile and run your application, which is now
instrumented with the Contrast Go agent.
For example: if you are using the Contrast Go Test Bench application, the commands would look
like this:

go-test-bench on � main [!?] via � v1.19.1 took 1h52m1s
� contrast-go run ./cmd/gin/app.go

6. Open a third terminal window and exercise your application, either interactively or using automated
API or end-to-end tests.
For example, if you are using the Contrast Go Test Bench application, the commands would look
like this:

go-test-bench on � main [!?] via � v1.19.1 took 4s
� go run ./cmd/exercise

7. In the first terminal window that you opened, view the results.

Contrast CLI commands
The following is a listing of the commands available to basic and advanced users of Contrast CLI.

Usage:contrast [command] [options]

Authentication/connectivity

auth
For CodeSec users, if you don't have a Contrast account, authenticate using your GitHub or Google
account. A new browser window opens for login.

Contrast Documentation

Use Contrast 673



• Usage: contrast auth

If you already have a Contrast account, run the following auth command to store your credentials
locally.

• Usage:

contrast auth 
--api-key <your API key> 
--authorization <your authorization header> 
--host <your host domain> 
--organization-id <your organization ID> 

You can then run an analysis (page 667) with the commands.

config
Displays stored credentials.

• Usage: contrast config
Example:

contrastuser@userc-C02GD0LUMD6TTY ~ % contrast config
{  
version: '1.0.24',  
host: 'https://ce.contrastsecurity.com',  
apiKey: 'wwEHMnYEIAujE03fFGH',  
organizationId: '0fde1b36-6986-4a14-b16d-6258aa913e5bceerfj',  
authorization: \
'Z2l1bGlhbmEubWFyaWFuaUBjb250cmFzdHNlY3VyaXR5LmNvbTpDUktMUTE3T1czMDU2NjlLO
PDS',  
numOfRuns: 0
}

• Options:
• -c, --clear

Removes stored credentials.

version
Displays Contrast CLI version.

• Usage: contrast version
Example:

contrastuser@usercsa-C02GD0LUMD6TTY ~ % contrast version
1.0.24

Main functions

audit
Searches for a dependency configuration file in the working directory to perform a security audit of
dependencies and returns the results.

• Usage:contrast audit [option]
Example:

contrastuser@usercsa-C02GD0LUMD6TTY ~ % contrast audit
Searching for package manager files from /Users/contrastuser/Documents/

Contrast Documentation

Use Contrast 674



Contrast SCA audit started...
Contrast audit complete

Found 4 vulnerable libraries with 4 CVEs

CONTRAST-001 - [CRITICAL]  minimist-1.2.5 introduces 1 vulnerability
       Issue:  1 Critical
               [C]CVE-2021-44906
       Advice: Update to version 1.2.6
 
CONTRAST-002 - [CRITICAL]  json-schema-0.2.3 introduces 1 vulnerability
       Issue:  1 Critical
               [C]CVE-2021-3918
       Advice: Update to version 0.4.0

CONTRAST-003 - [HIGH]  glob-parent-5.1.1 introduces 1 vulnerability
       Issue:  1 High
               [H]CVE-2020-28469
       Advice: Update to version 5.1.2

CONTRAST-003 - [HIGH]  ansi-regex-0.2.1 introduces 1 vulnerability
       Issue:  1 High
               [H]CVE-2021-3807
       Advice: Update to version 6.0.1

• Options:
• --fail

Fail a build based on the severity of CVEs found. Use with the --severity flag. For example,
contrast audit --fail --severity high . Returns all failures if no severity level is specified. If a failure
is detected the CLI will exit with code 2.

• --file

Specify a directory or the file where dependencies are declared. (By default, Contrast CLI will
search for project files in the current directory.) If multiple project files are found in the directory, you
will be prompted to confirm the file to audit.
Alias:-f

• --help

Displays usage information for all audit command options.
• --ignore-dev

Excludes developer dependencies from the results. All dependencies are included by default.
Alias:-i

• --legacy

Creates an application in Contrast (a legacy workflow). It displays a dependency tree (page 607)
for your piece of code and utilizes metadata. Note that this is only available for Contrast CLI V2.0
and later.

• --name

Set a custom project name. If the name is already in use, it will replace the results for that project.
Avoid special characters.

• --save

Generate and save an SBOM (Software Bill of Materials). Valid options are: --save cyclonedx and
--save spdx (CycloneDX is the default format.).
Alias:-s

• --severity

Specify the minimum severity of CVE to fail a build. Use with the --fail flag. For example, contrast
audit --fail --severity high. Severity levels are critical, high, medium, low, or note.

• --track

Contrast Documentation

Use Contrast 675



By default, results are not held or stored, which would allow you to do local checks via your
console. Add the --track flag to view your projects' SCA results under the Static view on the
Libraries (page 599) page in the Contrast web interface. Note that this is only available for Contrast
CLI V2.0.

• Advanced options:
• --api-key

Required for Enterprise users. Agent API key provided by Contrast. See agent keys (page 71)to
find your keys.

• --application-id

The ID of the application cataloged by Contrast.
• --application-name

The name of the application cataloged by Contrast.
• --app-groups

Assign your application to one or more preexisting groups when onboarding an application. Group
lists should be comma separated.

• --authorization

Required for Enterprise users. Authorization header provided by Contrast.
• --code

The application code the application should use in Contrast.
• --host

Required for Enterprise users. The host name. For example, https://app.contrastsecurity.com.
• --maven-settings-path

Displays the path to the maven settings.xml file.
• --metadata

Define a set of key=value pairs (that conforms to RFC 2253) for specifying user-defined metadata
associated with the application.

• --organization-id

Required for Enterprise users. The ID of your organization in Contrast. See agent keys (page 71) to
find the ID.

• --tags

Apply labels to an application. Labels must be formatted as a comma-delimited list. For example,
label1,label2,label3.

• Proxy settings:
• --cacert

Displays the path to the CaCert (certificate authority (CA) certificates) file.
• --cert

Displays the path to the Cert (certificate) file.
• --cert-self-signed

For Contrast on-premises (EOP) users with a local install, will bypass the SSL certificate and
recognize a self-signed certificate.

• --key

Displays the path to the Certificate Key.
• --proxy

Allows for connection via a proxy server. If authentication is required, provide
the username and password with the protocol, host, and port. For example, "http://
username:password@<host>:<port>".

To use audit in pipelines for failing builds, see the Contrast SCA Action.

assess
Reports vulnerabilities found at run-time on a server using a Contrast agent.

Contrast Documentation

Use Contrast 676

https://github.com/marketplace/actions/contrast-security-sca


• Usage:contrast assess [option]
Example:

contrastuser@usercsa-C02GD0LUMD6TTY ~ % contrast assess
� Configuration file found at "user_path"
� Session created.
CONTRAST-001 - [HIGH] Path Traversal from "RawQuery" QueryString \
Parameter on
"/pathTraversal/os.Open/:source/:mode" pagePath Traversal from \
"RawQuery" QueryString Parameter on "/pathTraversal/
os.Open/:source/:mode" page
       App: CLIAssessApplication
    Source: GET
            /pathTraversal/os.Open/:source/:mode?
input=..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2Fetc%2Fpa
sswd
  Location: /opt/homebrew/Cellar/go/1.19.1/libexec/src/os/file.go, line \
316, in os.Open()
  Dataflow: "../../../../../../../../../../../../etc/passwd"
     Issue: Because there is untrusted data being used as part of the \
file path, it may be possible
            for an attacker to read sensitive data or write, update, or \
delete arbitrary files on the
            container's file system. The ability to write arbitrary \
files to the file system is also
            called Unrestricted or Arbitrary File Uploads.

CONTRAST-002 - [HIGH] Path Traversal from "RawQuery" QueryString \
Parameter on
"/pathTraversal/os.ReadFile/:source/:mode" pagePath Traversal from \
"RawQuery" QueryString Parameter on "/pathTraversal/
os.ReadFile/:source/:mode" page
       App: CLIAssessApplication
    Source: GET
            /pathTraversal/os.ReadFile/:source/:mode?
input=..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2Fetc%2Fpa
sswd
  Location: /opt/homebrew/Cellar/go/1.19.1/libexec/src/os/file.go, line \
672, in os.ReadFile()
  Dataflow: "../../../../../../../../../../../../etc/passwd"
     Issue: Because there is untrusted data being used as part of the \
file path, it may be possible
            for an attacker to read sensitive data or write, update, or \
delete arbitrary files on the
            container's file system. The ability to write arbitrary \
files to the file system is also
            called Unrestricted or Arbitrary File Uploads.

CONTRAST-003 - [HIGH] Path Traversal from "input[0]" Parameter on "/
pathTraversal/os.Open/:source/:mode"
pagePath Traversal from "input[0]" Parameter on "/pathTraversal/
os.Open/:source/:mode" page
       App: CLIAssessApplication
    Source: POST /pathTraversal/os.Open/:source/:mode

Contrast Documentation

Use Contrast 677



            input=..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F.
.%2Fetc%2Fpasswd
  Location: /opt/homebrew/Cellar/go/1.19.1/libexec/src/os/file.go, line \
316, in os.Open()
  Dataflow: "../../../../../../../../../../../../etc/passwd"
     Issue: Because there is untrusted data being used as part of the \
file path, it may be possible
            for an attacker to read sensitive data or write, update, or \
delete arbitrary files on the
            container's file system. The ability to write arbitrary \
files to the file system is also
            called Unrestricted or Arbitrary File Uploads.

• Options:
• --config-path <path>

Specifies the path or directory for the contrast_security.yaml file that the Assess CLI and
the agent share.
If not specified, the default paths are:
• MacOS and Linux: /etc/contrast
• Windows:%ProgramData%\Contrast\
Alias: -c

• --file <filename>

Specifies the path or directory for the vulnerability results file so Contrast can read it and display
the results in the terminal. The file name is contrast-assess-{Date}.jsonl., where the date
is in epoch milli-seconds, For example: contrast-assess-1691520302714.jsonl.
Alias: -f

• --help

Displays usage information for all assess command options.
• --no-watch [true|false]

If set to true when using Assess with a Contrast agent, the CLI does not watch (or poll)
Contrast for available vulnerabilities. The CLI retrieves the vulnerabilities only once for a specific
buildNumber. The default setting is false.
Alias: -n

• --output-path <path>

Specifies the path or directory where you want the vulnerability results file located. The output file
is in JSONL format. The file name is contrast-assess-{Date}.jsonl., where the date is in
epoch milli-seconds, For example: contrast-assess-1691520302714.jsonl.
Alias: -o

• --report-notes [true|false]

If set to true, the access command displays vulnerabilities with a notes severity level. The default
value is false which displays higher priority vulnerabilities.
Alias: -r

scan
Performs a security SAST scan.

• Usage: contrast scan [option]
Example:

contrastuser@usercsa-C02GD0LUMD6TTY ~ % contrast scan
Searching for files to scan from from /Users/contrast/Documents/
Searched 3 directory levels & found...
- spring-petclinic-1.5.1.jar
- webgoat-server-8.2.2.jar
- webgoat.jar

Contrast Documentation

Use Contrast 678



Java Scan requires a .war or.jar file. Javascript Scan requires a .js or \
.zip file.
To start a Scan enter "contrast scan -f <path-to-file>"
contrastuser@usercsa-C02GD0LUMD6TTY ~ % contrast scan -f webgoat.jar
Found existing project...
Uploading...
Uploaded file successfully.
Contrast Scan started.

Here are your top priorities to fix

CRITICAL    sql-injection (2)
            1. org/owasp/webgoat/plugin/challenge6/Assigment6.java @43
            2. org/owasp/webgoat/plugin/challenge5/challenge6/
Assigment5.java @38

• --fail

Fail a build based on the severity of the vulnerability found. Use with the --severity flag. For
example, contrast scan --fail --severity high . Returns all failures if no severity level is specified.
If a failure is detected the CLI will exit with code 2.

• --file

Path of the file you want to scan. Contrast searches for a .jar, .war, .js or .zip file in the working
directory if a file is not specified.
Alias: -f

• --help

Displays usage information for all scan command options.
• --host

Required for Enterprise users. The host name. For example, https://app.contrastsecurity.com.
• --language

Valid values are JAVA, JAVASCRIPT, and DOTNET.

IMPORTANT
This option is not valid if you are using the multi-language source code scan
engine.

Alias: -l
• --memory

Memory override for the multi-language source code scan engine. The default memory setting is 2
GB.

• --name

Contrast project name. If not specified, Contrast uses contrast.settings to identify the project or
creates a project.
Alias: -n

• -r

Contrast resource group name. This option is required for host-based customers if role-based
access control is turned on.

• --save

Download the results to a Static Analysis Results Interchange Format (SARIF) file. The file is
downloaded to the current working directory with a default name of results.sarif. You can view the
file with any text editor.
Alias: -s

Contrast Documentation

Use Contrast 679



• --severity

Specify the minimum severity of a vulnerability to fail a build. Use with the --fail flag. For example,
contrast scan --fail --severity high. Severity levels are critical, high, medium, low, or note.

• --timeout

Time in seconds to wait for the scan to complete. Default value is 300 seconds.
Alias: -t

• Options:
• Advanced options:

• --api-key

Required for Enterprise users. Agent API key provided by Contrast. See agent keys (page 71)to
find your keys

• --authorization

Required for Enterprise users. Authorization header provided by Contrast.
• -ff

Fire and forget. Do not wait for the result of the scan.
• --host

Required for Enterprise users. The host name. For example, https://app.contrastsecurity.com.
• --label

Adds a label to the scan. Defaults to Started by CLI tool at [current date].
• --organization-id

Required for Enterprise users. The ID of your organization in Contrast. See agent keys (page 71) to
find the ID.

• --project-id

The ID associated with a scan project. To find the ID, select a scan project in Contrast and locate
the last number in the URL.

• Proxy settings:
• --cacert

Displays the path to the CaCert (certificate authority (CA) certificates) file.
• --cert

Displays the path to the Cert (certificate) file.
• --cert-self-signed

For Contrast on-premises (EOP) users with a local install, will bypass the SSL certificate and
recognize a self-signed certificate.

• --key

Displays the path to the Certificate Key.
• --proxy

Allows for connection via a proxy server. If authentication is required, provide
the username and password with the protocol, host, and port. For example, "http://
username:password@<host>:<port>".

lambda
Name of AWS lambda function to scan.

• Usage: contrast lambda --function-name <function> [options]
• Alias: -f
• Options:

• --endpoint-url

AWS Endpoint override. Similar to AWS CLI.
Alias: -e

• --help
Displays usage information for all lambda command options.

• --region

Region override. Defaults to AWS_DEFAULT_REGION. Similar to AWS CLI.

Contrast Documentation

Use Contrast 680



Alias: -r
• --profile

AWS configuration profile override. Similar to AWS CLI.
Alias: -p

• --json

Return response in JSON (versus default human-readable format).
Alias: -j

• -–verbose

Returns extended information to the terminal.
Alias: -v

• --list-functions

Lists all available lambda functions to scan.
• -–help

Displays usage guide.
Alias: -h

• Proxy settings:
• --cacert

Displays the path to the CaCert (certificate authority (CA) certificates) file.
• --cert

Displays the path to the Cert (certificate) file.
• --cert-self-signed

For Contrast on-premises (EOP) users with a local install, will bypass the SSL certificate and
recognize a self-signed certificate.

• --key

Displays the path to the Certificate Key.
• --proxy

Allows for connection via a proxy server. If authentication is required, provide
the username and password with the protocol, host, and port. For example, "http://
username:password@<host>:<port>".

Help and learn

help
Displays usage guide. To list detailed help for any CLI command, add the -h or --help flag to the
command.

• Usage: contrast help
Example:

contrastuser@usercsa-C02GD0LUMD6TTY ~ % contrast help
Contrast CLI @ v1.0.24
Contrast Scan CLI
Pre-
requisites  Java, Javascript and .NET supported                           
                  
To scan a Java project you will need a .jar or .war file for \
analysis           
To scan a Javascript project you will need a single .js or a .zip \
of            
multiple .js files                                                        
      
To scan a .NET c# webforms project you will need a .exe or a .zip file \
for      
analysis                                                                  

Contrast Documentation

Use Contrast 681



                                                                          
                                                                          
                  

The file argument is optional. If no file is given, Contrast will search \
for    
a .jar, .war, .exe or .zip file in the working directory.                 
                                                                          
            

Submitted files are encrypted during upload and deleted in 24 \
hours.          
Scan Options  
-l, --language string   (optional): Valid values are JAVA, JAVASCRIPT \
and DOTNET
--label string          (optional): adds a label to the scan -
 defaults to 'Started by CLI tool at                               
current date'                                                             
      
-n, --name string       (optional): Contrast project name. If not \
specified, Contrast uses                                      
contrast.settings to identify the project or creates a \
project.                 
-f, --file string       (optional): Path of the file you want to scan. \
If no file is specified,                                 
Contrast searches for a .jar, .war, .exe or .zip file in the \
working                                    
directory.                                                                
      
-t, --timeout number    (optional): Time in seconds to wait for scan to \
complete. Default value is                              
300 seconds.                                                              
      
--fail                  (optional):  Use with contrast scan or contrast \
audit. Detects failures based                           
on the severity level specified with the --
severity command. For example,                               
"contrast scan --fail --
severity high". Returns all failures if no severity level is specified.   
                                                          
--severity type         (optional): Use with "contrast scan --fail --
severity high" or "contrast                                
audit --fail --severity high". Set the severity level to \
detect                                         
vulnerabilities or dependencies. Severity levels are critical, high, \
medium,                            
low or note.                                                              
      
-s, --save string       (optional): Saves the Scan Results SARIF to file. 
Advanced  
-o, --organization-id string   (required for Contrast Enterprise): The \
ID of your organization as provided
                               by Contrast UI
--api-key string               (required for Contrast Enterprise): An \
agent API key as provided by Contrast                                   

Contrast Documentation

Use Contrast 682



UI                                                                        
      
--authorization string         (required for Contrast Enterprise): An \
authorization header as provided by                                     
Contrast UI                                                               
      
--host string                  (required for Contrast Enterprise): host \
name e.g.                                                             
https://
app.contrastsecurity.com                                                
--proxy string                 (optional): Allows for connection via a \
proxy server. If authentication is                                     
required please provide the username and password with the protocol, \
host and                                  
port. For instance: "https://
username:password@<host>:<port>".                  
--key string                   (optional): Path to the Certificate \
Key                                         
--cacert string                (optional): Path to the CaCert \
file                                             
--cert string                  (optional): Path to the Cert \
file                                               
--cert-self-signed             (optional):For EOP users with a local \
Teamserver install, this will bypass                                     
the SSL certificate and recognise a self signed \
certificate.                    
-p, --project-id string        (optional): The ID associated with a scan \
project. Replace <ProjectID> with                                    
the ID for the scan project. To find the ID, select a scan project \
in                                          
Contrast and locate the last number in the \
URL.                                 
-l, --language string          (optional): Valid values are JAVA, \
JAVASCRIPT and DOTNET                        
--ff                           (optional): Fire and forget. Do not wait \
for the result of the scan.            
--label string                 (optional):adds a label to the scan -
 defaults to 'Started by CLI tool at                                      
current date'                                                             
    

Need More Help? NEW users  
Check out: https://
support.contrastsecurity.com                             
Learn more at: https://www.contrastsecurity.com/
developer                   
Join the discussion: https://www.contrastsecurity.com/developer/community 

Existing Contrast Licensed user?  
Read our docs: https://docs.contrastsecurity.com/en/run-contrast-
cli.html    
Want to UP your game? type 'contrast \
learn'                                  
� Advance your security knowledge and become an All-star coder \

Contrast Documentation

Use Contrast 683



�  with         
Contrast Secure Code Learning Hub. �  

• Alias: -h

learn
Launch Contrast’s Secure Code Learning Hub.

• Usage: contrast learn
Example:

contrastuser@usercsa-C02GD0LUMD6TTY ~ % contrast learn
Opening Contrast’s Secure Code Learning Hub...
If the page does not open you can open it directly via https://
www.contrastsecurity.com/developer/learn

Legacy Contrast CLI

IMPORTANT
Legacy Contrast CLI will be deprecated as of October 2022. We encourage you to
begin using the new Contrast CLI (page 665).

Use the Contrast command line interface (CLI) to analyze libraries at the earliest stage of the software
development life cycle (SDLC).

The Contrast CLI runs on Node.js but can be used on any application to provide composition analysis
capabilities at the command line. For details about the supported platforms and languages, see the
Contrast CLI supported languages (page 684) page.

With this composition analysis you can:

• Identify vulnerable libraries
• Fail a build based on CVE severity
• View a dependency tree (page 607) to understand the dependencies between libraries and where

vulnerabilities have been introduced
• Identify node.js libraries at risk for dependency confusion
• Generate SBOM

Contrast does this by supplementing existing runtime instrumentation from Contrast agents, with data
from pre-compile analysis (typically not available at runtime).

Install the Contrast CLI (page 685) so you can register new applications (page 686)and begin
analyzing your libraries during the development phase using the command line options. (page 687)

Legacy Contrast CLI - supported languages
We support the following languages for Contrast CLI:

Language Requirements Notes

Java Maven A Maven project must be defined with a pom.xml file, and
have the Apache Maven Dependency plugin. To test if the
CLI works with your project, build a dependency tree by running
mvn dependency:tree.

Contrast Documentation

Use Contrast 684

https://www.contrastsecurity.com/developer/learn
http://maven.apache.org/plugins/maven-dependency-plugin/


Language Requirements Notes

Gradle (v4.8 or above) A build.gradle file is required and gradle dependencies or ./
gradlew dependencies must also be supported.

.NET
Framework
and .NET Core

MSBuild 15.0 or greater and a
packages.lock.json file

If the packages.lock.json file is not present, it can be generated
by setting RestorePackagesWithLockFile to true within
each csproj and running .NET build.

Node.js You must have either a package-
lock.json or a yarn.lock file present.

Vulnerability reporting is supported for front-end technologies like
React or Angular.

PHP You must have the compose.lock and
the composer.json files present.

Python The pipfile and pipfile.lock files.

Ruby The gemfile and gemfile.lock files.

Go The go.mod file.

NOTE
Only single language applications are supported at this time.

Legacy Contrast CLI - Install
To install the Contrast CLI (page 684):

1. Install Node.js. The Contrast CLI is executed as a Node.js package, so this is required. Versions
10, 12, and 14 are currently supported.

2. Instrument your application.

NOTE
It is also possible to register an application (page 686) that has not yet been
instrumented. However, all applications should be instrumented so that your
application has a library score (page 608) and the data in the library grid is
populated.

3. Use the cli_proxy property in your agent configuration to establish communication with Contrast
over a proxy.
If authentication is required, provide the username and password with the protocol, host and port.
For example:

http://username:password@<host>:<port>

4. Be sure the source code for target applications is available locally. Follow the requirements for your
application's language (page 684).

5. Run the following command:

npm install -g @contrast/contrast-cli

Alternatively, you can install the CLI with Yarn with the following command:

yarn global add @contrast/contrast-cli

NOTE
The Contrast CLI must be installed globally.

Contrast Documentation

Use Contrast 685

https://nodejs.org/en/download/


6. Once the installation is complete you can register an application (page 686) to begin analyzing
your code.

Legacy Contrast CLI - Register applications
Once you install the Contrast CLI (page 685) you must first register applications in order to see the
results in Contrast.

TIP
You may want to invoke the Contrast CLI as part of your automated build process.

1. Locate your application ID. The application ID is the last URI segment in the Contrast URL in your
browser.

2. Locate your keys (page 518). You will need:
• API key
• Organization ID
• Authorization header
• Server host name from the Contrast URL

NOTE
You only need to enter the server host name. For example, if the Contrast URL
is https://app.contrastsecurity.com/file/path/, just enter:

--host app.contrastsecurity.com

3. To begin analysis, use one of these options:
• Replace <APIKey>, <AuthorizationKey>, <OrganizationID>, <Host> and <ApplicationID> with

your API key, authorization header, Organization ID, host name and application ID, then run the
CLI.

contrast-cli \
--api_key <APIKey> \
--authorization <AuthorizationKey> \
--organization_id <OrganizationId> \
--host <Host> \
--application_id <ApplicationId>

• Place credentials within a YAML file, using the same replacements:

cli:
    api_key: <APIKey>
    authorization: <AuthorizationKey>
    organization_id: <OrganizationId> 
    host: <Host>
    application_id: <ApplicationId>

Replace <path/to/yaml> with your YAML path, and run this command to initiate:

contrast-cli --yaml_path <path/to/yaml>

Contrast Documentation

Use Contrast 686



NOTE
If you need to go through a communication protocol like Transport Layer
Security (TLS) for example add the following parameters to the YAML file:

key: pathToKey
cert: pathToCert
cacert: pathToCaCert

4. After you see a success message, you are ready to view the dependency tree (page 607).

TIP
It is possible to add a new application to Contrast without instrumenting the application
by using the --catalogue_application and --application_name options.
However, it is best to instrument the application (page 48) so that the library
score (page 608) and library grid are populated in Contrast.

For example:

contrast-cli \
--catalogue_application \
--api_key <YourApiKey> \
--authorization <YourAuthorizationKey> \
--organization_id <YourOrganizationID> \
--host <YourHost> \
--application_name <YourApplicationName> \
--language <YourApplicationLanguage>

Replace <APIKey> with your API key, <AuthorizationKey> with the authorization
header, <OrganizationID> with your organization ID, <Host> with your host name,
<ApplicationName> with your application name, and <ApplicationLanguage> with your
application language. Allowable language values are JAVA, DOTNET, NODE, PHP,
PYTHON, RUBY, and GO.

You will know the catalogue operation was successful if an application ID is displayed
in the console.

NOTE
You can also register an application and create an SBOM report at the same time with
a set of CLI commands (page 687).

Legacy Contrast CLI - commands
The CLI offers a command line help guide with the -h or --help option. The help guide contains
the following commands to help you understand more about Contrast configuration, applications, and
vulnerabilities.

In the following examples, replace <string> or <level> with the string or level value that applies to
your particular situation.

Contrast Documentation

Use Contrast 687



General commands
Commands for connection and configuration.

Command Description
--api_key <string> An agent API key (page 71) provided by Contrast.

(required)

--application_id <string> The ID of the application cataloged by Contrast.
(required)

--application_name <string> The name of the application cataloged by Contrast.
(optional)

--authorization <string> User authorization credentials provided by Contrast.
(required)

-h, --help Displays the help guide.

--host <string> The name of the host and, optionally, the port
expressed as <host>:<port>. Does not include the
protocol section of the URL (https://). Defaults to
app.contrastsecurity.com. (optional)

--language <string> Valid values are JAVA, DOTNET, NODE, PHP,
PYTHON, RUBY, and GO. If there are multiple project
configuration files in the project_path, language is
required. (required for catalogue)

--organization_id <string> The ID of your organization (page 71) in Contrast.
(required)

--project_path <string> The directory root of a project/application that you want
to analyze. Defaults to the current directory. (optional;
required if running on Windows).

--proxy <string> Allows for connection over a proxy server. If
authentication is required, provide the username and
password with the protocol, host and port. For example,
http://username:password@<host>:<port>. (optional)

--silent Silences JSON output. (optional)

--sub_project <string> Specifies the subproject within a Gradle application.
(optional)

-v, --version Displays the CLI version you are currently using.

--yaml_path <string> The path to display parameters from the YAML file
(optional)

If yaml_path is used, the following connection
parameters are ignored from the terminal:

• yamlOnly:

• key:pathToKey

• cert:pathToCert

• cacert:pathToCaCert

NOTE
Parameters in these commands may need to be quoted to avoid issues with special
characters. For example:

--application_name = "My_app_name_$+=(/\"

SCA
Commands related to Contrast SCA examination.

Command Description

Catalog applications

Contrast Documentation

Use Contrast 688



Command Description
--app_groups <string> Assigns your application to one or more pre-existing

groups when using the catalogue command. Group
lists should be comma separated. (optional)

--catalogue_application Catalog an application (required). If the application
name does not exist, create the application and send
the dependency tree, else append the dependency tree
to an existing application.

--code <string> The application code this application should use in
Contrast. (optional)

--metadata <string> Define a set of key=value pairs (which conforms to RFC
2253) for specifying user-defined metadata associated
with the application. (optional)

--tags <string> Apply labels to an application. Labels must be
formatted as a comma-delimited list. Example -
label1,label2,label3 (optional)

Snapshot - default command does not have a command on the terminal. Java only.
--maven_settings_path <PathToFile> Allows you to specify an alternative location for your

maven settings.xml file. Replace <PathToFile>
with the full path for the file. Add this path to the full
set of keys when you register your application with the
CLI (page 686). (optional)

Register an application
--cli_api_key <string>

--cli_authorization <string>

--cli_organization_id <string>

--cli_host <string>

--language <string>

--application_name <string>

--sbom

Use this set of commands (values described in the
tables above and below) to register an application and
get an SBOM report at the same time.

Note: The "cli_" prefix in the parameters will be
deprecated in a future release.

Reports
--cve_severity <level> Combined with --report, allows the user to report

libraries with vulnerabilities above a chosen severity
level (page 706). For example, cve_severity
medium only reports vulnerabilities at Medium or higher
severity.

--cve_threshold <number> Sets the number of CVEs allowed before a build is
failed. If there are more CVEs than the threshold, the
build will fail.

--fail Fails the build if any vulnerabilities are found. Can be
used in combination with cve_severity to fail builds
with vulnerabilities at severity levels defined by the user.

--report Shows a report of vulnerabilities in the application from
compile time.

--ignore_dev Combined with the --report command excludes
developer dependencies from the vulnerabilities report.
By default, all dependencies are included in a report.

SBOM
--sbom Generate and download a Software Bill of Materials

(SBOM) (page 720) in CycloneDX JSON format

Contrast Documentation

Use Contrast 689



TIP
The --report command can be used to return details of all vulnerable libraries in the
terminal response. Every CVE found will have output like this:

org.webjars/jquery-ui/1.11.4 is vulnerable

CVE-2016-7103 MEDIUM Cross-site scripting (XSS) vulnerability \
in jQuery UI before 1.12.0 might allow remote attackers to \
inject arbitrary web script or HTML via the closeText \
parameter of the dialog function.

The vulnerable records returned can be restricted by using the --cve_severity
parameter which sets the minimum threshold for a CVE to be reported.

To prevent an application from being deployed with a library above a severity threshold
the --fail parameter can be used as part of an automated CI/CD pipeline. For
example, you can run the CLI using a YAML file with:

contrast-cli --yaml_path path/to/yaml --report --
cve_severity high --fail

Scan
Commands related to Contrast Scan. See also Integrate scans with builds (page 583).

Contrast Scan supports EXE and ZIP files for .NET projects.  The language must be set to DOTNET
and the ZIP should be a ZIP of the ./bin folder that contains your dlls.

Command Description
--project_id <ProjectID> The ID associated with a scan project.

Replace <ProjectID> with the ID for the scan project. To
find the ID, select a scan project in Contrast and locate
the last number in the URL.

Recommended: For the first scan, use the --
project_name command instead of this one. Scan
creates the project for you.

--project_name <ProjectName> The name of the scan project. If the name includes
spaces, enclose it in double quotes (").

If you specify a new name, Scan creates the project. If
you specify the name of an existing project, Scan adds
the uploaded file to that project.

--save_scan_results If provided, will save the SARIF file as results.json to
the current directory. (optional)

--scan<FileToBeScanned> Starts a static scan of the specified WAR or JAR file.
Replace <FileToBeScanned> with the path of the
WAR or JAR file that you want to upload for scanning.

--scan_results_file_name Must be JSON file format. If provided, will override the
default name to save the SARIF file. (optional)

--scan_timeout Set a specific time span (in seconds) before the
function times out. The default timeout is 20 seconds
if scan_timeout is not set.

--wait_for_scan Waits for the result of the scan.

Vulnerabilities
Once you instrument an application (page 48), Contrast shows you all the vulnerabilities it's discovered,
addressing some of the most common vulnerabilities and many others.

Contrast Documentation

Use Contrast 690

https://owasp.org/www-project-top-ten/


Contrast agents discover any code flaws that are in your applications, and report them. Contrast then
presents and classifies these vulnerabilities with a severity level to help you prioritize and mark the
vulnerabilities as needed.

• View vulnerabilities (page 691)
• View application vulnerabilities (page 692)
• Analyze vulnerabilities (page 699)
• Track vulnerabilities (page 697)
• Fix vulnerabilities (page 699)

View vulnerabilities at an organization level

Before you begin

• Exercise (browse or use) your application so Contrast can find weaknesses and present results in the
Contrast application.

• To see your application's vulnerability data in more detail, configure your Contrast agent to
report session metadata (page 531).

Steps

1. In the header, select Vulnerabilities.
2. To display vulnerabilities for licensed applications only, select Show licensed only at the top of the

vulnerabilities list.
3. To filter by columns, select the Filter icon (  ) next to the column headers. These filter options are

available if applicable to the selected application:
• Severity: Available filters are: Critical, High, Medium, Low, and Note.
• Vulnerability: Available filters are:

• Vulnerability tags:: Vulnerabilities associated with custom tags that you created.
• Type: Types of vulnerabilities.
• Servers: Vulnerabilities for applications associated with selected servers.
• Environments: Vulnerabilities for applications in selected environments: Development, QA,

and production.
• Sinks: Vulnerabilities that originate from a common sink.

A sink is common custom code shared between multiple data-flow vulnerabilities.
Filtering by sink can help you identify a line of code that is causing multiple vulnerabilities.

• URLs: Vulnerabilities associated with a specific URL.
• Compliance policy: Vulnerabilities associated with a compliance policy

• Application: Available filters are:
• Application names: Names associated with applications.
• Custom tags: Tags you assigned to applications.
• Languages: The languages used for applications.
• Technologies: Technologies that applications use. For example, JSON or jQuery.
• Application importance: The importance level you set in the application settings.
• Application metadata: Application metadata that you associated with applications.

• Last detected: Available filters are: First or Last detected and Time range. Select Custom to
enter specific dates and times.

• Status: Available filters are Status and whether Contrast is tracking the vulnerability
To remove filters, select Clear next to the column header.

4. To view vulnerability details, select a name. You can view details for these categories:

Contrast Documentation

Use Contrast 691



• HTTP information
• Steps on how to fix this vulnerability
• Details about the identity, timing and location of the vulnerability including build numbers,

reporting servers, category and security standards

See also
View application vulnerabilities (page 692)

View application vulnerabilities
From the Applications list, you can view vulnerabilities for a specific application.

Before you begin

• Exercise (browse or use) your application so Contrast can find weaknesses and present results in the
Contrast application.

• To see your application's vulnerability data in more detail, configure your Contrast agent to
report session metadata (page 531).

Steps

1. Select Applications in the header.
The Applications list displays the number of open vulnerabilities for each application. To view
details for specific types of vulnerabilities (for example, critical or high), in the Open Vulnerabilities
column, select the relevant section of the bar.

An open vulnerability has a status of Reported, Suspicious, or Confirmed.
2. Alternatively, In the Applications list, select an application name and then, select the

Vulnerabilities tab. You see a list of vulnerabilities for that application.
3. In the Vulnerabilities tab, to filter vulnerabilities, select the small triangle at the very top of the list.

These filter options are available:
• Open
• High confidence
• Policy violation
• Pending review

4. To search for specific vulnerabilities, select the magnifying glass icon ( ).
5. To view a timeline of the vulnerabilities, select the trend line symbol ( ) above the list .

Use the buttons above the chart to view data by Severity or Discovery. Hover over the trend lines
to see a breakdown of the data for that point in time (number of vulnerabilities, time stamp, or
status).
Any filters you apply in the list also update the data in the chart. Use the filter for the Last
detected column to update the time span shown in the timeline.

6. To filter by columns , select the Filter icon  next to the column headers. These filters are
available, if applicable to the selected application:
• Severity: Available filters are: Critical, High, Medium, Low, and Note.
• Vulnerability: Available filters, if applicable to the selected application, are:

Contrast Documentation

Use Contrast 692



• Vulnerability tags : Custom tags you assigned to vulnerabilities
• Bugtrackers: Whether you are using bugtracking integrations to track vulnerabilities.
• Type: Types of vulnerabilities
• Modules: Application modules associated with a vulnerability, including modules in a merged

application.
• Servers: Servers hosting the application.
• Environments: Development, QA, and production
• Sinks: Vulnerabilities that originate from a common sink

A sink is common custom code shared between multiple data-flow vulnerabilities.
Filtering by sink can help you identify a line of code that is causing multiple vulnerabilities.

• URLs: Vulnerabilities associated with a specific URL.
• Compliance policy: Vulnerabilities associated with selected compliance policies
• Routes: Vulnerabilities associated with selected routes.

• Application: Modules included in the application.
If you are viewing an unmerged application, this filter shows vulnerabilities for the selected
application.
If you are viewing vulnerabilities for a merged application, this filter shows view vulnerabilities for
the modules in the merged application.

• Last detected: Available filters are: First or Last detected and Time range. Select Custom to
enter specific dates and times.

• Status: Available filters are Status and whether Contrast is tracking the vulnerability.
• Session: This column is visible if you configured session metadata in an agent configuration file

but haven't selected a session metadata filter. Use Session column filter to refine the results.
Use the View by menu at the top of the list to filter the data by the session metadata values that
you included in your agent configuration file. This filter updates the values shown in the Session
column.
The View by menu is visible if you configured session metadata in an agent configuration file but
haven't selected a session metadata filter.

Open vulnerabilities for merged applications
For merged applications, the Open Vulnerabilities column in the Applications list displays the number
of vulnerabilities for all application modules in the primary application. The Applications list displays the
primary application but not the modules in the primary application.

Example:

Before you merge applications, the Open Vulnerabilities column looks similar to this:

After you merge applications, the bar in the Open Vulnerabilities column shows vulnerabilities for the
primary application and all the merged modules.

When you view the vulnerabilities tab for a merged application, use the filter for the Application column
to view the modules where Contrast found the vulnerability.

Contrast Documentation

Use Contrast 693



See also
View vulnerabilities at an organization level (page 691)

View vulnerability rates

The chart for open and closed vulnerability rates shows trends for the vulnerabilities for all applications
in your organization.

Steps

1. Display the new dashboard by selecting View your new dashboard.

2. In the new dashboard, find the chart for Open and closed vulnerability rates.
3. Select a time frame for the chart:

• Last 7 days: Displays vulnerabilities rates for the seven days before the current date.
The chart shows data points for each day.

• Last 30 days: Displays vulnerability rates for the 30 days before the current date.
The chart shows data points for each day.

• Last 12 months: Displays vulnerability rates for the 12 months before the current date.
The chart shows data points for each month.

• Custom: Displays vulnerability rates for a selected time frame.
The chart shows data points for each day, each week, or each month, depending on the selected
time frame.

If no data exists for part of a selected time frame, the chart displays no data for that part of the time
frame. For example, if you selected a time frame of the Last 12 months but started using Contrast
only nine months ago, the chart displays no data for the first three months of the time frame.

4. To view the percentage of change during the selected time frame, look at the value at the top of the
chart

5. To filter the chart to display only open or only closed vulnerabilities, select the keys at the bottom of
the chart.
Select the keys again to clear your selection.
• To view only open vulnerabilities, select the Closed key.
• To view only closed vulnerabilities, select the Open key.

Contrast Documentation

Use Contrast 694



Add and delete vulnerabilities
When you instrument an application. vulnerabilities are automatically detected and they become visible
in Contrast (page 691). Depending on your particular security concerns, you can assess the risk of
these vulnerabilities, eliminate false positives and prioritize fixes.

You may decide to delete a vulnerability if it is no longer useful.

To do this:

1. Select Vulnerabilities in the header.
2. Hover over the grid row with the vulnerability you want to delete and use the Delete icon in the right

column. You can also find the icon in the top right of the vulnerability details page.
To delete multiple vulnerabilities at once, use the check marks in the left column to select the
vulnerabilities you want to delete, then select the Delete icon from the batch action bar that
appears at the bottom of the page.

3. In the window that appears, select Delete to confirm your choice. Once confirmed, the vulnerability
is removed and no longer appears in your list unless Contrast discovers it again.

Group vulnerabilities by sink
Grouping vulnerabilities lets you combine vulnerabilities that share the same sink. The vulnerabilities in
a group can affect multiple applications.

Grouping vulnerabilities reduces the number of entries that the vulnerability list shows. You can still see
the data for individual vulnerabilities in a group.

Before you begin

Group by sink applies only to vulnerabilities for applications with an Assess license. If you group by
sink, Show licensed only is selected automatically.

Steps

1. Select Vulnerabilities in the header.
2. At the top of the list, select Group by sink.

Contrast Documentation

Use Contrast 695



Depending on the filters you use for the list, you might need to scroll down to find the groups.
A group looks similar to this example:

The number indicates the number of vulnerabilities in the group.
The values for the Severity, Application, and Status columns change to Multiple, If the
vulnerabilities in a group have different severities, apply to different applications, or have different
statuses.

3. To further refine the view, select one or more Vulnerability filters.
4. To view individual vulnerabilities in a group, select the group.

Contrast shows a list of only the vulnerabilities in the group.
5. To remove all groups, clear the Group by sink checkbox.

Merge vulnerabilities
If you find vulnerabilities of the same type from the same application, you can merge them to
consolidate findings. To do this:

1. Select Vulnerabilities in the header.
2. Use the check marks in the left column to select two or more vulnerabilities you'd like to merge.
3. In the batch action bar that appears at the bottom of the page, select the Merge icon.

4. In the window that appears, select the vulnerability that you want to represent the merge.

Add a tag to a vulnerability
You can tag vulnerabilities to better organize vulnerabilities and improve search in Contrast. To do this:

1. Select Vulnerabilities in the header, then hover over the row in the grid for the vulnerability you
want to tag.

2. In the far right column, select the Tag icon. This option is also available from the vulnerability
details page in the top right corner.

To tag multiple vulnerabilities, use the check marks in the left column of the vulnerabilities grid to
select the ones you want to tag. In the batch action menu that appears at the bottom of the page,
select the Tag icon.

3. In the window that appears, begin typing to see a list of tags. Select one or more from the
dropdown, and/or type a new tag. To remove tags, select the X. Select Save.

Contrast Documentation

Use Contrast 696



4. To filter by tags, select the filter next to the Vulnerability column of the grid, then select the tags to
filter.

5. You can also see tags next to the vulnerability name on the vulnerability's details page, and remove
them by selecting the X.

Track vulnerabilities
If you are using a bugtracker integration, you can track vulnerabilities in multiple ways:

• Send vulnerability data to other members of your organization.
• Plan and maintain timely patching to prevent attacks.
• Streamline workflows by sending vulnerability information directly to your bugtracking tool.
• Receive notifications of any new high or critical vulnerabilities in your application.

Before you begin

Be sure Contrast is integrated with at least one bugtracker (page 724) tool.

Steps

1. Select Vulnerabilities in the header.
2. To track a single vulnerability, hover over the end of the row for the vulnerability you want to track.
3. In the far right column, select the Send icon.

This option is also available from the vulnerability details page.

Contrast Documentation

Use Contrast 697



4. To track multiple vulnerabilities:
a. Select the check marks next to each vulnerability you want to track.
b. In the batch action menu at the bottom of the page, select the Send Vulnerability icon ( . ).
c. Select Send to bugtracker.

You can also choose to send the tracking data by email.
5. In the Send vulnerability window, select the bugtracker tool you want to use from the dropdown (if

you are integrated with multiple tools), add any related information, and select Send.
The vulnerability status updates automatically to Reported and an arrow icon displays next to
the status of the vulnerability. Hover over the arrow for more information, including the bugtracker
name and corresponding ticket numbers.

6. To quickly see which vulnerabilities are tracked, use the filter in the Vulnerability column and
select Being Tracked.

Contrast Documentation

Use Contrast 698



TIP
You can also export vulnerability data (page 700) to a CSV or XML file for custom
processing, or use the API to gather data outside the web interface.

Analyze vulnerability events
Contrast provides information on what it observed when navigating your application by using
vulnerability events. These events include the exact location where the vulnerability was found in the
code and how the code was used. There are several types of events:

• Source events: Source events occur at the start of a scope. You can use the file and line number
of the source event to see exactly where the call was made, and use the stacktrace in the source to
understand how the program invoked the notable method. You can also view all the data related to
the method, including the:
• Object: The underlying object instance on which this call is invoked (if not a static call).
• Return: The object returned from this call (or null, if void).
• Parameters: The objects passed into this call.

• Propagation events: Each vulnerability may contain one or more propagation events. These events
contain the same information as the source event, but they also have a type that indicates how the
data was propagated. For example, a P2R propagation event takes the data from one or more of the
parameters (the "P" in "P2R") and transfers it into the method return value (the "R" in "P2R").

• Tag events: These events add a tag, such as validated or html-encoded, to a vulnerability. These
tags help eliminate false positives and provide clean, reliable results. They also contain the same
contextual information as the other types of events. While tag events may occur within a vulnerability,
they have nothing to do with the vulnerability discovered.

• Trigger events: The trigger is the last event in the vulnerability. The trigger is the call that makes the
rule engine in the Contrast JVM Plugin perform its analysis, notice the vulnerability and generate the
trace.

IMPORTANT
Contrast only detects the actual behavior of an application. If a vulnerability doesn't
represent a legitimate problem, an administrator should update the applicable
policy (page 780) to prevent this issue from occurring again. The most commonly
reported false alarm is that the application has a custom control that Contrast doesn't
know about.

On-premises users can add a custom method call to the appropriate tag list in the
Contrast policy. For example, your custom HTML-encoder method that takes a string
and returns an HTML-encoded string should add the html-encoded tag to the data.

You can use Security controls (page 780) or Application exclusions (page 800) to
remediate false positives.

Fix vulnerabilities
When a vulnerability arises, you need to assess the risk according to your particular security needs. If
you decide to fix this vulnerability:

1. Learn more about the particular vulnerability by selecting the vulnerability name to open the details
page. Then select the How to fix tab to see suggested steps to resolve the issue.

Contrast Documentation

Use Contrast 699



2. Fix the vulnerability as you see fit.
3. Check a fixed vulnerability. There are three ways to do this:

• Replay the request: If the issue is remediated, you can replay the HTTP request. Select the
HTTP Info tab to see if the issue is fixed. If it isn't fixed, the issue reappears with a status of
Reported.

• Check build number: For each application, you can assign a build version number. Use session
metadata (page 531) to learn more about a vulnerability using the build number.
Add this property to the -javaagent command:

-Dcontrast.override.appversion

Provided you have set a build number during startup, you can use this as a filter and verify
whether the issue still exists for this build version by clicking the Advanced link and the Build
Number dropdown.

• Check by time unit tests: You can also filter by the time at which your unit tests were run,
and set a date range to view your vulnerabilities in the Set Date Range input field above the
vulnerabilities grid.

Export vulnerability findings
To export vulnerability details:

1. Select Vulnerabilties in the header, then use the check marks in the left column of the
vulnerabilities grid to select the vulnerability or vulnerabilities you want to use for the export.

2. In the batch action menu that appears at the bottom of the page, select the Export icon, then
select the format you want to use for the export (CSV or XML).

Contrast begins to export the data.
3. Check the Notifications panel ( ) to see when the export is completed. The notification contains a

link for you to download the exported data.
Exports contain the following information for each vulnerability:
• Vulnerability Name
• Vulnerability ID
• Category
• Rule Name
• Severity
• Status
• Number of Events
• First Seen
• Last Seen
• Application Name
• Application ID
• Application Code
• CWE ID
• Request Method
• Request Port
• Request Protocol
• Request Version

Contrast Documentation

Use Contrast 700



• Request URI
• Request Qs
• Request Body
• Instance ID

TIP
To create more complex custom software composition analysis reports about your
applications, you can use the Application API to access Contrast vulnerability data.

You may also explore additional details on your vulnerabilities using a manual method.

For, example, this curl request retrieves a list of vulnerabilities that also shows a list of
the applications in which each vulnerability was found. The jq tool formats the data as
CSV for use in a custom report.

curl \
    -H "Authorization: $(echo -n $username:$servicekey |
 base64)" \
    -H "API-Key: $apikey" \
    https://app.contrastsecurity.com/Contrast/api/ng/$orgid/
orgtraces/filter?expand=request | \
    jq -r '.traces[] |
 {uuid: .uuid, protocol: .request.protocol} |
 [.uuid, .protocol] | @csv'

Find CWEs associated with CVEs

If you want to find a Common Weakness Enumeration (CWE ) that's associated with a Common
Vulnerabilities and Exposures (CVE), use the National Vulnerability Database (NVD) .

While many CVEs have associated CWEs, some might not be classified under a specific CWE or may
be associated with multiple CWEs

Steps

1. Navigate to the NVD website.
2. Search for the CVE.

a. From the NVD menu, select Search.
b. Select Vulnerabilities - CVE.
c. In Keyword search, enter the CVE identifier (for example, CVE-2020-12345).
d. Select Search.

3. In the search results, select the CVE link.
4. To view the CWE details, under Weakness Enumeration, select any of the CWE links in the

displayed list.
Selecting a CWE link displays the CWE details in the CWE website.

Vulnerability status
Vulnerability status is shown in the vulnerabilities grid and can be any of the statuses shown in this
table. You can edit the vulnerability status.

Contrast Documentation

Use Contrast 701

https://api.contrastsecurity.com/
https://nvd.nist.gov/
https://cwe.mitre.org/


Status When to set this status

Reported This is the default status of a vulnerability after it is discovered by Contrast. The vulnerability in this
application could possibly be exploited.

Confirmed Confirm that the vulnerability is a true finding by reviewing the source code or exploiting it.

Suspicious The vulnerability appears to be a true finding based on the details provided, but requires more investigation
to determine its validity.

Not a problem The vulnerability is being accounted for without any source code changes. To set this status, you must select
one of these reasons. Vulnerabilities set to this status will not revert back to Reported if found again.

• Attack is defended by an external security control: There is another component in the environment,
such as a WAF, which will prevent this vulnerability from being exploited.

• False positive: This vulnerability was reported incorrectly. Contact Support to figure out why Contrast
flagged this trace as a vulnerability.

• Goes through an internal security control: There is custom, corrective code inside the application that
will prevent this vulnerability from being exploited.

• URL is only accessible by trusted power users: This vulnerability may only exist in specific
environments, such as test, and may not exist in production environments.

• Other: Select this option if there is another reason that no source code changes are required in order to
fix this vulnerability. It is possible to replace Other with a custom value (page 704) that explains why the
vulnerability is Not a problem.

Remediated The vulnerability has been fixed by changing source code or config files within the application.

Fixed The vulnerability has been fixed by changing the source code or because of a reason given under the Not a
problem status. A vulnerability set to this status will not revert back to Reported if found again. (This option
is only available to administrators.)

Remediated-
Auto-verified

This status can only be automatically set. (It can't be manually set by a user.) If a vulnerability is not reported
within the time limit set in the vulnerability policy (page 783), it will automatically be set to Remediated-
auto-verified.

Policies that are set to Reported, Confirmed, Suspicious are considered to be open. Policies that are
set to Not a problem, Remediated, Fixed, or Remediated-Auto-verified are considered to be closed.
You can filter vulnerabilities by Open to see only open statuses, or by All to see both open and closed
statuses.

If the agent reports a vulnerability and Contrast has never seen it before, Contrast creates a new entry
for the vulnerability. If that vulnerability already exists, Contrast updates the existing entry, issue count
and number of days since it was last detected. All vulnerabilities will be reopened with the same pre-
existing status, except those that were previously set to Remediated or Remediated-Auto-verified.
Those will be reopened as Reported.

Edit vulnerability status
To change the status of one or more vulnerabilities:

1. Select Vulnerabilities in the header.

Contrast Documentation

Use Contrast 702

https://support.contrastsecurity.com/hc/requests/new?ticket_form_id=360000011243


2. To edit a single vulnerability status, find the vulnerability you want to edit and select the status in
the Status column. You can also change the status from a vulnerability's overview page in the top
right corner.

To edit multiple vulnerabilities at a time, use the check marks in the left column to select the
vulnerabilities you want to edit. In the batch action menu that appears at the bottom of the page,
you will see the current status. Click to expand the menu.

3. Select a new status according to these criteria (page 701).

Contrast Documentation

Use Contrast 703



NOTE
An Organization Administrator can require approval (page 862) before some
vulnerabilities can be closed.

If this is the case, you will be required to submit a reason for your your
status change, and it will be set to Pending until it can be reviewed by an an
Organization Administrator or a RulesAdmin. Hover over Pending in the Status
column to see the date it was submitted.

You may change the status of a pending vulnerability. If approval isn't required for
the new status, the vulnerability is no longer marked as Pending.

You will receive a notification when your status change request is approved or
denied by an administrator. If denied, the vulnerability will go back to its previous
state; but, the administrator must provide a reason for the decision. That reason
will appear in the vulnerability's Activity tab.

4. In the window that appears, select a reason (in the case of Not a problem) and enter an
explanation for the status change. It is possible to set a custom reason (page 704) that
vulnerabilities are Not a problem.

Set a custom reason that vulnerabilities are Not a problem
Security teams may determine that a specific vulnerability does not need to be remediated with a
code change and set the vulnerability status to Not a problem. This helps teams focus on fixing
vulnerabilities and prevents Contrast from reporting these vulnerabilities again.

When you use Not a problem as a vulnerability status, you must select a reason. Contrast provides
standard reasons (page 701) as well as an Other option.

You can change the label Other to a value that is meaningful to your organization. To do this:

1. Go to Policy management settings for your organization.
2. Select Vulnerability management.
3. Select Set a custom label for Other.
4. Enter the reason you prefer. This is limited to 25 characters.
5. Save your change.

Contrast Documentation

Use Contrast 704



Now, when marking vulnerabilities as Not a problem, the values listed will include the custom reason
instead of Other.

NOTE
When you change Other to a custom label or change it back to Other, all the
vulnerabilities with that label will change to the new label for your organization.

Review pending vulnerability status changes
If an Organization Administrator has required approval for a particular vulnerability (page 862), the
status (page 701) won't change until it is approved. This can apply to manual vulnerability status
changes, two-way bugtracker integrations, as well as auto-verification policies.

You must be an Organization RulesAdmin with RulesAdmin permissions for the target application in
order to approve or deny vulnerability closures.

To do this:

1. Select the link in your notification in the Contrast application, or select Vulnerabilities in the
header, then select the filter at the top of the grid to view all pending reviews.

Contrast Documentation

Use Contrast 705



2. Use the check marks in the left column to select one or more vulnerabilities. In the batch action
menu that appears at the bottom of the page, select Review. Then select Approve or Deny. You
can also select Review in the top right from a vulnerability overview page.

3. If you deny the status change, you must provide a reason. Denied vulnerabilities revert to their
previous status. Approved vulnerabilities take the new status and are no longer marked Pending.
Either way the results of the review will display in the vulnerability's Activity tab.

Edit vulnerability severity
Contrast classifies vulnerabilities in an application into five severity levels. The classifications are based
on the likelihood and impact of a vulnerability in the application, from most to least severe:

• Critical
• High
• Medium
• Low
• Notes

To change a vulnerability's severity level:

1. Select Vulnerabilities in the header.
2. Select the colored badge in the Severity column and choose a new level from the menu. (You

cannot update the severity of multiple vulnerabilities at once.)

Attacks
Attacks are groups of attack events that target applications and servers. There are multiple attack
events that Contrast includes in an attack, including, but not limited to:

• SQL injection
• Untrusted deserialization
• Command injection
• Many other common vulnerability types

When Contrast detects multiple attack events from the same IP address within 30 minutes, Contrast
groups these events together as an attack. If Contrast sees new events from the same IP address after
you fix the code, Contrast shows a new attack.

The displayed dates on the dashboard for attacks seen are based on the time when the Contrast task
runs on the server, not your local timezone.

Event data retention
Contrast keeps attack event data for thirty days before removing it. To keep attack data for a longer
amount of time, do the following:

Contrast Documentation

Use Contrast 706



• Output to syslog (page 595)
• Set up a generic webhook (page 748)

A webhook receives data in a POST request only when a specified event occurs. When the webhook
sees the event, it collects the data and sends it to the specified URL.

• Select the arrow at the end of the attack row and then select Export attack (CSV) or (XML) from the
menu.

Tasks
In Contrast, you can:

• View attack details (page 707) such as which application and server was attacked and the location
in the code where the attack occurred.

• Manage attacks (page 710) by taking actions on attacks and attack events. For example, you can
configure a Protect rule for specific attack events.

• Monitor attacks (page 709) in an overview of current and past attacks..

View attacks
The Attacks list shows all attacks that have occurred in an organization.

Steps

1. Select Attacks in the header.
2. To view all attacks that occurred in your organization, select the Attacks tab.
3. To filer the view, select one of these filters:

• All: Shows all attacks
• Effective: Shows attacks with a status of Blocked, Suspicious, and Exploited.
• Production: Shows attacks that occurred in a production server
• Active: Shows attacks that are currently in progress
• Manual: Shows attacks that have less than 20 requests per second. It could indicate that a

human is generating attacks.

Contrast Documentation

Use Contrast 707



• Automated: Shows attacks that have more than 20 requests per second. It could indicate that a
malicious bot is generating attacks.

4. To view more details on the attack, select source name or IP address in the Source IP column.
5. To see each attack event in the attack, select the Overview tab.
6. For more filters, select Advanced next to the date range and select a filter.

7. To see more details about the attack event, select Source IP.
8. To view the time of each event, under Attack duration, select See timeline.

Contrast Documentation

Use Contrast 708



9. To see more details including the rate of events, severity, and attacker, select  the Notes tab.
10. To share or view communications with your team, select the Discussion tab.

Read existing comments or enter a new comment and click Add Comment.

Attack details
The attack data that Contrast displays includes these items:

• Source IP: The IP address from which the attack is originating.
• Status: The current status of the attack.

An attack status is determined by the highest severity status of the attack events within the attack.
If any event has an Exploited status, the attack status will be Exploited. If there are no Exploited
events, the status will be the next highest severity event's status. The severity order, starting with the
highest, is:
• Exploited: If Contrast detects and confirms a definite attack but the mode for the applicable rule is

set to Monitor, Contrast does not block the request.
This status only applies to input tracing rules where Contrast is confident that an attack occurred.
Confirmed attacks are those that met a high confidence threshold at the perimeter, or those that
are watched and verified at the sink.

• Suspicious: If Contrast detects an attack and the applicable rule reports the attack as suspicious,
but the mode for the rule is set to Monitor, Contrast does not block the request. This status applies
to non-input tracing rules, where Contrast is unable to verify that an attack occurred.

• Blocked: If Contrast detects an attack and the mode for the applicable rule is set to Block,
Contrast blocks the request.

• Blocked (P): This status applies to rules that support both Block At Perimeter and Block modes.
If Contrast detects an attack before the application can process the request and the mode for the
applicable rule is set to Block At Perimeter, Contrast blocks the request.
If Contrast detects an attack that is not at the perimeter, it blocks the request and the status is
Blocked, even if the mode for the rule is set to Block At Perimeter.

• Probed: If Contrast detects an attack but cannot confirm it and the mode for the applicable rule is
set to Monitor, Contrast does not block the attack. Unconfirmed attacks are those that did not meet
a high confidence threshold at the perimeter; they are watched but not detected at the sink.

• Application: Specific applications that saw attack events from the IP address while the attack was
active.

• Server: Specific server that saw attack events from the IP address while the attack was active.
• Rule: Any attack type identified from the IP address while the attack was active.
• Start: The timestamp of the first attack event seen from the IP address during the attack time frame.
• End: The timestamp of the last attack event seen from the IP address during the attack time frame.
• Events: The number of attack events that comprise the attack.

Monitor attacks
You can see an overview of current and past attacks, the IP addresses of attackers, attack types, and
which applications were exploited.

1. Select Attacks in the header.
2. If an attacker has a source name (page 806), you can hover over it to see a list of associated IP

addresses .
If an attacker doesn't have a source name, their avatar will show a question mark. If an attacker
has successfully exploited an application, their avatar will be red.

NOTE
If the data reported for an attack event matches more than one source name,
Contrast applies the most recently updated name.

Contrast Documentation

Use Contrast 709



Click on a IP address or source name to see details for that attacker.
3. To filter attacks you can:

• Filter attacks by date range and environment. 
• Search to find attacks by a specific attacker IP or source name.
• Search by affected applications or specific Assess or Protect rules.
• Check Show probed to include information for attack events that resulted in a “Probed” status.

4. Under Attack events you can see a list of the types of attacks detected, along with the total
number of attack events per type.

5. Under Target application, you can see each application targeted by an attack.

Manage attacks

Before you begin

Ensure that Protect is enabled on the servers that host your applications. The Contrast header displays
Attacks only when Protect is enabled.

Steps
To take action on attacks and attack events, use the following procedures.

1. View attacks or attack events.
a. Select Attacks in the header.

b. Select the Attacks tab or the Attack Events tab.
2. (Optional) Tag attacks or attack events.

Tagging attacks or attack events lets you organize them for better search results.
a. Select one or more attacks or attack events.
b. Select the tag icon ( ) above the list.
c. In the Tag Attacks window, enter a name for one or more tags.

3. Suppress attacks or events.
Suppressing attacks removes an attack and its related events from view. To suppress an attack or
an attack event, use the following procedure:
a. On the Attacks or Attacks Events list, select the check box for one or more rows and select the

Suppress Attacks or Suppress Events icon ( ).
Alternatively, select the arrow at the end of a row and select the Suppress Attacks or
Suppress Events option in the dropdown.

b. Click Suppress.
4. Block IP addresses

This option blocks a specified IP address (page 805). Blocking an IP address prevents unwanted
activity from a specific IP address in the future.
a. At the end of an attack or attack events row, select the dropdown ( ).
b. From the menu, select Denylist IP.
c. Enter a name for the rule that blocks the specified IP address.
d. Select a date when the block expires.
e. Click Save.

5. Add exclusions (attack events)
Adding application exclusions (page 801) lets you exclude certain applications, or parts of them,
from security analysis.
This option is available if you are using Java, .NET Framework, .NET Core, Python, Node.js, Go, or
Ruby agents.

Contrast Documentation

Use Contrast 710



a. In the Attack Events list, at the end of an attack events row, select the dropdown ( ).
b. Select Add Exclusion.
c. Specify a name for the exclusion.
d. Select the exclusion type and enter the details for that type.
e. Select the rules for which the exclusion applies.

To see a list of rules, click the Applicable rules box.

f. (Optional) Select the checkbox to suppress all events that match the exclusion.
g. Click Add.

6. Create a virtual patch (attack events):
Virtual patches (page 797) are short-term, custom defense rules that defend against specific,
newly-discovered vulnerabilities in your code.
a. In the Attack Events grid, at the end of an attack events row, select the arrow.
b. Select Create Virtual Patch.
c. In Add Virtual Patch (page 797), enter the details for the virtual patch.
d. Click Save.

7. Specify modes for Protect rules (attack events):
Protect rules (page 789) let you monitor or block specific kinds of cyber-attacks in application
environments.
a. In the Attack Events list, select an event.

This action displays the details for the attack event.
b. Select the settings icon (  ) next to the event name.
c. As needed, change the modes for each rule by selecting Change Mode or the current mode

or a specific environment.

d. Select the appropriate modes for each environment.
8. Save attack data:

Contrast keeps attack event data for thirty days before removing it. You have several options for
saving your data:

Contrast Documentation

Use Contrast 711



• Output the data to syslog. (page 595)
• Set up a generic webhook (page 748).

A generic webhook can receive notifications on any URL that receives POST messages.
• Export the data to a CSV or XML file.

At the end of an attack row, select the arrow at the end of the row and select Export attack
(CSV) or Export Attack (XML).

Add tags to attacks

To make it easier to find specific attacks or attack events, use tags.

Steps

1. Add tags to attacks or attack events:
a. Select Attacks in the header.
b. Select Attacks or Attack events.
c. Select the check box next to one or more attacks or attack events and select the tag icon ( ).
d. In the Tag attacks or Tag attack event window, select an existing tag or create one.
e. Select Save.

2. Use tags to find attacks or attack events:
a. On the Attacks or Attack events page, select Advanced next to the search boxes.

b. Expand the Tags section.

Contrast Documentation

Use Contrast 712



c. Select the check box next to one or more tags.
The display changes to show the attacks or attack events that have the selected tags.

Run attack scripts
To see how Contrast captures attack data, you can run an attack script using Nikto, an open-source
web server scanner.

NOTE
To run an attack script you must have a Contrast agent installed (page 48) and an
application with Contrast Protect enabled (page 811).

To run an attack script:

1. Run ./nikto.pl in your terminal to make sure Nikto is configured correctly. If it is, you'll see a
default help message return.

2. In Contrast, ensure that the IP address of the machine running Nikto isn’t denylisted.
3. In the terminal, go to the program directory.
4. Initiate a scan by running

Contrast Documentation

Use Contrast 713

https://cirt.net/Nikto2


./nikto.pl -useragent “MyAgent (Demo/1.0)” -h http://www.your-site.com

NOTE
If your web application has its files under a certain directory, use the -r option to
prepend a directory.

5. Once the script has finished running, Contrast will alert you about a new attack with an in-app
notification and email.

6. Select the alert or go to Attacks to see a summary of the attack. To learn more about an individual
attack, select Source IP.

Contrast Security GitHub App
Use the Contrast Security GitHub App (also known as Contrast Security SCA in the GitHub
Marketplace) to scan GitHub repositories with Contrast. Detect vulnerable libraries with how-to-fix
guidance, and automate your CI/CD to prevent risk, at an earlier step, in your team’s code.

How it works
For first-time use, sign in to Contrast, start connecting your GitHub account to Contrast and scan for
library vulnerabilities in a repository.

Once connected and scanned you can view the results in the Projects (page 519) list in Contrast.

You can also connect from the GitHub Marketplace (page 716) with the Contrast Security GitHub App.

With this app, you can:

• Scan a GitHub repository
• Automate the security analysis of dependencies so that vulnerabilities can be detected and resolved

during code review rather than after detection or exploitation in testing or production environments
• Any commits to the default branch and PRs created to merge into the default branch will trigger the

workflow file. In addition, you can manually trigger the workflow.

Contrast Documentation

Use Contrast 714



• Users with edit, rules admin, or admin permissions will have access to the app

Contrast Security GitHub App supported languages
The Contrast Security GitHub App supports the following languages:

• Java
• Node.js
• JavaScript
• Python
• PHP
• Ruby

For details on the supported versions see the Contrast CLI supported languages and package
managers (page 666) page.

Installation and authorization
Connect your GitHub account to see vulnerable third-party libraries. Once connected you can monitor
PR summaries and triggers for analysis and view them here in Contrast.

NOTE
There is another method for monitoring vulnerabilities in Contrast. Integrate Contrast
with Github (page 752) to view vulnerabilities in projects.

Contrast and GitHub secrets
Contrast cannot read GitHub secrets even though the screen contains READ/WRITE secrets. This is
only a readout of the token name.

You will need the following credentials from your Contrast account to create the secrets in GitHub. You
can find them in Contrast under user menu > User settings > Profile.

• API key (CONTRAST_API_KEY)
• Organization ID (CONTRAST_ORGANIZATION_ID)
• Authorization header (CONTRAST_AUTH_HEADER) 

You will also need the address of the Contrast installation you would like your agent to report to
(CONTRAST_API_URL). Defaults to: https://app.contrastsecurity.com.

The Contrast Security GitHub App creates repository secrets and action variables for use in the
workflow so results are sent to the correct Contrast account. Closing a PR will require these secrets
and variables to be manually deleted. You can find the secrets and variables under the /settings/
secrets/actions page of your GitHub account.

Before you begin

• Make sure you have access to the Contrast web interface.
• Make sure you are logged in to your GitHub account.

Steps
To install from within Contrast:

1. Log in to Contrast and select Add New at the top right.

Contrast Documentation

Use Contrast 715



2. Select the Connect GitHub option and click Next.
3. On the install screen, select either to connect all the repositories or specific repositories.
4. Enter the URL of your Contrast host domain. For example, https://app.contrastsecurity.com.
5. Select Install and wait for the connection to be established between Contrast and GitHub.
6. Select Authorize to finalize the connection and to onboard your repositories.

Once complete, you can view your repository analysis results on the Projects (page 520) list.

To install from the GitHub Marketplace:

1. Go to the Contrast Security GitHub app on the GitHub Marketplace.
2. Select Install it for free.
3. Follow the steps to install and connect Contrast with your repositories.

Once complete, you can view your repository analysis results on the Projects (page 520) list.

Add or disconnect GitHub repositories
Add repositories to Contrast or disconnect repositories from Contrast.

NOTE
An Organization Editor role is required at minimum to be able to add repositories.

Add a repository
You can add additional repositories in Contrast with the Add repository button under the Projects view
in Contrast or through GitHub.

To add a repository through Contrast:

1. Select Projects in the header.
2. Click the Add repository button in the upper-right of the window.
3. Log in to your GitHub account a select the repository you would like to connect to Contrast.

Once added, Contrast performs a scan of the repository and provides results in the Projects (page 519)
list.

To add a repository through GitHub:

1. In Github, go to Settings > Applications > Integrations and locate the Contrast Security GitHub
App.

2. Under Repository access select the repositories you want to connect to Contrast.
3. Click Save.

Once added, Contrast performs a scan of the repository and provides results in the Projects (page 519)
list.

Disconnect repositories
To disconnect repositories from the Projects list in Contrast:

1. Select Projects in the header and locate the row in the grid for the project you want to disconnect.
2. Click the Delete icon under the actions column.

Contrast Documentation

Use Contrast 716

https://github.com/apps/contrast-security-sca


This action disconnects the repository and all associated projects in it. Note that this does not remove
the repository from the Contrast Security GitHub App installation. If you also wish to remove Contrast’s
permissions to this repository, you will need to remove access through the GitHub App installation
settings after disconnecting the repository here to ensure proper cleanup.

Remove access to your repositories and uninstall the Contrast Security GitHub App through GitHub. In
Github, go to Settings > Applications > Integrations and locate the Contrast Security App. Select
Uninstall.

Troubleshoot
If you are unable to complete installation and onboarding through the GitHub App, try these options.

• Look at cookies. Clear the ONBOARDING_SESSION cookie manually
• Reinstall the app. Close the browser and uninstall the app; then reinstall the app

If you are unable to run any workflows:

• Check Actions permissions in GitHub. Make sure the Disable actions option is not selected under
the permissions tab of your GitHub account settings. If the option is selected, then the workflow will
not run and perform the analysis.

Reports
All Contrast reports, with the exception of the Software bill of materials, are delivered as time-stamped
PDFs that are downloaded locally.

These reports are available:

• Attestation reports (page 717)
• DISA STIG viewer checklists (page 719)
• Software bill of materials (page 720)
• Remediation summary report (page 723)
• Vulnerability trend report (page 721)
• Organization statistics (page 722)

Attestation reports
Attestation reports provide evidence of vulnerability remediation based on the most current application
information. Meet compliance and auditing requirements with these PDF reports.

As of November 7, 2023, this report replaces the Security standards report. The Attestation report
provides similar information as the Security standards report. It will help you meet compliance
requirements and Identify areas of urgent attention.

NOTE
This report expires seven days after you create it. Contrast deletes the report after this
time.

Attestation reports include:

• An itemized list of the specific filter settings used to run the report
• A summary of the security posture for the application

Contrast Documentation

Use Contrast 717



• Vulnerabilities assessment for both custom code and open-source libraries. Note that critical
severities will not be displayed in this section if CVSS 3.1 has not been turned on for existing
organizations. To enable this, contact Contrast Support.

• Route coverage as a security assessment metric
• An optional compliance policy assessment and detailed information about open vulnerabilities for the

application
• An appendix that describes methodologies and terminologies

Before you begin
An Attestation report has the following limits:

• 1,350 vulnerabilities with details
• 18,000 vulnerabilities without details
• 15,000 routes with observations
• 30,000 routes without observations

If your report exceeds these limits, an error message displays and the report doesn't generate. If this
situation occurs, change your report selections to reduce the amount of information in the report.

Steps to generate an Attestation report

1. Select Applications in the header.
2. Select an application in the Applications grid.
3. Select the Reports icon ( ) located at the top-right of the application's page.
4. Select Generate Attestation Report from the list.
5. In the Attestation report window, select the Vulnerabilities, Environments, and

additional Security Standards that you want to include in the report.

The default is to show all vulnerabilities and environments, but you can filter them by selecting
the fields and then, selecting filters. Choose an option from Security Standards to include an
additional Security Standards section in the generated report.
Optionally, you can choose to include detailed information about open vulnerabilities and observed
routes.
The following table includes the categories that you can use to create a custom report.

Contrast Documentation

Use Contrast 718

https://support.contrastsecurity.com/hc/requests/new?ticket_form_id=360000011243


Category Default Filter options

Vulnerabilities All • Status (Reported, Suspicious, Confirmed, Not a Problem, Remediated, Fixed,
Remediated - Auto-Verified)

• Severity (Note, Low, Medium, High Critical)
• Assess Rules

Vulnerability details None Include vulnerability details by selecting the checkbox for it.

Route observations None Include details about observed routes by selecting the checkbox for it.

Environments All • Development
• QA
• Production

Security Standards None • DISA ASD STIG
• IPA-7.0
• OWASP 2013 Top 10
• OWASP 2017 Top 10
• OWASP 2021 Top 10
• OWASP Top 10 API Vulnerabilities 2019
• PCI DSS - 2.0
• PCI DSS - 3.0
• PCI DSS - 3.2.1
• PCI DSS - 4.0

6. Select Generate.
After Contrast generates the report, the Notifications panel displays a download link for it.
Select the link to download the report.

DISA STIG Viewer checklists
DISA's Security Technical Implementation Guide (STIG) is the basis for evaluation of the security
of all government applications. The STIG is intended to be used throughout the life cycles of these
applications in order to provide security assurance for these applications. Contrast’s compliance
reporting can provide a listing of the vulnerabilities found in your application that violate guidelines
of multiple STIGs.

IMPORTANT
An application must have an Assess license to run a DISA STIG report.

Before DISA STIG reports can be run, a SuperAdmin must enable it. Select
SuperAdmin in the user menu, then select Organizations in the header. In the
window that appears, select the box to Enable DISA STIG Checklist reporting and
select Save.

STIG Viewer creates custom checklists with multiple STIGs for compliance reporting. You must import
your application's checklist to get the DISA STIG report on those vulnerabilities from Contrast.

To run a STIG Viewer checklist:

1. Go to the Applications page and select an application.
2. In the application’s Overview page, click the reporting icon and select Generate STIG Viewer

Checklist.
3. In the window that appears, import a STIG Viewer checklist (.ckl) file. This file must be a checklist

exported from the STIG Viewer application.
4. Click Generate to download an updated STIG Viewer checklist (.ckl) file.

Contrast Documentation

Use Contrast 719



Software bill of materials (SBOM)
A Software Bill of Materials (SBOM) might be required for compliance with government security
regulations.

You can generate an SBOM through Contrast, through a simple API, or with a command through the
Contrast command line interface (CLI).

The Contrast SBOM meets the specifications of the OWASP's CycloneDX SBOM standard and the
international open SPDX standard. It contains information about the software that your application uses
including:

• Libraries - Open source and third-party components present in a codebase
• Licenses that govern the software components
• Versions of software components used in the codebase

NOTE
Currently supports CycloneDX v1.4 and SPDX 2.2.

The Contrast SBOM also meets the requirements of the National Telecommunications and Information
Administration (NTIA). It includes the author name, supplier name, component name and version,
component relationship, timestamp and other unique identifiers like PURL and package SPDX identifier.

Before you begin
• A Contrast Assess license is required for export via Contrast
• Supported languages: Java, .NET Framework, .NET Core, Node.js, Python, Ruby, Go, PHP

Steps
There are three options for generating an SBOM report.

1. To generate a report with Contrast:
a. Select Applications in the header.
b. Select the Reports icon (  ) located at the top of the application list.
c. In the dropdown, select Generate Software Bill Of Materials (SBOM) to generate and

download a copy of the SBOM. Supports CycloneDx and SPDX standards.
2. To generate a report with API:

a. For CycloneDX: Make a GET<HOST>/Contrast/api/ng/<ORG_ID>/applications/
<APP_ID>/libraries/sbom/cyclonedx request.

b. For SPDX: Make a GET<HOST>/Contrast/api/ng/<ORG_ID>/applications/
<APP_ID>/libraries/sbom/spdx request.

See REST API for more information about using APIs.
3. To generate a report with CLI:

• Use the --save command. Choose the type with --save cyclonedx or --save spdx.
See CLI commands (page 674) for more information.

NOTE
• .NET support is currently limited for CLI.
• Use the CLI to generate the SBOM for static SCA (page 599) results.
• The SBOM generated via CLI will provide class usage information of the

application the CLI is registered to that has library data.

Contrast Documentation

Use Contrast 720

https://api.contrastsecurity.com/


Vulnerability trend reports
Use the vulnerability trend reports to recognize the vulnerabilities your applications face and how well
they're being managed.

To view vulnerability trend reports:

1. Select Reports in the user menu. Select View to see the graphs in more detail.
2. Select New to see a graph of new vulnerabilities. Select Total to see a graph of all reported

vulnerabilities compared to all remediated vulnerabilities.
Each black data point represents the total number of Suspicious, Confirmed and Reported
vulnerabilities for that date. Each green data point represents the total number of vulnerabilities
marked as Not a problem, Remediated or Fixed. Hovering over each data point generates a
tooltip with status breakdowns.

3. Each report defaults to all applications, servers and rules. Filter vulnerabilities by clicking in the
fields above the graph. The following table outlines the categories that you can use to create a
custom report.

Field Default Filter options

Date Last 7 days Last 30 days

Last 12 weeks

Last 12 months

Applications All Importance (Critical, High, Medium, Low, Unimportant)

Application Tags

Licensed (List of all applications)

Servers All Environment (development, test, production)

Server Tags

Servers (List of all servers)

Rules All Severity (Critical, High, Medium, Low, Note)

Vulnerability Tags

Vulnerability Rules (List of all rules)

4. Select View, then select the Save report icon in the top right to save this filter criteria to a report.
Name the report in the window that appears and select Save. Saved reports are unique to the user,
so you have your own defined list of saved vulnerability trend reports. You can edit or delete these
reports at any time.
If you change filter options while viewing a saved report, the star icon changes to an unsaved
state and Edited appears next to the report name. You can then use the same icon to Save
existing or Save as new. Choose Save existing to update the saved report name with the current
filters and remove the Edited status. Choose Save as new to save the report view with the current
filters as a new report under a different name.
Click Remove to permanently delete the saved report that you're currently viewing.
To clear unsaved edits to an existing report and start over with the report defaults, choose the Start
a new report option in the dropdown.
When you've created more than five saved reports, you will see a Manage link in the Saved
reports dropdown. Select Manage to open this window. Here you can rename reports (click on the
name to edit), search for reports, or use the check boxes next to each report (or use the Select
all check box) to select which ones you want to remove.

Contrast Documentation

Use Contrast 721



5. You can also create a timestamped PDF export of the Vulnerability Trend to capture a snapshot
of your vulnerability management. Select the Export icon in the upper right hand corner of the
page. Contrast downloads the report to your desktop. Each PDF report includes a summary of
the variables included in your customized view, the trend graphic, and a table of the metrics and
breakdowns of each data point.

Organization statistics
Select Reports in the user menu to find vulnerability trends (page 721), as well as organization level
information on:

• Licenses: View the number of overall licenses for Assess and Protect, as well as the number of
unlicensed applications and servers that exist in your organization.

• Applications: The inner ring designates the breakdown by language. Choose the categories you
want to compare in the outer ring by selecting Technology or Grade in the dropdown.

• Servers: Select Container or Environment in the dropdown to choose how the numbers are
analyzed.

Use the filters in the dropdowns to choose which data to compare at a glance.

Select View for more details including:

• Licenses: Under Activity, view an activity trend chart of data on license consumption over the past
year.
Hover over a data point on the Assess or Protect trend lines to see how many licenses were used
each month. The dotted line shows the number of licenses purchased.
Click on the vertical bars in the chart to view your hourly usage of Protect licenses for each day. Peak
hourly usage is represented by bright green shading at the top of the bars. Select Back to license
activity to return to your view of license activity data.
Select View Protect usage below the activity chart to see data for the current month and a usage
statistics. Use the dropdown to view data for a different month.
Under Consumption, you can see a thermometer chart and a timeline for Assess and Protect. The
thermometer chart shows the total number of licenses purchased compared to the number being
used. The timeline shows how many licenses are about to expire on given dates.
The circular charts on the right show breakdowns by fraction and percentage for Assess and Protect.
If your organization doesn't own any Protect or Assess licenses, the chart shows the count of
unlicensed assets.

Contrast Documentation

Use Contrast 722



• Applications: Under Status you can see the total number of applications broken down by the
number that are licensed, unlicensed and archived, as well as how many licenses are available in
your organization.
The circular Language Breakdown chart shows the number of applications, broken down by language
in the inner band, and by technology in the outer band. Hover for more details.
Under High risk and Expirations you can see the number of applications with critical open
vulnerabilities and expiring licenses.
Under Protection coverage you see the number of applications on production servers that have
incomplete coverage. Select View breakdown for more details.
Applications that were added within the last week and applications that reside on an offline server are
listed separately in the sidebar.

• Servers: Under Environments, you can see all deployed servers by environment.
Under Container breakdown you can see the number of deployed servers for each language in a
given environment. Use the dropdown to view data for a different environment.
Under Snapshots, you can see the number of servers with Assess and Protect enabled, as well as
all servers online compared to the total number of servers in the given environment.
The right sidebar includes a list of new, offline, deleted and expiring servers.

Remediation summary package 

The remediation summary package contains a set of charts, in PDF format, that help you determine
how well your remediation process is working. The Remediation summary section on the Reports page
has a download button that lets you download the report package.

Contrast updates the charts on a monthly basis. This date is displayed below the Download charts
button.

The report package also includes a README file that provides guidance for interpreting the charts.

Before you begin

• Diagnostic reporting (page 931) must be enabled.
The Reports page does not display the Remediation summary section if diagnostics are disabled.

• The View applications action is required.

Steps

1. From the user menu, select Reports.
2. In the Remediation summary section, select Download charts.

3. Save the ZIP file in a convenient location.
4. Extract the files and view the README file and the individual charts.

Contrast Documentation

Use Contrast 723



Integrations

Documentation is provided for supported integrations that are part of the core, recommended way
that Contrast works. Contrast may be compatible with other tools or scenarios developed by the
community that are not supported. For specific information on third-party tools and technologies, consult
the documentation for that product. Also, there are additional articles in the  Contrast Support
Portal around specific use cases or workarounds.

NOTE
Note that supported integrations are further documented in the left-hand navigation
menu. Community integrations are linked to external documentation. Links to
documentation in the Contrast Support Portal or third-party sites are indicated by
the  icon.

You must have the organization administrator role in Contrast to view the integrations
available to your organization.

Cloud integrations
Run your application with Contrast while still deploying on your favorite PaaS.

AWS Elastic Beanstalk Java agent with AWS Elastic
Beanstalk (page 100)

AWS Security Hub AWS Security Hub with Contrast
Assess (page 736)

Contrast Documentation

Integrations 724

https://support.contrastsecurity.com/hc/en-us
https://support.contrastsecurity.com/hc/en-us


AWS Security Lake AWS Security Lake with Contrast
Assess (page 738)

Google App Engine Configure the Java agent for Google
App EngineGoogle App Engine

Jira Cloud Jira Cloud integration with Contrast
Scan (page 769)

Microsoft Azure .NET and Azure App Service

.NET and Azure Arm

.NET and Terraform

Red Hat OpenShift Contrast Security containers

VMware Tanzu

(formerly Pivotal Cloud Foundry)

Configure Java for VMware
Tanzu (page 95)

Configure Node.js for VMware
Tanzu (page 299)

Contrast Documentation

Integrations 725

https://support.contrastsecurity.com/hc/en-us/articles/4404566904340
https://support.contrastsecurity.com/hc/en-us/articles/4404566904340
https://support.contrastsecurity.com/hc/ja/articles/4404566904340
https://support.contrastsecurity.com/hc/en-us/articles/360054038932--NET-and-Azure-App-Service
https://support.contrastsecurity.com/hc/en-us/articles/360054040752--NET-and-Azure-ARM
https://support.contrastsecurity.com/hc/en-us/articles/360054546951--NET-and-Terraform
https://catalog.redhat.com/software/containers/contrastsecurity/java-agent/5c8167d6ecb5240adfab562f


Chat tools
Be the first to know about new vulnerabilities in or active attacks against your application as Contrast
discovers these security issues in real-time.

Microsoft Teams Teams Integration (page 770)

Slack Slack Integration (page 773)

Code repository integrations
Add Github actions to your repository.

Contrast Amazon Elastic
Kubernetes Service Build Deploy

Contrast Amazon EKS Build Deploy

Contrast Azure Kubernetes Service
Build Deploy

Contrast AKS Build Deploy

Contrast Documentation

Integrations 726

https://github.com/marketplace/actions/contrast-security-eks-build-deploy
https://github.com/marketplace/actions/contrast-security-aks-build-deploy


Contrast Azure Spring Cloud Deploy Azure Spring Cloud Deploy

Contrast Scan Action  Contrast SCA Action

Contrast Scan Analyze Contrast Scan Analyze

Contrast Verify Contrast Verify

Continuous integration and build tools
Add application security gates into your automated pipelines to prevent vulnerabilities from getting
deployed into production environments.

Contrast Documentation

Integrations 727

https://github.com/marketplace/actions/contrast-security-azure-spring-cloud-deploy
https://github.com/marketplace/actions/contrast-security-sca
https://github.com/marketplace/actions/contrast-scan-analyze
https://github.com/marketplace/actions/contrast-verify


Azure DevOps Azure Pipelines Extension (page 742)

Azure Pipelines Marketplace

Bamboo Bamboo Plugin (page 745)

Contrast Security for Bamboo
Marketplace

Contrast Bamboo Plugin Source
Code

CircleCI Orb Registry

Contrast Security Orb for CircleCI

Contrast SCA Action  Contrast SCA Action

Contrast Scan Analyze Contrast Scan Analyze

Contrast Verify Contrast Verify

GitLab How to integrate Contrast in a GitLab
pipeline

Contrast Documentation

Integrations 728

https://marketplace.visualstudio.com/items?itemName=contrast-security.contrast-integration
https://marketplace.atlassian.com/apps/1219111/contrast-security-for-bamboo?hosting=server&amp;tab=overview
https://marketplace.atlassian.com/apps/1219111/contrast-security-for-bamboo?hosting=server&amp;tab=overview
https://github.com/Contrast-Security-OSS/contrast-bamboo-plugin
https://github.com/Contrast-Security-OSS/contrast-bamboo-plugin
https://circleci.com/developer/orbs/orb/contrastsecurity/verify
https://circleci.com/developer/orbs/orb/contrastsecurity/verify
https://github.com/marketplace/actions/contrast-security-sca
https://github.com/marketplace/actions/contrast-scan-analyze
https://github.com/marketplace/actions/contrast-verify
https://support.contrastsecurity.com/hc/en-us/articles/5129761990548
https://support.contrastsecurity.com/hc/en-us/articles/5129761990548


Gradle Gradle Plugin (page 753)

Gradle.org and Contrast Plugin

Contrast Gradle Plugin Source Code

Sample Project

Jenkins Jenkins Plugin (page 755)

Contrast Continuous Application
Security

Jenkins Source Code

Maven Maven Plugin (page 88)

Maven Central Repository

Contrast Maven Plugin Source Code

Sample Project

Enterprise and extensibility integrations
Use Contrast's SDKs and webhooks to build custom services and/or notify them upon the discovery of
new vulnerabilities or attacks using webhooks.

Azure Active Directory Azure Active Directory single sign-on
(SSO) integration

Contrast Documentation

Integrations 729

https://plugins.gradle.org/plugin/com.contrastsecurity.contrastplugin
https://github.com/Contrast-Security-OSS/contrast-gradle-plugin
https://github.com/Contrast-Security-OSS/Contrast-Sample-Gradle-Application
https://plugins.jenkins.io/contrast-continuous-application-security/
https://plugins.jenkins.io/contrast-continuous-application-security/
https://github.com/jenkinsci/contrast-continuous-application-security-plugin
https://search.maven.org/search?q=a:contrast-maven-plugin
https://github.com/Contrast-Security-OSS/contrast-maven-plugin
https://github.com/Contrast-Security-OSS/vulnerable-spring-boot-application
https://docs.microsoft.com/en-us/azure/active-directory/saas-apps/contrast-security-tutorial
https://docs.microsoft.com/en-us/azure/active-directory/saas-apps/contrast-security-tutorial


Contrast CLI Contrast CLI (page 665)

NPM

Java SDK Contrast Java SDK

JavaScript SDK Contrast SDK Javascript

NPM

.NET SDK Contrast SDK .NET

nuget

Contrast Documentation

Integrations 730

https://www.npmjs.com/package/@contrast/contrast-cli
https://github.com/Contrast-Security-OSS/contrast-sdk-java
https://github.com/Contrast-Security-OSS/contrast-sdk-javascript
https://www.npmjs.com/package/contrast-sdk
https://github.com/Contrast-Security-OSS/contrast-sdk-dotnet
https://www.nuget.org/packages/ContrastRestClient/


Python SDK Contrast SDK Python

Webhooks Generic Webhooks (page 748)

IDE plugins
Learn about your applications' vulnerabilities and receive remediation guidance while in your favorite
development environment.

Eclipse Contrast Security for Eclipse
Marketplace

Intellij Contrast Intellij Plugin (page 754)

Contrast Security for Intellij
Marketplace

Contrast Documentation

Integrations 731

https://github.com/Contrast-Security-OSS/contrast-sdk-python
https://marketplace.eclipse.org/content/contrast-eclipse
https://marketplace.eclipse.org/content/contrast-eclipse
https://plugins.jetbrains.com/plugin/10335-contrast
https://plugins.jetbrains.com/plugin/10335-contrast


Visual Studio Visual Studio Plugin (page 774)

Contrast for Visual Studio
Marketplace

Visual Studio Code Visual Studio Code Plugin (page 775)

Contrast Security Plugin Marketplace

Visual Studio for Mac Visual Studio for Mac
Plugin (page 776)

Extension file

Incident management systems
Be confident that on-call personnel will be equipped to take necessary action against attacks on your
application.

PagerDuty PagerDuty Integration (page 771)

Contrast Documentation

Integrations 732

https://marketplace.visualstudio.com/items?itemName=contrast-security.contrast-vs-ext
https://marketplace.visualstudio.com/items?itemName=contrast-security.contrast-vs-ext
https://marketplace.visualstudio.com/items?itemName=ContrastSecurity.contrastsecurity
https://github.com/Contrast-Security-OSS/contrast-vsmac-plugin-distro/releases


Splunk on-call

(formerly VictorOps)

VictorOps Integration (page 773)

SIEM tools
Receive operational insights into application security threats from Contrast's instrumentation activities
directly in your security information and event management (SIEM) tool.

Azure Sentinel Contrast Protect Azure Sentinel
Solution

Azure Sentinel

Datadog Source Code

Splunk How to integrate Contrast with
Splunk

Contrast Documentation

Integrations 733

https://azuremarketplace.microsoft.com/en-ca/marketplace/apps/contrast_security.contrast_protect_azure_sentinel_solution
https://azuremarketplace.microsoft.com/en-ca/marketplace/apps/contrast_security.contrast_protect_azure_sentinel_solution
https://github.com/Contrast-Security-OSS/Azure-Sentinel
https://github.com/Contrast-Security-OSS/ContrastDataDogDashboard
https://support.contrastsecurity.com/hc/en-us/articles/360038132091-How-to-integrate-Contrast-with-Splunk
https://support.contrastsecurity.com/hc/en-us/articles/360038132091-How-to-integrate-Contrast-with-Splunk


Sumo Logic  Source Code

Work tracking platforms
Azure Boards Azure Boards Integrations (page 739)

Bugzilla Bugzilla Integration (page 746)

Github GitHub Integration (page 752)

Jira Jira Integration (page 764)

Kenna Security Kenna toolkit

Running Contrast Security tasks

Contrast Documentation

Integrations 734

https://github.com/Contrast-Security-OSS/ContrastSumoLogicDashboards
https://github.com/Contrast-Security-OSS/integrations-kenna-toolkit
https://github.com/Contrast-Security-OSS/integrations-kenna-toolkit/blob/master/tasks/connectors/contrast/readme.md


Rally

(formerly CA Agile Central)

Agile Central Integration (page 735)

ServiceNow ServiceNow Integration (page 772)

Solutions Business Manager

(formerly Serena)

Serena Business Manager
Integration (page 771)

ThreadFix Contrast Remote Provider
(ThreadFix)

Contrast Remote Provider

Integrate with Agile Central
Integrate Agile Central with Contrast to automatically track vulnerabilities in your applications.

Before you start, be sure you have:

• An Agile Central account URL.
• Permission to create issues in the target project.
• A running Agile Central instance accessible via HTTP to Contrast.
• A project to associate the application instrumented by Contrast.

To connect with Agile Central:

1. Go to Organization settings > Integrations in the user menu.
2. Select Connect in the Agile Central row.
3. In the Connect with Agile Central form, add the name for the bugtracker entry, as well as

the URL and API Key in the given fields. The Agile Central URL must be accessible from Contrast
instance being configured.

NOTE
To find your Agile Central API key, log in to the Agile Central Application manager,
and select API Keys. Contrast saves the username, password and Agile Central
URL entered in your configuration as a set of credentials.

4. Once you complete the fields, select Test connection. The test verifies that Contrast can reach the
Agile Central instance and that the specified user can log in.

Contrast Documentation

Integrations 735

https://denimgroup.atlassian.net/wiki/spaces/T3D/pages/2711945264/Contrast+Remote+Provider+ThreadFix+3.X
https://denimgroup.atlassian.net/wiki/spaces/T3D/pages/2711945264/Contrast+Remote+Provider+ThreadFix+3.X
https://denimgroup.atlassian.net/wiki/spaces/TDOC/pages/248512513/Contrast+Remote+Provider


5. Once connected, select the Applications that you want to be available to this integration.
6. Choose a Project name and Owner from the dropdowns.
7. In the Default priority section, use the dropdowns to choose a priority level for each vulnerability

severity.
8. Choose the Environment for which you want to generate tickets.
9. Choose a Defect state.
10. Add a name that the tickets are Submitted by.

NOTE
While none of these configuration fields are required, Agile Central may populate
tickets with their own default values for any fields you leave blank.

11. To add another integration once you're connected in Contrast, select Add Configuration in the
Agile Central row.

12. To automatically create tickets for newly discovered vulnerabilities, check the designated box in the
configuration form. In the multiselect field that appears, choose the Rules and Severity levels of
the vulnerabilities for which you want to generate tickets.

NOTE
This selection doesn't generate tickets retroactively.

Manage Agile Central credentials
Contrast saves the latest set of credentials that you enter in your Agile Central configurations to
help you set up new connections faster. The API key and URL values that you enter in your first
configuration become the default credentials for your following configurations.

In subsequent configurations, Contrast will pre-populate the fields with the default credentials, but
allow you to modify the values as needed. You can also manage your saved sets of credentials to
simultaneously update all of the affected configurations.

To create or edit a configuration with credentials that are different than your default set:

1. Select the Manage credentials link.
2. In the URL field, use the dropdown to choose a set of saved credentials; or, manually update the

values in the URL, Username and Password fields.
3. Once you've updated the fields, select Test Connection.
4. Select Save. If you're using new credentials, you must choose to override the existing set of

credentials under the given name, or save the new values as a new credential set under a different
name.

5. To modify an existing set of saved credentials, select Rename if needed. Then select Test
Connection and Save.

NOTE
Any updates to a set of credentials will affect all configurations using that set.

Integrate with AWS Security Hub using Contrast Assess
Integrate Contrast Assess with AWS Security Hub to ensure a steady and secure transfer of security
insights and findings directly to AWS, which helps in maintaining and enhancing your security posture
through streamlined integration.

Contrast Documentation

Integrations 736



Before you begin
Before you start you must have:

• AWS Account Number
• AWS Region
• The Contrast application from which to send insights

Configure
There are two required steps to configure this integration:

• Configure AWS Security Hub to accept findings from Contrast
• Configure Contrast Assess to send findings to AWS Security Hub

Configure AWS Security Hub to accept findings from Contrast
To allow AWS Security Hub to accept findings from Contrast:

1. Open the AWS Security Hub console associated with the AWS account and region where you want
to receive findings from Contrast.

2. Go to the Integrations section and search for Contrast Security.
3. Locate the Contrast Security tile, click Accept findings and follow the subsequent prompts to

complete the setup.
4. Continue with configuring Contrast Assess to send findings to AWS Security Hub.

Configure Contrast Assess to send findings to AWS Security Hub
After configuring the AWS Security Hub, the next step is to configure Contrast Assess to send the
findings to the AWS Security Hub:

1. In Contrast, go to the user menu and select Organization settings > Integrations.
2. Find and select the AWS Security Hub integration section.
3. Select Manage Credentials.

4. Enter the AWS Account number and select the AWS Region.
5. Select Save.
6. Continue by setting up applications in Contrast Assess.

Set up applications in Contrast Assess
Once your credentials are set up, proceed to configure the applications:

1. In the AWS Security Hub integration section in Contrast, select Configure Applications.
2. Select whether to activate the AWS Security Hub integration for all Assess applications or select

specific application names from a list, choosing which insights to forward.

Contrast Documentation

Integrations 737



3. Select Save.

Retry mechanism
In case synchronization between Contrast Assess and AWS Security Hub fails, a retry mechanism
ensures data reliability:

• If an event fails to sync, it will be stored and retried every night at midnight GMT.
• The retry count will increase by one with a maximum of three retries for up to 72 hours. After the third

unsuccessful retry, the event will be discarded.
• If a vulnerability creation event fails and is stored, any subsequent update or delete action relating to

that failed event will be stored and replayed in chronological order to maintain the correct state.

Integrate with AWS Security Lake using Contrast Assess
Integrate Contrast Assess with AWS Security Lake to automatically push findings and other relevant
security data.

Before you begin
Before you start, you must have:

• AWS Region.

Create a Custom Source in AWS

1. In AWS, go to AWS Security Lake.
2. Select Custom Source.
3. Click Create New Source.
4. Enter a Data source name of your choice.
5. Set the OCSF Event class to Security Finding.
6. Input the AWS account ID and External ID.

These IDs can be found under the AWS Security Lake section on the Integrations page in
Contrast. From the user menu in Contrast select Organization settings > Integrations.

7. Once a custom source is created, retrieve the generated AWS Role ARN and the S3 ARN. These
will be needed for connecting to AWS.

8. Continue with connecting to AWS Security Lake.

Connect to AWS Security Lake

1. In Contrast, go to the user menu and select Organization settings > Integrations.
2. Find and select the AWS Security Lake integration section.
3. Select Manage Credentials.

4. Enter the generated AWS Role ARN and the S3 ARN from before.
5. Choose the AWS Region from the list or enter it manually.

Contrast Documentation

Integrations 738

https://console.aws.amazon.com/securitylake/


6. Select Save.
7. Continue by setting up applications in Contrast Assess.

Set up applications in Contrast Assess
Once your credentials are set up, proceed to configure the applications:

1. In the AWS Security Lake integration section in Contrast, select Configure Applications.

2. Select whether to activate the AWS Security Lake integration for all Assess applications or select
specific application names from a list.

3. Select Save.

Retry mechanism
In case synchronization between Contrast Assess and AWS Security Lake fails, a retry mechanism
ensures data reliability:

• If an event fails to sync, it will be stored and retried every night at midnight GMT.
• The retry count will increase by one with a maximum of three retries for up to 72 hours. After the third

unsuccessful retry, the event will be discarded.
• If a vulnerability creation event fails and is stored, any subsequent update or delete action relating to

that failed event will be stored and replayed in chronological order to maintain the correct state.

Integrate with Azure Boards
With an Azure Boards integration with Contrast, you can automatically generate tickets for bugtracking,
synchronize comments and push notifications for your applications.

You will need:

• Account credentials for Azure Boards or TFS: username and personal access token (PAT).
• Scope to read and write work items with your PAT.
• An Azure Boards or TFS instance, accessible by HTTP to Contrast.
• An instrumented application in Contrast that is also associated to an Azure Boards project.
• For more, see Microsoft's Azure Boards documentation.

See also

• Connect with Azure Boards (page 739)
• Automatically create tickets (page 740)
• Two-way integration (page 740)
• Set personal access tokens (page 741)

Connect to Azure Boards

Steps

1. In Contrast, go to Organization settings > Integrations.
2. For the Azure Boards integration, select Connect.

Contrast Documentation

Integrations 739

https://docs.microsoft.com/en-us/azure/devops/boards


3. Enter the following values:
• Name: Label that will display when Contrast sends findings to bugtrackers in Azure Boards.
• URL: Azure Boards or TFS URL. Contrast must be able to access this.
• Version: Contrast uses API v2 to support Azure DevOps Services, TFS 2015 and TFS 2017.
• Personal access token:An alternate password to authenticate to your host.

4. Select Test connection. This may take a few minutes, depending on the number of Azure Boards
or TFS projects. The test verifies that Contrast can reach the Azure Boards or TFS instance you
entered, and it accepts the user's PAT to login.

5. Once Azure Boards is connected, select the Contrast Applications you want to make available to
this bugtracker.

6. Enter values for Project, Assignee and Work Item Type.
7. Select a Team, then select an Area within the team. This will send tickets to a specific backlog.
8. Set the Default priority for vulnerability severity levels. This prioritizes tickets to fix vulnerabilities

for the selected applications, based on severity. At this point, Contrast will make an API call and
return a list of Azure Boards or TFS ticket states.

9. You can also set up two-way integration (page 740) (to automatically update vulnerability status in
Contrast) or automatic ticket creation (page 740) with Azure Boards.

See also

• Automatically create tickets (page 740)
• Two-way integration (page 740)
• Set personal access tokens (page 741)

Automatically create tickets
You can automatically create tickets every time Contrast discovers new vulnerabilities.

Steps

1. In the Azure Boards integration panel (page 739), select Automatically create tickets for new
vulnerabilities discovered. This displays a multi-select field for Rules and Severity.

2. Select the rules or severity levels of vulnerabilities that should trigger a new ticket in Azure Boards
or TFS. Critical and High are the default selections.

NOTE
This setting only works for new vulnerabilities discovered after you select it.

See also

• Connect with Azure Boards (page 739)
• Two-way integration (page 740)
• Set personal access tokens (page 741)

Two-way integration
You can use a two-way integration with Azure Boards. This will automatically update the status of a
vulnerability in Contrast when you close or reopen an issue in Azure Boards or TFS that links to the
vulnerability .

Contrast Documentation

Integrations 740



Steps

1. In the Azure Boards integration panel (page 739), select Enable two-way integration. This
displays Vulnerability Status fields.

2. Select the dropdowns to set a vulnerability status for each Azure Boards or TFS ticket state.
3. Save the two-way integration. Contrast will populate the vulnerability status in Azure Boards or TFS

tickets.
4. When you update the state of a ticket in Azure Boards or TFS, Contrast will automatically generate

comments in the Discussion tab for that vulnerability. Each comment includes the name of the
bugtracker and a link to the ticket.

NOTE
If you select the vulnerability status Not a problem as a ticket state in Azure Boards or
TFS, Contrast also requires you to select a Reason. The default value is Other.

CAUTION
For multiple vulnerabilities sent to Azure Boards or TFS as a single issue, the ticket
state applies to all vulnerabilities associated with that ticket. Conversely, when you link
multiple tickets to a single vulnerability, you must update all associated tickets before
you can update the vulnerability. For example, if you change a ticket state from New
to Active, Contrast updates the vulnerability status only if all tickets related to that
vulnerability also have an Active state.

See also

• Set personal access tokens (page 741)
• Connect to Azure Boards (page 739)
• Automatically create tickets (page 740)

Set Azure Boards personal access tokens
Personal Access Tokens (PAT's) are used by Contrast to access Azure Boards. PAT's can be set to
provide full access or "a la carte" access.

Steps

1. Navigate to User Settings in Azure.
2. Select Personal access tokens. Existing personal access tokens are displayed.
3. Click New Token. The Create a new personal access token modal displays.
4. Enter required fields and scopes for your new PAT in the Create a new personal access token

modal.

Contrast Documentation

Integrations 741



NOTE
Read, write, & manage under Work items must be selected to work with
Contrast.

5. Click Create to finish and save your new personal access token.

See also

• Connect with Azure Boards (page 739)
• Automatically create tickets (page 740)
• Two-way integration (page 740)

Azure Pipelines extension
Use the Azure Pipeline extension to integrate Contrast with your deployment workflow. The following
instructions guide you through the steps to set up and configure the extension for your Contrast
instance.

Before you begin to set up the extension, make sure that you have the privileges to install a Microsoft
extension. If not, you can request the extension for a project.

Install and configure the Azure Pipelines extension
To install and configure the Azure Pipelines extension:

1. Follow the Microsoft instructions to install the extension Contrast Integration.
Follow the Microsoft instructions to install the extension Contrast Integration.

2. Go to your Project Settings at the bottom of the sidebar. You'll need to be part of the Project
administration group or have enough permissions to alter the settings.

3. In the Pipelines section of the settings menu, select Service connections.
4. Select New Service connectionand then  Contrast Server Connection.
5. Complete all the fields with required data from your personal keys (page 518).

NOTE
Your Contrast URL should not include /Contrast at the end; only the host is required.

Configure a task in the Azure Pipelines extension
To configure a task in your Azure Pipelines extension for a release or a build pipeline:

1. Select the pipeline where you want to add the task then select Edit.
2. For release pipelines, select a stage for which you want to add the task.
3. To add the task, click the ellipsis (...) menu and select Add an agentless job.
4. Click on the + button next to your agentless job, and add the Contrast Assess - Application

Vulnerability Detection task.

Contrast Documentation

Integrations 742

https://docs.microsoft.com/en-us/azure/devops/marketplace/request-extensions?view=azure-devops-2019
https://docs.microsoft.com/en-us/azure/devops/marketplace/install-extension?view=azure-devops-2019&amp;tabs=browser
https://docs.microsoft.com/ja-jp/azure/devops/marketplace/install-extension?view=azure-devops-2019&amp%3Btabs=browser&tabs=browser


5. To choose a connection and application, select a Service Connection from the Contrast Service
Connection menu. You can also select Manage to go to the Service connections settings in
your Project Settings.

6. Select one of your applications from the Application menu.
7. To configure the task, use the Allowed Status and Build Number fields to filter your results from

Contrast. Leave them blank if you don't want to filter results. The values set in these fields will be
validated against the conditions you configure in the following fields.

8. Proceed to your severity counters, where you must set the maximum number of vulnerabilities
allowed per severity. If your selected application has more vulnerabilities than allowed for that
severity level, your task will fail.

For build pipelines only: If you want to prevent the execution of a job if the task fails, you must set the
job to depend on the agentless job that includes the Contrast task.

1. Select the job you want to prevent from executing.
2. In the Dependencies section, add the Agentless job.

NOTE
You can only use this task for an agentless job.

Add a release gate to a pipeline in Azure Pipelines
Release gates offer a safeguard to prevent deployment to environments if vulnerabilities for a given
application exceed a certain threshold. To add a release gate with the Azure Pipelines extension:

1. Find the release pipeline where you want to add the gate and select Edit.
2. Choose the stage and deployment conditions for the gate. They can either be pre-conditions or

post-conditions. You can add multiple gates to the same conditions.
3. Under Gates, enable the gate you created.
4. Select Add and then Contrast Assess - Application Vulnerability Detection.
5. Select New next to the service connection dropdown to create a Contrast service connection. Fill in

all the fields and select OK.
Select Refresh list, then select your newly created connection.

6. Click over the field or select Refresh to see a list of applications. Select the one that is most
appropriate to the release pipeline.

7. If you want, you can select which vulnerability status or build numbers will be used for filtering
when retrieving the data for the gate evaluation.

8. Set the maximum amount of vulnerabilities allowed per severity. If any validations fail when your
pipeline reaches this gate, the pipeline will keep requesting samples until it becomes valid, or until
the evaluation times out.
Microsoft Documentation offers more information on how to define a gate for a stage and how to
configure a gate.
Microsoft Documentation offers more information on how to define a gate for a stage and how to
configure a gate.

Contrast Documentation

Integrations 743

https://docs.microsoft.com/en-us/azure/devops/pipelines/release/approvals/gates?view=azure-devops#define-a-gate-for-a-stage
https://docs.microsoft.com/en-us/azure/devops/pipelines/release/approvals/gates?view=azure-devops#define-a-gate-for-a-stage
https://docs.microsoft.com/en-us/azure/devops/pipelines/release/approvals/gates?view=azure-devops#define-a-gate-for-a-stage
https://docs.microsoft.com/ja-jp/azure/devops/pipelines/release/approvals/gates?view=azure-devops#define-a-gate-for-a-stage
https://docs.microsoft.com/ja-jp/azure/devops/pipelines/release/approvals/gates?view=azure-devops#define-a-gate-for-a-stage
https://docs.microsoft.com/ja-jp/azure/devops/pipelines/release/approvals/gates?view=azure-devops#define-a-gate-for-a-stage


TIP
You can customize Evaluation options to configure the time between the re-evaluation
of gates. For instance, you can set this value to 24 hours so that the gates will evaluate
every day. This way you can remediate vulnerabilities and pass the required gate
conditions without having to re-initiate the execution of the pipeline from start (or obtain
manual approvals if they exist).

Use Azure Service Fabric with the .NET Framework or .NET
Core agent
If you are using a container image, follow the instructions to install in containers (page 182). Otherwise,
to add the Contrast .NET Framework or .NET Core agent to an Azure Service Fabric service:

TIP
For Standalone Executable services, the ServiceManifest.xml file is located in
the top-level Azure Service Fabric project (for example, the sfproj file).

1. Install the appropriate NuGet package to the main project for the service.
• .NET Framework: Install Contrast.NET.Azure.AppService. All files in the
contrastsecurity folder must have Copy to Output Directory set to Copy if
newer.

• .NET Core: Install Contrast.SensorsNetCore. All files in the contrast folder have Copy
to Output Directory set to Copy if newer.

2. Set ServiceManifest/CodePackage/EntryPoint/ExeHost/WorkingDirectory in
ServiceManifest.xml to CodePackage.

<CodePackage Name="Code" Version="1.0.0">
          <EntryPoint>
          <ExeHost>
            <Program>DemoNetFxStatelessService.exe</Program>
            <WorkingFolder>CodePackage</WorkingFolder>

3. Set environment variables in ServiceManifest.xml to configure the profiler.
• .NET Framework:

<CodePackage>
          <EnvironmentVariables>
            <EnvironmentVariable Name="COR_ENABLE_PROFILING" Value="1"/
>
            <EnvironmentVariable Name="COR_PROFILER" \
Value="{EFEB8EE0-6D39-4347-A5FE-4D0C88BC5BC1}"/>
            <EnvironmentVariable Name="COR_PROFILER_PATH_32" \
Value=".\contrastsecurity\runtimes\win-
x86\native\ContrastProfiler.dll" />
            <EnvironmentVariable Name="COR_PROFILER_PATH_64" \
Value=".\contrastsecurity\runtimes\win-
x64\native\ContrastProfiler.dll" />
            <EnvironmentVariable Name="CONTRAST_CONFIG_PATH" \
Value="contrast_security.yaml"/>

Contrast Documentation

Integrations 744



• .NET Core:

<CodePackage>
          <EnvironmentVariables>
            <EnvironmentVariable Name="CORECLR_ENABLE_PROFILING" \
Value="1"/>
            <EnvironmentVariable Name="CORECLR_PROFILER" \
Value="{8B2CE134-0948-48CA-A4B2-80DDAD9F5791}"/>
            <EnvironmentVariable Name="CORECLR_PROFILER_PATH_32" \
Value="contrast\runtimes\win-x86\native\ContrastProfiler.dll"/>
            <EnvironmentVariable Name="CORECLR_PROFILER_PATH_64" \
Value="contrast\runtimes\win-x64\native\ContrastProfiler.dll"/>
            <EnvironmentVariable Name="CONTRAST_CONFIG_PATH" \
Value="contrast_security.yaml"/>

4. Configure the agent with either:
• A YAML file: Add it to the main project for the service. Make sure Copy to Output
Directory for the file is set to Copy if newer. Add an environment variable to
ServiceManifest.xml specifying the location of the file, like this:

<CodePackage>
              <EnvironmentVariables>
                <EnvironmentVariable Name="CONTRAST_CONFIG_PATH" \
Value="contrast_security.yaml"/>

• Environment variables: Add them to ServiceManifest.xml, like this:

<CodePackage>
          <EnvironmentVariables>
            <EnvironmentVariable Name="CONTRAST__API__URL" \
Value="https://teamserver-staging.contsec.com"/>
            <EnvironmentVariable Name="CONTRAST__API__API_KEY" \
Value="aBcD0123"/>
            <EnvironmentVariable Name="CONTRAST__API__SERVICE_KEY" \
Value="ABCD0123"/>
            <EnvironmentVariable Name="CONTRAST__API__USER_NAME" \
Value="agent_123@Team"/>

5. Deploy the Azure Service Fabric application as usual.

Contrast - Bamboo plugin
This plugin adds functionality to Bamboo so that you can configure profiles for connecting to Contrast
and verify builds against vulnerability thresholds.

Install and configure
To install and configure the Bamboo plugin:

1. Download the Contrast Bamboo plugin ( contrast-bamboo-plugin-#.#.#.jar) from the Bamboo
Marketplace.

2. Select Add-Ons from the top-left settings menu.
3. Select Upload add-on.
4. When prompted to upload a file, select contrast-bamboo-plugin-#.#.#-SNAPSHOT.jar.
5. Verify you see the plugin under User-installed add-ons.
6. Now that the plugin is installed, configure a profile for Contrast. Select Contrast Profiles

under Add-Ons in the side navigation bar.
7. In the Profile Configuration page, select New Profile and complete the form.

Contrast Documentation

Integrations 745

https://marketplace.atlassian.com/apps/1219111/contrast-security-for-bamboo?hosting=server&amp;tab=overview
https://marketplace.atlassian.com/apps/1219111/contrast-security-for-bamboo?hosting=server&amp;tab=overview


NOTE
If you are a hosted customer, you do not need to enter a Contrast URL.

8. Select Test Connection to verify that your settings are correct. A success notification will appear
when a connection is established.

Configure vulnerability thresholds
The Bamboo plugin can be added as a task to build jobs to check for vulnerability conditions that you
configure. This checks Contrast for the number and type of vulnerabilities in the applications.

To add a task to a build job:

1. Select Create a New Build Plan (you can also use an existing plan).
2. Enter a project name, plan name and link to the repository host. The project key and plan key is

auto-generated.
3. Once you create the plan, add a task to the build process by selecting Add Task.
4. In the window that appears, find the Contrast CI for Assess task and select it.

The Tasks configuration page relies on a Contrast profile, as well as a server name, application
name and a Passive parameter. The server name isn't required, but should correspond to a server
name in Contrast if used. The application name must be on the designated server.
If you select the Passive parameter, the plugin will query all vulnerabilities for the application
(not just build-specific vulnerabilities). If you do this, you don't have to run the application with its
integration tests before the Contrast post-build action in the Bamboo build.

5. Next, define conditions for when to fail a build:
• Threshold Count: The minimum number of findings required to fail the build.
• Threshold Severity: The minimum severity at which to count a finding towards the threshold

count.
• Threshold Vulnerability Type: The type of finding required to count a finding towards a

threshold count.

NOTE
Using the Any option means that any severity or vulnerability type is counted
towards the maximum threshold count.

6. Select Add New Threshold Condition to configure multiple conditions for each task.
7. Select Save.
8. Enable the build plan by selecting the checkbox in the bottom left.

Integrate with Bugzilla
To integrate with Bugzilla:

1. Go to Organization settings > Integrations in the user menu.
2. Select Connect in the Bugzilla row.
3. In the window that appears, complete the Bugzilla properties fields:

Field Description

Name A name for the bugtracker entry. It will be displayed when sending findings to bugtrackers

Username The username for the account connected with Bugzilla

Password The password for the username specified

Host The URL of the Bugzilla instance

Application The application you would like to map to a Bugzilla product/component

Contrast Documentation

Integrations 746



Field Description

Product The product in Bugzilla to map to the application

Component The component in Bugzilla to map to the application

Version The version in Bugzilla to map to the application

Priority The priority to use when exporting findings to Bugzilla

4. Select Test Connection to verify communication. This ensures that Contrast can communicate
and authenticate with the Bugzilla instance, and verifies the existence of the specified Product,
Component and Version.

Eclipse
For applications instrumented with a Contrast agent, you can view vulnerability information directly in
the Eclipse IDE during development for faster remediation. You will see affected lines of code and can
view more details about the vulnerability in Contrast.

This plugin is available for Mac/OS, Linux, and Windows and supports the latest versions of Eclipse.

To install the Eclipse plugin, visit the Eclipse marketplace or:

1. In Eclipse, select Help > Eclipse Marketplace. 
2. Search “Contrast Security”.
3. Select Install.
4. Configure the plugin at Window > Show View > Other.
5. Search “Contrast” and add the view that appears in the search.
6. Enter the Username, API Key, Organization ID and Service Key in the configuration page. You

can find these keys (page 518) in user settings.
7. Select Add.
8. The Vulnerabilities view shows a list of all the vulnerabilities from Contrast. You can sort and filter

them.

9. Select the vulnerability title for information about that particular vulnerability. From there you can
select How to fix for remediation instructions to fix the vulnerability. Select Details and double-click
on the Java stack traces to focus on a particular source code line. You can also change the
vulnerability status here.

Contrast Documentation

Integrations 747

https://marketplace.eclipse.org/content/contrast-security-eclipse


10. Select the Go to page icon to open Contrast and see more vulnerability information.

Generic webhooks
Contrast supports a generic webhook integration to receive notifications (page 827) on any URL
that receives POST messages. You can add custom variables (page 749) to your payload like
$ApplicationName and $ServerId when a Contrast event (page 752) triggers them.

Connect
To connect a generic webhook:

1. Retrieve the URL from which you want Contrast to receive notifications.
2. In the user menu, select Organization settings > Integrations.
3. In the Generic webhook integration option, select Connect.
4. Name the webhook, and paste the URL in the designated field.
5. Select the application(s) that you want to filter.
6. In the Payload field, enter a variable (page 749). For example:

{
   "title": "$Title",
   "message": "$Message"
}

7. Select Add.

To test the webhook:

1. Go to Organization settings > Notifications.
2. In the dropdown under Integrations, select the generic webhook name.
3. For each Subscription (event type) you want to be notified of, click the toggle in

the Integrations column.
4. Cause an event type to occur, and confirm that you get a notification at the URL specified.

Contrast Documentation

Integrations 748



NOTE
If this webhook fails to return a successful response after 5 attempts, it will be
disconnected. To restore the configuration, you must retest the connection and resave
it.

You can configure the integration so that all Organization Administrators are notified in
the Contrast application and by email when Contrast disconnects a generic webhook.

To do this, go to the same location: Organization settings > Integrations > Generic
webhook > Show configurations. Select the name of the connection you want to
configure. Then select the Notify on disconnect checkbox to receive notifications and
click Save.

Generic webhook variables
You can customize your generic webhook (page 748) response with data from Contrast events such
as NEW_VULNERABILITYand SERVER_OFFLINE. Each event contains variables you can call in your
payload request. Variables are either for general use or for an application, server or vulnerability.

Contrast Documentation

Integrations 749



Variables Description

General variables
$EventType The event type responsible for triggering the webhook

For example: SERVER_OFFLINE

$Message A message summarizing the event that triggered the webhook

$OrganizationId The unique ID Contrast assigns to an organization when it is
created

$OrganizationName The name of your organization

$Title Always returns “Contrast Security”

Application variables
$ApplicationChild Returns true if the application is a child application, false if not

$ApplicationCode A secondary shorthand that appears in the title of an application,
and is blank by default

For example: TEST

$ApplicationContextPath The context path of the application

For example: /example/somethingelse

$ApplicationFirstSeen When the application was first seen, in Unix time

For example: 1572033840000

$ApplicationHasParentApp Returns true if the application has a parent, false if not

$ApplicationImportance Enumerated value of the application Importance level

For example: MEDIUM

$ApplicationId The unique ID Contrast assigns to an application when it is
created

For example: 49fe2978-1833-4441-83db-2b7o486d9413

$ApplicationImportanceDescription The importance level assigned to the application For example:
Medium

$ApplicationLanguage The programming language of the application

$ApplicationLastSeen When the application was last seen, in Unix time For example:
1572033840000

$ApplicationLicenseLevel Whether or not the application has an Assess license Values:
Licensed, Unlicensed

$ApplicationMaster Returns true if the application is a primary application, false if not

$ApplicationName The name of the application

$ApplicationParentAppId The unique ID Contrast assigns to an application when it’s
created, in this case, the parent application, if it exists

For example: 49fe2978-1833-4441-83db-2b7o486d9413

$ApplicationTags A comma separated list of the Application tags.

$ApplicationTotalModules The number of modules your application has

Server variables
$Environment The environment of the server For example: DEVELOPMENT or

PRODUCTION

$ServerId The ID of the server involved in the event

If more than one server is involved, this is a comma-delimited list
of server IDs.

$ServerName The name of the server involved in the event

If more than one server is involved, this is a comma-delimited list
of server names

Vulnerability variables
$Severity If this event is triggered by a vulnerability, this is the severity of the

vulnerability

$Status If this event is triggered by a vulnerability, this is the status of the
vulnerability

Contrast Documentation

Integrations 750



Variables Description
$TraceId If this event is triggered by a vulnerability, this is the vulnerability

ID

$VulnerabilityAgentLanguage The application language or framework name of the where the
vulnerability was discovered (for example,.Java, .NET, Ruby, and
so forth.)

$VulnerabilityAppVersionTags The application versions the vulnerability is found in

For example: v1.2.3

$VulnerabilityAutoRemediatedExpirationPeriod Auto-remediated expiration period for the vulnerability, in Unix time

For example: 1572033840000

$VulnerabilityBugTrackerTickets A comma delimited list of tickets created when the vulnerability
was sent to bugtracker

For example: ticket1, ticket2, ticket3

$VulnerabilityCategory The category of vulnerability found For example: Injection

$VulnerabilityClosedTime When the vulnerability was closed, in Unix time

For example: 1572033840000

$VulnerabilityConfidence Confidence of the vulnerability

$VulnerabilityDefaultSeverity Default severity of the vulnerability

$VulnerabilityDiscovered When the vulnerability was first discovered, in Unix time

For example: 1572033840000

$VulnerabilityEvidence The evidence of the vulnerability

$VulnerabilityInstanceUuid The unique ID Contrast assigns to a vulnerability instance when it
is created

For example:  R33T-N00B-TGIF-RM6P

$VulnerabilityFirstTimeSeen When the vulnerability was first seen, in Unix time For example:
1572033840000

$VulnerabilityImpact The impact level of the vulnerability Values: Low, Medium, High

$VulnerabilityLastTimeSeen Last time the vulnerability was seen, in Unix time For example:
1572033840000

$VulnerabilityInstanceLastTimeSeen Last time the vulnerability was seen, in Unix time For example:
1572033840000

$VulnerabilityLicenseLevel License level of the vulnerability

$VulnerabilityLikelihood The likelihood of the vulnerability

Values: Low, Medium, High

$VulnerabilityReportedToBugTracker When the vulnerability was sent to a bugtracker, in Unix time

For example: 1572033840000

$VulnerabilityReportedToBugTrackerTime Returns true If the vulnerability was sent to a bugtracker

$VulnerabilityRule Rule associated with the vulnerability

$VulnerabilityRuleName Name of the rule associated to the vulnerability

$VulnerabilityRuleTitle Title of the rule associated to the vulnerability

$VulnerabilitySubStatus Substatus of the vulnerability

$VulnerabilityTags Custom tags associated with the vulnerability

For example: my-custom-tag

$VulnerabilityTitle Title of the vulnerability

$VulnerabilitySubStatusKeyCode Key code of the vulnerability substatus

$VulnerabilityTotalTracesReceived Total number of times the vulnerability was received

$VulnerabilityUuid The unique ID used to look up a vulnerability

$VulnerabilityVisible true if the vulnerability is licensed and visible, false if not

$VulnerabilityRule If event is triggered by a vulnerability, this is the rule that the
vulnerability violated

$VulnerabilityTags If event is triggered by a vulnerability, this is a comma-delimited
list of tags associated with the vulnerability

Contrast Documentation

Integrations 751



Events and generic webhook variables
You can customize your generic webhook (page 748) response with data from Contrast events
such as NEW_VULNERABILITY and SERVER_OFFLINE. Each event contains general (page 750),
application (page 750), server (page 750) or vulnerability (page 750) variables you can call in your
payload request.

Event Variables
ATTACK_END General (page 750), Application (page 749), Server (page 750)

ATTACK_EVENT_COMMENT General (page 750), Application (page 750), Server (page 750)

ATTACK_UPDATE General (page 750), Application (page 750), Server (page 750)

EXPIRING_LICENSE General (page 750), Application (page 750)

NEW_ASSET (if new application) General (page 750), Application (page 750) and Server (page 750) (if new
application)

NEW_ATTACK_APPLICATION General (page 750), Application (page 750), Server (page 750)

NEW_ATTACK_UPDATE General (page 750), Application (page 750), Server (page 750)

NEW_ATTACK General (page 750), Application (page 750), Server (page 750)

NEW_VULNERABILITY_COMMENT General (page 750), Application (page 750), Server (page 750),
Vulnerability (page 750)

NEW_VULNERABILITY General (page 750), Application (page 750), Server (page 750),
Vulnerability (page 750)

NEW_VULNERABLE_LIBRARY General (page 749), Application (page 750)

SERVER_OFFLINE General (page 750), Server (page 750)

VULNERABILITY_CHANGESTATUS_CLOSED General (page 750), Application (page 750), Server (page 750),
Vulnerability (page 750)

VULNERABILITY_CHANGESTATUS_OPEN General (page 750), Application (page 750), Server (page 750),
Vulnerability (page 750)

VULNERABILITY_DUPLICATE General (page 750), Application (page 750), Server (page 750),
Vulnerability (page 750)

Integrate with GitHub
Set up an integration to automatically send issues to GitHub when Contrast finds them in your
applications.

Before you start, be sure you have:

• GitHub account credentials (username and personal access token). When you generate your
personal access token, be sure to enable the repo permissions.

• Access to a GitHub organization and repository for the application.
• Write permission (push access) to the repository. This is required to set labels, milestones and

assignees in the configuration form.
• A running GitHub instance accessible via HTTP to Contrast.

To connect with GitHub:

1. Go to Organization settings > Integrations in the user menu.
2. Click Connect in the row for GitHub.
3. In the Connect with GitHub form, add the name for the bugtracker entry, the username for the

account connected to GitHub and the password for the specified username in the appropriate
fields. The GitHub URL must be accessible from the Contrast instance being configured.

4. Automatically create issues in GitHub for newly discovered vulnerabilities by checking the box at
the bottom of the configuration form. In the multiselect field that appears, choose the Rules and
Severity levels of the vulnerabilities for which you want to generate tickets. The default selections
are Critical and High.

5. Once you complete the fields, select Test connection. This process may take a few moments
depending on the number of your GitHub organizations and repositories. The test verifies that the
GitHub instance can be reached by Contrast and that the specified user is able to log in.

Contrast Documentation

Integrations 752

https://help.github.com/en/github/authenticating-to-github/creating-a-personal-access-token-for-the-command-line#creating-a-token
https://help.github.com/en/github/authenticating-to-github/creating-a-personal-access-token-for-the-command-line#creating-a-token
https://help.github.com/en/github/setting-up-and-managing-organizations-and-teams/repository-permission-levels-for-an-organization


6. Once a connection is made, select the Applications that you want to be available to this
bugtracker.

7. Select the values for the GitHub organization and Repository fields using the dropdowns.

NOTE
If you change the GitHub organization or Repository values, you must re-enter
the values for optional fields.

8. Optionally, add Labels, Assignees and a Milestone for GitHub issues using the given fields.

NOTE
For multiple vulnerabilities sent in bulk to GitHub as a single issue, the GitHub ticket
status applies to all vulnerabilities associated with that ticket. For multiple issues tied
to a single vulnerability, the vulnerability can only be closed when all the tickets are
closed.

Gradle plugin
The Contrast Gradle plugin is used to integrate the Contrast.jar with your build. It's capable of
authenticating to Contrast, downloading the latest Java agent and verifying your build.

NOTE
Gradle is a build tool that utilizes build.gradle files to configure your applications.
It's used to build, package, and test various types of applications.

Clone a sample web application
The easiest way to set up a project is to clone our sample Gradle-based web application. This
application has been migrated from Maven to Gradle and relies on MongoDB.

1. Install and set up the database path.

git clone https://github.com/Contrast-Security-OSS/Contrast-Sample-
Gradle-Application
brew install mongodb
sudo mkdir -p /data/db
brew services start mongodb

2. An application is ready to run. Open the Contrast-Sample-Gradle-Application/build.gradle file.
Scroll to find the contrastConfiguration extension. You can find all of the values in your
personal keys (page 518) except appName and serverName.

contrastConfiguration {
    username = "username"
    apiKey = "apiKey"
    serviceKey = "serviceKey"
    apiUrl = "apiUrl"
    orgUuid = "orgUuid"

Contrast Documentation

Integrations 753

https://gradle.org/


    appName = "editLATER"
    serverName = "editLATER"
}

3. Install the Contrast JAR file by calling the contrastInstall task. This installs the Contrast
JAR in the project's build directory.

cd path/to/Contrast-Sample-Gradle-Application
gradle build -x test contrastInstall

4. Run the application with the Java agent. The server starts.

cd path/to/Contrast-Sample-Gradle-Application/build
java -Dcontrast.agent.java.standalone_app_name=mytestapp -
Dcontrast.server=mytestserver -jar libs/Contrast-Sample-Gradle-
Application-0.0.1-SNAPSHOT.jar

5. Check that the application is running at localhost:8080 and that the application shows up in
Contrast.

6. In Contrast, verify that the application with the appname specified in the command above shows
up.

7. In the Contrast-Sample-Gradle-Application project's build.gradle, edit the
contrastConfiguration to specify the appName and serverName specified as options with
the Java agent in the previous step.

contrastConfiguration {
    username = "alreadySetup"
    apiKey = "alreadySetup"
    serviceKey = "alreadySetup"
    apiUrl = "alreadySetup"
    orgUuid = "alreadySetup"
    appName = "mytestapp"
    serverName = "mytestserver"
}

8. Run the verification task at any time to check for vulnerabilities.

gradle build contrastVerify -x test

Use the plugin
The plugin code can be viewed in our GitHub repository. Here you can review the two tasks added by
the plugin, contrastInstall and contrastVerify, and how they work.

The latest version of the plugin can be found on the Gradle plugin webpage.

Task Description
contrastInstall Installs a Contrast Java agent to your local project. The plugin edits the org.gradle.jvmargs property

in the gradle.properties file to launch the JVM with the Contrast agent. An application version, by which
the vulnerabilities are filtered in the contrastVerify task, is generated during this task. The plugin
generates the application version in the following order:

• If your build is running in TravisCI, Contrast uses appName-$TRAVIS_BUILD_NUMBER.
• If your build is running in CircleCI, Contrast uses appName-$CIRCLE_BUILD_NUM.
• If your build is running in neither TravisCI nor CircleCI, Contrast generates one in the format appName-
yyyyMMddHHmm. (Where yyyyMMddHHmm is the time of the build generation.)

contrastVerify Checks for new vulnerabilities in your web application.

Contrast IntelliJ plugin
Use the IntelliJ plugin to see vulnerability information for instrumented applications from the IntelliJ IDE.

Contrast Documentation

Integrations 754

https://github.com/Contrast-Security-OSS/contrast-gradle-plugin
https://plugins.gradle.org/plugin/com.contrastsecurity.contrastplugin


The plugin directs you to the affected line of code inside IntelliJ, and you can view more details
in the Contrast console. This way, developers can get application security feedback at the time of
development for faster remediation.

The plugin supports IntelliJ versions 2017.1.5 and later.

Install, configure, and use the IntelliJ plugin:

1. For Windows, go to File > Settings > Plugins > Browse Repositories.
For OSX, go to Preferences > Plugins > Search in Repositories.

2. Search for Contrast Security.
3. Select Install.
4. For Windows, go to File > Settings > Contrast.

For OSX, go to Preferences > Other settings > Contrast.
5. Enter the Contrast URL, Username, Service key, API key, and Organization ID. You can find

these in your profile (page 518).
6. Select Add to add a new organization.
7. Select Refresh in the Contrast window to update the list of vulnerabilities. The Vulnerabilities view

in IntelliJ shows a list of all the vulnerabilities from Contrast.
To sort vulnerabilities, select the column header. Select the funnel icon to use a filter. Select the
name of a vulnerability to see more details.

Configure the Java agent for IntelliJ
To add the Contrast agent to an application using IntelliJ IDE's supported application servers:

1. Click Run in the application toolbar, and then click the Edit Configuration menu item from the
drop-down menu.

2. Select the IntelliJ Server configuration instance.
3. Select the Server tab, and enter the Contrast launcher string in VM Options: -

javaagent:<YourContrastJarPath>. Substitute <YourContrastJarPath> with the path to
your Contrast JAR (page 84).

4. Click Apply and then click OK.
5. Start the Server.

A Contrast startup message should appear in the Server console. (Allow one to two extra minutes
for server startup.)

6. Navigate to your application and allow an extra minute for it to start up.

Contrast Jenkins integration
Jenkins is a continuous integration (CI) tool that automates the process of building, testing, deploying,
and running applications.

With the Contrast plugin for Jenkins, you can add application security gates to this pipeline. These
gates contain criteria that can fail the Jenkins job for a vulnerable application with a build result like
"Failure" or "Unstable".

TIP
You can view the plugin source code in the Jenkins Github repository.

Use these versions to ensure compatibility:

Contrast Documentation

Integrations 755

https://www.jenkins.io/
https://github.com/jenkinsci/contrast-continuous-application-security-plugin


Jenkins Contrast-Jenkins plugin Contrast

2.60.3 3.4 3.7.6

2.60.3 3.7 3.7.10

2.60.3 3.8 3.8.0

Install and use Jenkins plugin

1. Define a connection (page 756) between Contrast and Jenkins.
2. Depending on your situation, decide how you will use Jenkins:

• If you are using freestyle jobs, you can define vulnerability security controls at a system
level (page 757) or as a post-build action step (page 757).

• Define vulnerability security controls for pipeline steps (page 758).
• Optionally, a Contrast Organization Administrator define a job outcome policy (page 760).

3. Run a build (page 764).

See also

• Connect with Jenkins (page 756)
• Define security controls (page 760)
• Define a job outcome policy (page 760)
• Run a build (page 764)

Connect

Before you begin

• All Contrast Security integrations require an organization admin role (page 947) in order to set up
the connection.

• Install Jenkins.
• Have already setup a Jenkins pipeline.

Define a connection
To define a connection to Contrast in Jenkins:

1. Select Manage Jenkins in the left sidebar of your Jenkins dashboard.
2. Select Manage Plugins under System Configuration.
3. Check to enable the Contrast Continuous Application Security plugin under the Installed tab.
4. Select Manage Jenkins again.
5. Select Configure System to find the Contrast Connections section.
6. Enter your Contrast username. Your username is the email address you use for your account in

Contrast.
7. Enter the:

•  Contrast API key, 
• Contrast service key,
• Contrast URL , and
• Organization ID.
You can find these in your profile (page 518) under User settings > Profile > Your keys.

8. Select a Result of a vulnerable build to choose how you want Contrast to mark your Jenkins job
when your application is too vulnerable:
• Failure
• Unstable
• Success
• Not_built

Contrast Documentation

Integrations 756

https://www.jenkins.io/doc/book/installing/
https://www.jenkins.io/doc/book/pipeline/


• Aborted
9. Check the box next to Apply this vulnerable build result to the job when Jenkins encounters

an error with Contrast if you want the Jenkins job to automatically fail whenever your Jenkins
instance can't find your application.

10. You can define the criteria that the Contrast plugin will use to determine whether an application
is too vulnerable at the Jenkins system level. Check the box next to Allow global Contrast
Vulnerability Threshold Conditions to be overridden in a Job configuration if you want job
level controls to override system level controls. Leave the box unchecked if you want to enforce
consistency of criteria across all Jenkins jobs in your instance.

NOTE
If you are using a job outcome policy (page 760) to set security controls, those
policies will override any policies set at the job level or system level.

11. Click Test Contrast connection to make sure that the plugin can authenticate to Contrast and
retrieve information about your applications' vulnerabilities.
• A success message displays when plugin is authenticated.
• If unsuccessful, check that the URL you received from Jira and the one you posted in Contrast

are matching.

See also

• Define security controls (page 760)
• Define a job outcome policy (page 760)
• Run a build (page 764)

Define security controls at a system level
After you define a connection (page 756) in Jenkins, define if you are using freestyle jobs, you may
want to set Contrast vulnerability security controls at a system level. Alternatively, you can set security
controls at a job level (page 757), or if you use a job outcome policy (page 760) those security
controls will take precedence.

1. Under Contrast Connections > Contrast Vulnerability Security Controls, select
a Connection you have previously created, from the dropdown.

2. Set the Number of Allowed Vulnerabilities. This number is exclusive; if you set it to "5", Jenkins
will fail if there are six or more vulnerabilities. This field is required.

3. Choose a Vulnerability Severity from the options in the dropdown. (These are the same
vulnerability severity options (page 706) in Contrast.) The plugin sets a filter in the API call for
all vulnerabilities greater than or equal to this field. This field is not required, but selecting it will
narrow your results. So if the number is set to "5" and the severity to High, Jenkins will fail if there
are six or more critical vulnerabilities.

4. Choose a Vulnerability Type (rule name) from the dropdown. The plugin checks for the number of
vulnerabilities with the rule type selected and compares it to the number of allowed vulnerabilities
for that rule. This field is not required, but selecting it will narrow your results. You can choose one
severity and one rule type per security control.

5. Choose from the list of Vulnerability Statuses. Statuses aren't required, but can be helpful. For
example, select Confirmed and Suspicious to only return vulnerabilities with an open status.
Leave this blank if you don't want to filter vulnerabilities by statuses.
You can add multiple vulnerability security controls, but the plugin will fail the job on the first bad
condition. The plugin will set the build result on the first violated vulnerability security control.

Define security controls as a post-build action step
After you have set security controls at the system level (page 757) in Jenkins, you can also add security
controls at a job level for freestyle jobs that are not part of a Jenkins Pipeline. To do this:

Contrast Documentation

Integrations 757



1. When defining a job in Jenkins, find the Post-Build Actions section.
2. Select a Connection you have previously created, from the dropdown.
3. Choose your application. This field is required.

• If your application has been instrumented, select your application from the Choose your
application dropdown.

• If your application has not yet been instrumented, indicate your application using the Application
Name and Application Language fields. You must provide the same application name in
Jenkins that you will use when you do instrument your application. Contrast will use that
same name and language during the post-build action step after the application has been
instrumented.

4. If the connection is configured to allow the system-level vulnerability security controls to be
overridden (page 757), you can override that setting by checking the box next to Override
Vulnerability Security Controls at the Jenkins system level.
If you do this, you will also need to indicate the Number of Allowed Vulnerabilities, Vulnerability
Severity, Vulnerability Type, and Vulnerability Statuses for this job.

5. Select how you want to query vulnerabilities by selecting an option under Query vulnerabilities
by. That way, only those vulnerabilities found from that job will be considered. By default, the plugin
uses the first option: appVersionTag, format: applicationId-buildNumber.

Define vulnerability security controls for pipelines in Jenkins
You can use the contrastAgent pipeline step to download the Contrast agent, then instrument
and exercise your application. You can use the contrastVerification pipeline step to verify your
application and set parameters for a security control.

Download with contrastAgent
A pipeline step with the name contrastAgent downloads the latest Contrast agent.

Parameter Required Description Examples
profile Required Contrast connection profile used to communicate

with Contrast
MyConnection

outputDirectory Required This defines where to put the downloaded agent. env.WORKSPACE

agentType Required if
applicationId is not
defined.

Type of agent used to instrument the application
(not case sensitive)

Options are: Java, .NET, .NET_Core, Node,
Ruby, Python

Java

Here is an example of how to add a pipeline step with the name contrastAgent :

•
node{
  stage('Download Latest Contrast Agent'){
    contrastAgent profile:'MyConnection', outputDirectory: \
env.WORKSPACE, agentType: 'Java'
  }
}

Verify application with contrastVerification
You can use a pipeline step with the name contrastVerification to verify whether an application
is vulnerable.

Parameter Required Description Examples
profile Required Use profile to specify the connection used

to communicate with Contrast.
Contrast Connection

Contrast Documentation

Integrations 758



Parameter Required Description Examples
queryBy Required Use queryBy to filter build-related

vulnerabilities. For options 1, 2
and 4, this value must match
the contrast.override.appversion
parameter that was passed to the Contrast
agent when running your application.

Enter the option number for how you want to
query vulnerabilities (defaults to 1):

1. appVersionTag,
format: applicationId-$
{BUILD_NUMBER}

2. appVersionTag,
format: applicationId-$
{JOB_NAME}-${BUILD_NUMBER}

3. startDate (This is the build timestamp.
It only looks at vulnerabilities discovered
after the build starts.)

4. APPVERSIONTAG (This is the job
parameter or environment variable.
Select this option if you want to
specify your own text, then export
APPVERSIONTAG as an environment
property within your Jenkins job.
Both JOB_NAME and BUILD_NUMBER are
already available as Jenkins
environment properties.)

1

applicationId Required, if
applicationName
and agentType are
not defined.

The ID of the application or application module
you are trying to verify

cb3ea678-38c8-4487-
ba94-692a117e7966

applicationName Required, if
applicationId is
not defined

The name of the application you are trying to
verify (not case sensitive)

MyApp

count Optional The total number of allowed vulnerabilities,
defaults to 0

10

rule Optional Defaults to All xss

severity Optional Defaults to All. Other options are Critical,
High, Medium and Low.

High

appVersionTag Optional The value that was passed to
the contrast.override.appversion
parameter of the Contrast agent

v1.2.3

Here are some examples of how to add a pipeline step with the name contrastVerification :

• Use queryBy startDate:

contrastVerification applicationId: '1e6ad9c6-89d4-4f06-
bdf6-92c569ec89de', count: 1, profile: 'new-
profile', queryBy: 3, rule: 'cache-controls-missing', severity: 'High'

• Use queryBy custom appVersionTag parameter:

contrastVerification applicationId: '1e6ad9c6-89d4-4f06-
bdf6-92c569ec89de', count: 1, profile: 'new-
profile', queryBy: 4, appVersionTag: 'v1.2.3' rule: 'cache-controls-
missing', severity: 'High'

• Use applicationName and AgentType to define the application:

contrastVerification applicationName: 'MyApp', agentType: 'Java', count: \
1, profile: 'new-profile', queryBy: 3, rule: 'cache-controls-missing', \
severity: 'High'

• Verify an application with a preset or overridden vulnerability security control.

Contrast Documentation

Integrations 759



If you know that the vulnerability security control has been preset in Contrast (page 760), then
you only need to define the profile and either the applicationId or (applicationName and
agentType):

contrastVerification applicationId: '35ae7b89-1c76-414b-b317-
c444ce27608b', profile: 'ContrastConnection'

Jenkins security controls
You can define security controls for Jenkins:

• At a system level (page 757),
• as a post-build action step (page 757),
• or for pipelines. (page 758)

Define a job outcome policy
Job outcome policies (supported in the Contrast Jenkins integration version 3.3 and later) assign build
outcomes to Jenkins jobs that use the Contrast plugin. These policies mark jobs with a build outcome
status such as Failure, Unstable, or Success based on criteria you set.

Before you begin
You must be an Organization Administrator to define a job outcome policy in Contrast.

Define a policy
To define a job outcome policy:

1. Under organization settings (page 814), select Integrations in the left navigation.
2. In the Jenkins row, select Add job outcome policy.

Contrast Documentation

Integrations 760



3. Define a name for the job outcome policy (required).
4. Under Applications, indicate the applications to which the policy should apply. You can identify

applications by their name, importance level, or tag. If you select by application name, you can
select individual or merged applications (page 528).

5. Under Vulnerability properties, define a limit of which vulnerabilities, in which environments will
be included in the policy. Use the Environment, Vulnerability status and Vulnerability first seen
to filter the vulnerabilities that you want to include in this policy. Use the Vulnerability rules and
severities to set a threshold for how many of those rules (at a particular severity) will trigger the
outcome status change.
• Environment(s): Select the environment where you want to apply the policy.

For example, to block vulnerabilities from moving from test (QA) to production, select QA.
(However, if you do that, vulnerabilities in the development environment are not considered.
Select Development to also include those vulnerabilities. Or select All environments if you
want vulnerabilities from all environments to be included.)

• Vulnerability statuses: Select which statuses will be included. Statuses (page 701) are
determined by Contrast.

Contrast Documentation

Integrations 761



TIP
In most cases, you should only select open statuses like Reported, Confirmed,
and Suspicious (rather than closed statuses like Not a problem, Remediated
or Fixed). That way, Jenkins jobs won't fail or turn unstable due to vulnerabilities
that developers have already remediated.

• Vulnerability first seen: Set a time range for the vulnerabilities you'd like to include in this policy
according to when they were first seen.
Use From and Until fields to set the beginning and end of the time range. Select the beginning
of the time range to be: the Job start time, a predetermined period of time before the Contrast
step runs, or the day of Application onboarding. Select the end of the time range to be a
predetermined number of days before the Contrast step runs, or until the Contrast step runs
in Jenkins, or choose an option for a specific amount of time. You can also select Custom to
choose a specific date for either field.
If vulnerabilities were first found outside of this time range, they will not be included in the policy.

TIP
To incentivize developers to remediate vulnerabilities within a time period (for
example, a week), define the policy so that only vulnerabilities found more than
7 days ago would be considered for policy violation. To do this, set From to
Application onboarding and Until to Last 7 days.

• Vulnerability rules and severities: Use this section to set a threshold for the number, type and
severity of vulnerabilities you want the policy to allow.
For each rule, select the Severity or Assess rule type, and then the Number of allowed
vulnerabilities. Select Add another rule to add multiple rules.
The Number of allowed vulnerabilities determines how many vulnerabilities of this severity will
be permitted without affecting this build. If you set it to "0", then a single vulnerability will change
the build outcome status. If you set it to "10", then the build outcome status won't change until 11
vulnerabilities of that type are found. If you leave the Number of allowed vulnerabilities blank
for a specific rule type or severity, it will allow all vulnerabilities of that rule type or severity.
For example, if you set this to All rules and 1 vulnerability, any single vulnerability would trigger
the policy. You could also limit this policy to 5 critical vulnerability rules and 2 cross-site-scripting
vulnerability by adding another rule.

• Check the box next to Apply the "Query vulnerabilites by" selection from the plugin when
filtering vulnerabilities. You can define how to query vulnerabilities in a Jenkins job either using
the Contrast Assess post build step (page 757) or pipeline step (page 758). For example, you
can use the AppVersionTag, or the date when the vulnerability was last seen. If this checkbox
is checked, then the query is included when the job outcome policy is evaluated.

This example shows possible rules and settings for a job outcome policy that will change the
outcome status in Jenkins if these conditions are met.

Contrast Documentation

Integrations 762



With this example, the following vulnerabilities will be considered for policy violation:
• All vulnerabilities found on a server designated as a QA environment.
• All vulnerabilities that have a status of Reported, Confirmed or Suspicious.
• Any vulnerability that was first discovered between application onboarding and when the

Contrast step runs in Jenkins.
The policy will be violated and the outcome status will change, if at least ONE of these occur:
• There is at least 1 Critical vulnerability.
• There are at least a combined total of 4 High, Medium, Low or Note severity vulnerabilities of

any rule type except SQL injection.

NOTE
Vulnerabilities are only counted once, with precedence given to the most specific
setting (for example, a particular rule type) to the least specific (All rules).
If vulnerability limits are set for both a rule type and its severity level, the
vulnerabilities will be included in the rule type count, but not in the severity’s
vulnerability count. So in this example, Critical vulnerabilities are counted under
severity, but High, Medium, Low and Note severities are combined under All
rules.

6. Under Policy outcome, select the outcome of the policy. Contrast marks jobs that match the
selected criteria as Failure, Unstable, or Success. For applications with multiple job outcome
policies, the most severe outcome from all violating policies will apply.

7. At any point, you can use uncheck the box next to Enable this job outcome policy to pause
Contrast from enforcing policies on Jenkins jobs without having to delete the individual policy.

Contrast Documentation

Integrations 763



Run a build
To run a build for the first time:

1. In Jenkins, select the job or project you want to run.
2. In the menu on the left, select Build Now.
3. To see more details, you can view the log output.
4. If you are using a freestyle job, you can view data from the task. Select the run and, in the left

menu, select Vulnerability Report.

IMPORTANT
You may also see a chart in the job or project overview, however the chart is not
visible if you used a Contrast pipeline step, or if at least one of the applications
selected is being overridden by a job outcome policy.

Integrate with Jira
Integrate Jira with Contrast to automatically generate tickets, synchronize comments and push
notifications for your applications.

Before you begin, you must have:

• Jira Cloud or Jira 8.
• Jira account credentials. For Jira Cloud, this is username and API key. For on-premises Jira

installations, this is username and password.
• Permission to create issues in the target project.
• A running Jira instance accessible via HTTP to Contrast.
• A project to associate with an application that is already instrumented in Contrast.

See also

• Connect with Jira (page 764)
• Configure Jira for Assess (page 765)
• Configure Jira for Serverless (page 766)
• Manager Jira credentials (page 768)

Connect to Jira
To integrate Jira with Contrast:

Setup Contrast for Jira

1. In Contrast, go to the user menu > Organization settings > Integrations.
2. Select Connect for the Jira integration.
3. In the Setup Contrast with Jira section, add a name for the Jira integration, the username and the

API key (or password for Jira that is on-premises only). Add the URL for the Jira instance, and be
sure that Contrast can access the URL.
• Enter a name for the Jira integration.
• Add the URL for the Jira instance.
• Select Assess or Serverless.

NOTE
Contrast saves the username, API key or password, and the URL for Jira as a set
of credentials for this integration.

Contrast Documentation

Integrations 764



4. Select Test connection. The test may take a few moments, if you have many Jira projects. The
test confirms that Contrast can reach the specific Jira instance and the user can log in.

5. After testing the connection, configure Jira for Assess (page 765) or Jira for
Serverless (page 766).

See also
• Configure Jira for Assess (page 765)
• Configure Jira for Serverless (page 766)
• Manage Jira credentials (page 768)

Configure Jira for Assess
After testing your Jira connection, you can configure Jira to create tickets based on triggers you've set.

Before you begin
• Successfully connected with Jira (page 764)

Steps
1. After Contrast connects to Jira, select Applications to add the Contrast applications that will

trigger Jira tickets for security issues. You can also trigger Jira tickets only for applications with
specific importance levels in Contrast. Select Application importance and add the application
levels you want to use as a filter for Jira tickets.

2. Use the Project name, Default epic, Default assignee and Default issue type fields to set
custom values for Jira tickets that Contrast creates. You can also map vulnerability severity levels
in Contrast to Jira priority values to help teams groom security tickets. If you want to prefill
additional Jira fields, select Add Jira field. Use the dropdowns to select the fields you want to add
and the default value for the field.

NOTE
Changing the Project name or Default issue type also changes the related Jira
fields and values available to you. Contrast will keep any selected values that also
apply to the new project or issue type.

Contrast Documentation

Integrations 765



3. Select the option to Enable two-way integration, if you want to change vulnerability status in
Contrast every time an issue closes or reopens in Jira. This generates a URL that appears below
the checkbox, which your Jira administrator must use to register a webhook in Jira.
In Contrast, use the Vulnerability status dropdowns to configure how a Jira ticket status update will
also change vulnerability resolution status.

NOTE
If you choose Not a problem as a status, Contrast requires you to enter
a Reason in the dropdown. The default selection in the dropdown is Other.

After you save the two-way integration, Contrast automatically tracks any status changes on
related Jira tickets. You will see these as comments in the Activity tab for the vulnerability. Each
comment includes the name of the Jira integration and a link to the ticket.

NOTE
Atlassian has deprecated the ability to registerer webhooks with non-https URLs.
Therefore, Contrast on-premise users need to configure HTTPS (page 886)
before attempting to enable Jira two-way integration.

4. If you want a new Jira ticket made when Contrast discovers a vulnerability, select the option to
Automatically create tickets for new vulnerabilities discovered. Then select which Severity
levels or Rules should trigger new Jira tickets.
If Contrast creates a single Jira ticket for multiple vulnerabilities, the ticket status applies to
all vulnerabilities associated with the ticket. If Contrast creates multiple tickets for a single
vulnerability, all Jira tickets must close before Contrast can close the vulnerability.

NOTE
Automation options are not retroactive and will not generate Jira tickets for past
vulnerabilities.

5. Select Save and begin using your Jira integration. To remove the integration select Delete
configuration.

Configure Jira for Serverless
After testing your Jira connection, you can configure Jira to choose a subset of severities and result
categories from which the integration should create a Jira ticket.

Before you begin

• Make sure you are connected with Jira (page 764) and have AWS accounts in Contrast

Steps

1. After Contrast connects to Jira, select Add configuration to configure the AWS accounts from
which results will have Jira tickets created.

Contrast Documentation

Integrations 766

https://developer.atlassian.com/server/jira/platform/webhooks/#Webhooks-rest


2. Enter the following details:
• Connection Name: Choose a name for the Jira integration you are creating
• Credentials Name: Enter the desired credentials to be used for authentication

3. Click the Manage Credentials link above the Credentials Name field to edit or create new
credentials.

4. Enter the following details:
• Credentials Name: the name you entered in the previous step
• URL: Provide the URL for your Jira instance
• Username

5. Enter the API Key. To authenticate calls from Contrast, you need to provide an API Key for Jira.
• Click the information icon next to the API Key field name and click the Get Started link.
• Click Create API Token.
• Enter a name.
• Click Create.
• Click Copy to copy the API token to your clipboard.
• Go back to Contrast and paste the API token into the API Key field.

6. Click Test Connection to test the connection.
7. Click Save or Done.
8. Select the Serverless option to begin creating Jira tickets for vulnerabilities related to specific

applications or accounts.
9. Enter the desired Accounts for which Jira tickets should be created.
10. Choose a Jira Project in which Contrast should create tickets.
11. Set the Default Epic. Specify the Epic under which the new tickets should be created (if

applicable).
12. Set the Default Assignee. Specify the person who should be assigned to the tickets.
13. Set the Default Issue Type. Choose the default issue type for the created tickets (for example,

Task / Story / Bug).

Contrast Documentation

Integrations 767



NOTE
Changing the Project or Default issue type also changes the related Jira fields
and values available to you. Contrast will keep any selected values that also apply
to the new project or issue type.

14. Choose the type of Results for which Contrast should create tickets.
• Permissions
• Exploits
• Dependencies (CVEs)
• Severity (Note, Low, Medium, High, Critical)

15. After configuring the Default Issue Type, you need to provide additional Jira fields.
• Select Add Jira field.
• Add the Reporter, T-Shirt Size, and Work Type fields

16. Map the Contrast severity levels to the corresponding Jira severity levels (for example, Critical,
Major, Standard) as needed.

17. Select Save and begin using your Jira integration. To remove the integration select Delete
configuration.

Watch the following video for a demonstration of the integration steps.

https://player.vimeo.com/video/827314961?h=f049a72b04

Watch the following video for detecting a new vulnerability.

https://player.vimeo.com/video/827318792?h=78a2e50f7f

Manage Jira credentials
Contrast saves the most recent credentials for a Jira integration to help you set up new connections
faster. The username, API key or password, and Jira URL values that you enter in your first
configuration are the default credentials for the next Jira integration. Contrast will pre-populate the
next Jira configuration with the default credentials, but you can modify these values, if you want. You
can also manage saved sets of Jira credentials to update all affected configurations.

To create or edit a single configuration with credentials that are different from your default set:

1. Go to the user menu > Organization Settings > Integrations.
2. Select Show configurations to see the list of existing Jira integrations. Select the one you want to

update.
3. Select Manage credentials to see the Jira connection configuration details.
4. In the URL field, use the dropdown to choose a set of saved credentials, or manually update the

URL, username, and API key or password.
5. Once you've updated the fields, select Test connection to be sure the changes work.
6. Select Save.

NOTE
If you're using new credentials, you must choose to override the existing set of
credentials under the given name, or save the new values as a new credential set
under a different name.

To edit multiple Jira configurations at the same time:

1. In Contrast, go to the user menu > Organization settings > Integrations.

Contrast Documentation

Integrations 768

https://player.vimeo.com/video/827314961?h=f049a72b04
https://player.vimeo.com/video/827318792?h=78a2e50f7f


2. Select Manage credentials in the Jira Integration.
3. In the Manage Jira credentials form, use the dropdown to select a set of saved credentials.
4. Edit the username, API key or password, or Jira URL.
5. Select Rename if you want to use a different name for the edited credentials.

NOTE
Any updates to a set of credentials will affect all configurations using that set.

6. Select Test connection to be sure the integration works.
7. Select Save.

NOTE
Any updates to a set of credentials will change all configurations that use this set.

See also

• Jira integration (page 764)
• Connect to Jira (page 764)
• Configure Jira for Assess (page 765)
• Configure Jira for Serverless (page 765)

Integrate Jira Cloud with Contrast Scan
You can configure Jira Cloud to choose a subset of severities and result categories from which the
integration should create a Jira ticket for Contrast Scan vulnerabilities. You can also configure a two-
way integration if you want to change the Scan vulnerability status in Contrast every time an issue
closes or reopens in Jira.

Steps

1. From the user menu, select Organization settings > Integrations.
2. In the Jira Cloud section, select Configuration.
3. In the Credentials tab, enter your Jira credentials and select Save.

a. Credentials: Enter a name for the Jira integration.
b. Username: Enter your Jira username.
c. URL: Enter the URL for your Jira instance.
d. API key: Enter the API key for your Jira instance.
Saving these credentials establishes a connection with Jira.

4. In the Scan projects tab, specify the scan projects you want to integrate with Jira and select Save.
• To integrate all your scan projects with Jira, select Enable for all Scan projects.
• To integrate only specific scan projects with Jira, select the individual projects in the Scan

projects box.
5. In the Configuration tab, configure the Jira settings for the integration and select Save.

a. Jira Cloud project: Select a Jira project that you want to integrate with Contrast.
Changing the project name also changes the related Jira fields and values available to you.

b. Default issue type: Select the type of issue for which Contrast creates Jira tickets.
The default issue type affects which custom issue fields that you can select.

c. Default epic: Select a Jira epic.
d. Default assignee: Select a Jira ticket assignee.
e. Issue type custom fields: If you want to prefill additional Jira fields, select the fields you want

to add and the default value for each field.

Contrast Documentation

Integrations 769



f. Default priority for each vulnerability severity level: Select the Jira priority that you want to
map to each Contrast severity level.

g. Severity levels for tickets: Select the levels for which Contrast creates JIRA tickets.
6. Optional: In the Configuration tab, configure the bi-directional integration and select Save.

a. Select Enable bi-directional integration.
Contrast displays a webhook URL that your Jira administrator needs to register in Jira.

b. Select the Add icon ( )
c. Select the Jira status, the Jira resolution , and the Contrast vulnerability status.

These settings work together to determine the vulnerability status Contrast applies to
vulnerabilities based on the specified status and resolution in Jira tickets.
The available status options depend on the selected default issue type. The resolution options
are available only if the selected Jira status is Done.

Contrast Maven plugin
Maven is a build tool that builds, packages, and tests your Java applications.

The Contrast Maven plugin can integrate Contrast Asses and Scan into your project's Maven build.

Use the Contrast Maven Plugin Reference Documentation for more details on:

• Goals
• Usage

Goals

• Scan: The scan goal analyzes the Maven project’s artifact with Contrast Scan to find vulnerabilities
using static analysis.

• Install: The install goal includes the Contrast Java agent in integration testing to provide Contrast
Assess runtime security analysis.

• Verify: The verify goal verifies that none of the vulnerabilities found by Contrast Assess during
integration testing violate the project’s security policy (fails the build when violations are detected).

See also

• Contrast Scan (page 542)
• Install the Java agent (page 86)

Integrate with Microsoft Teams
Use the Microsoft Teams integration to receive notifications from Contrast in your configured Microsoft
Teams instance.

To connect Microsoft Teams:

1. Go to your team in your Microsoft Teams account and choose the channel you want to send
messages to.

2. Select the More icon.
3. Select Connectors from the menu.
4. In the Incoming webhook row, select Configure.
5. Enter a name for the Incoming webhook and click Create.
6. Copy the webhook URL. You will use this to set up the integration in Contrast.
7. Select Save.
8. In Contrast, under the user menu, go to Organization settings > Integrations.
9. In the Microsoft Teams row, select Connect.
10. Enter a name for the integration.

Contrast Documentation

Integrations 770

https://maven.apache.org/
https://contrastsecurity.dev/contrast-maven-plugin/
https://contrastsecurity.dev/contrast-maven-plugin/plugin-info.html
https://contrastsecurity.dev/contrast-maven-plugin/usage.html


11. Paste the webhook URL copied from Microsoft Teams.
12. Select an application to enable notifications.
13. Select Save.

IMPORTANT
Contrast will disconnect this integration if it fails to return a successful response after 5
attempts.

Integrate with PagerDuty
Integrate with PagerDuty incident management to receive attack notifications from Contrast.

To connect PagerDuty:

1. In the user menu, go to Organization Settings > Integrations.
2. Select Connect in the PagerDuty row.
3. In the window, enter a Name for the integration. This name will be displayed in notifications from

Contrast.
4. In the Message Severity dropdown, choose the behavior of the alert. The default selection is

"Critical." For more information about message severity, see the PagerDuty documentation.
5. Enter an Integration key. To find your integration key to enter in this field, follow the steps in the

PagerDuty documentation.
6. In Applications, select the applications in your portfolio that you want Contrast to automatically

generate incidents for within PagerDuty. The default selection is "All Applications."
7. Once you complete all of the fields, select Test connection. This process may take a few minutes,

depending on the number of your PagerDuty projects. The test verifies that Contrast can reach the
PagerDuty instance and that a message can be sent.

Manage notifications from your PagerDuty integration in organization notifications (page 827).

IMPORTANT
Contrast will disconnect this integration if it fails to return a successful response after 5
attempts.

Integrate with Solutions Business Manager
Integrate with Solutions Business Manager to receive notifications from Contrast.

Before you start, you must have:

• Solutions Business Manager account credentials (username and password)
• A running Solutions Business Manager instance accessible via HTTP to Contrast
• A project to associate the application instrumented by Contrast

To connect Solutions Business Manager:

1. Go to Organization settings > Integrations in the user menu.

Contrast Documentation

Integrations 771

https://support.pagerduty.com/docs/dynamic-notifications
https://support.pagerduty.com/docs/services-and-integrations


2. Click Connect in the Solutions Business Manager row.
3. In the Connect with Serena page, enter a name for the bugtracker entry. It will be displayed when

sending findings to bugtrackers.
4. Enter a username for the account connected to the Solutions Business Manager instance.
5. Enter the password for the username specified.
6. In the Host field, enter the URL to the Solutions Business Manager instance.
7. Select the application you would like to map to the Solutions Business Manager instance.
8. Enter the Solutions Business Manager Project ID to associate with this application.
9. Select Test to verify communication. This ensures that Contrast can communicate and authenticate

with the instance, as well as verify the existence of the specified project.

Integrate with ServiceNow
Integrate ServiceNow with Contrast to automatically generate incidents in ServiceNow.

Before you start, you must have:

• ServiceNow URL
• ServiceNow Username
• ServiceNow Password

Connect to ServiceNow
To integrate ServiceNow with Contrast:

1. In Contrast, go to the user menu > Organization settings > Integrations page.
2. Select Manage Credentials for the ServiceNow integration.
3. Add the URL, username, and password for ServiceNow.

4. Select Save.
5. Select Configure Applications.
6. Either enable the integration for all Assess applications or select specific application names from

the dropdown list.

7. Select Save.

Contrast Documentation

Integrations 772



Retry mechanism
If an event fails, it will be stored and retried every night at midnight GMT, increasing the retry count
by one to a maximum of three for up to 72 hours. After the third unsuccessful retry, the event will be
discarded.

If a create vulnerability event fails and is stored, any update or delete action relating to the
failed event is stored and replayed in chronological order to help maintain the correct state.

Integrate with Slack
With the Slack integration, you can receive notifications (page 827) from Contrast in your configured
Slack instance using a format similar to in-app notifications.

To connect Slack:

1. In Slack, go to your team's Build settings.
2. Add a new Incoming webhooks custom integration.
3. Choose the appropriate channel to which to send messages.
4. Copy the Webhook URL.
5. In Contrast, in the user menu, go to Organization settings > Integrations.
6. Select Connect in the Slack row.
7. Name the integration and paste the URL.
8. Selection the application for which you want to enable notifications.
9. Select Save.

To test the integration:

1. Go to Organization settings > Notifications.
2. In the dropdown under Integrations, select the Slack integration name.
3. For each Subscription (event type) you want to be notified of, click the toggle in

the Integrations column.
4. Cause an event type to occur, and confirm that you get a notification in the Slack channel you

specified.

IMPORTANT
Contrast will disconnect this integration if it fails to return a successful response after 5
attempts.

Integrate with Splunk on-call (formerly VictorOps)
Set up an integration with VictorOps incident management to receive attack notifications from Contrast.

To connect VictorOps:

1. In the user menu, go to Organization settings > Integrations.
2. Select Connect in the VictorOps row.
3. Enter a Name for the integration. This is displayed in notifications from Contrast.
4. Use the dropdown to choose the Message type of the alert. The default selection is "Critical." For

more information about message types, see the VictorOps documentation on incident fields.
5. Enter the URL for the connection. You can generate the URL in VictorOps through a REST API

endpoint. To get a URL or more information, see the VictorOps documentation on REST endpoint.

Contrast Documentation

Integrations 773

https://help.victorops.com/knowledge-base/incident-fields-glossary/
https://help.victorops.com/knowledge-base/rest-endpoint-integration-guide/


6. Select Test connection. This process may take a few minutes, depending on the number of your
VictorOps projects. The test verifies that Contrast can reach the VictorOps instance and that the
specified user can log in.

7. Once a connection is made, click in the multiselect field to choose the Applications for which you
want to send notifications. The default selection is "All Applications."

IMPORTANT
Contrast will disconnect this integration if it fails to return a successful response after 5
attempts.

Contrast Visual Studio plugin
Use the Visual Studio plugin to see vulnerability information for instrumented applications from the
Visual Studio IDE.

The plugin directs you to a line of code inside Visual Studio, and you can view related details in
the Contrast application. This way developers can get application security feedback at the time of
development for faster remediation.

The plugin supports Visual Studio versions 2017 (15.0 and later), 2019, and 2022.

To install, configure and use the Visual Studio plugin:

1. In Visual Studio, select Extensions.
2. In the new window, select Online from the left navigation panel.
3. Search for "Contrast", and select Download.
4. After you finish the download, restart the IDE.
5. In Visual Studio, go to Tools > Options.
6. In the search, enter "Contrast Security" and select Contrast Security - Connection.
7. In the Contrast Connection form, add the Contrast URL, Username, Service key, API

key and Organization ID in the appropriate fields. You can find these in your profile (page 518).

NOTE
The API key must belong to the organization you want to access or you'll get
authorization errors. After many failed attempts, this will lock your account.

8. Select Add. Visual Studio automatically tests the connection as it attempts to retrieve the
organization from Contrast.

9. Select the organization in the Organizations field, and select OK.
10. In Visual Studio, go to View > Other Windows > Contrast Security Integration. You can also

search for "Contrast Security Integration". This view shows a list of all the vulnerabilities from
Contrast.

11. To filter the list, click the Filter icon at the top-left corner of the page.
12. In the window that appears, choose from multiple filters, including servers, applications, severity

levels, states and last detected dates.
13. If you can't see your vulnerabilities list, select Refresh. To clear all selected filters, click the Clear

icon. This also applies for Server and Application lists.

Contrast Documentation

Integrations 774



NOTE
If you can't see your vulnerabilities even after refreshing the list, you must
filter your vulnerabilities. You must repeat this process after selecting a different
organization in the Connection settings so that filters and vulnerabilities are
refreshed correctly.

14. Under the Actions column, you can click the magnifying glass icon to see more information about
the vulnerability. Use the icon to go to the Vulnerability page in Contrast.

Contrast Visual Studio Code plugin
Use the Visual Studio Code plugin to see vulnerability information for instrumented applications from
Visual Studio Code environments when Contrast discovers security problems during functional tests.

The plugin shows you an overview of all vulnerabilities found in the application, as well as details for
each vulnerability, like the HTTP request that exposed the vulnerability to Contrast.

The plugin supports Visual Studio Code versions 1.42.1 and later.

To install, configure and use the Visual Studio Code plugin:

1. In Visual Studio Code, go to the Extensions view and search “Contrast Security”.
2. Select Install. After installation, restart Visual Studio Code.
3. To authenticate to your Contrast account, select the Settings icon in the Contrast Security view.
4. Select Workspace and enter your API key, Organization ID, Contrast URL, and Authorization

header. You can find these values in your profile (page 518).
5. Select Test Contrast connection to validate your credentials. You will see a message that

confirms either a successful connection or invalid credentials.
6. Select the Refresh icon to update vulnerability information. Under Contrast Security, you can

see vulnerabilities grouped by Severity and ordered by Status. Select a vulnerability to view more
details like How to Fix, HTTP Information, Details, and Overview .
You can also see when the vulnerability was last detected and the current status. Vulnerability
details display in the code editor under Output.

Contrast Documentation

Integrations 775



TIP
With the plugin, you can filter vulnerabilities by:

• Vulnerability metadata:
• Application name
• Status (such as Reported, Not a Problem, Remediated)
• Environment (development, test, or production)
• Tags (custom labels applied to vulnerabilities)
• Detection date (specifically, First and Last detected)

• Session metadata:
• Committer
• Commit hash
• Branch name
• Git tag
• Repository
• Test run
• Version
• Build number

For example, you can choose to display only those vulnerabilities found on a specific
feature branch (Branch Name) and committed directly by you (Committer), filtering out
vulnerabilities introduced by a different developer on a separate feature branch.

Someone else can choose to filter vulnerabilities so that they only see results from
a specific build (Build Number) that was blocked by their security team. They can
immediately pinpoint the subset of vulnerabilities that need to be resolved before
deploying the merged feature branch.

Contrast Visual Studio for Mac plugin
Use the Visual Studio for Mac plugin to see vulnerability information for instrumented applications from
the Visual Studio for Mac IDE.

The plugin directs you to the line of code and you can view more details in the Contrast Security
pad. This way, developers can get application security feedback at the time of development for faster
remediation.

The plugin supports Visual Studio for Mac versions 8.3.0 and later.

To install, configure and use the Visual Studio for Mac plugin:

1. From the Contrast distribution repository, download the Visual Studio for Mac plugin file (.mpack).
2. In Visual Studio for Mac, go to Visual Studio > Extensions.
3. Click Install from file... and select the downloaded .mpack file. Allow the plugin to install, and

restart Visual Studio for Mac.
4. Select View > Pads > Contrast. Then select Configure and add your Contrast

URL, Username, Service key, API key and Organization ID in the given fields. You can find
these in your profile (page 518).

5. Select Test connection to test your connection with Contrast. If the connection is successful,
select Save.

6. Once the plugin is installed, you can return to View > Pads > Contrast, select the magnifying
glass icon and then select an application. This will load vulnerabilities that Contrast has found

Contrast Documentation

Integrations 776

https://github.com/Contrast-Security-OSS/contrast-vsmac-plugin-distro


for the application. Select Refresh if you don't see the vulnerabilities list. Under each section,
vulnerabilities display in order by severity, then by status.
You can select a vulnerability to see general or more detailed information. The General
Information section includes severity, application, status, and history. The Details section includes
information pulled from Contrast, such as details, notes, and activity for that vulnerability.
To clear all selected filters, select the broom icon. You can also view Server and Application lists
in this way.

Contrast Documentation

Integrations 777



Administration

Users with different roles and permissions (page 945) have different levels of access in Contrast. This
allows different individuals and teams in your business to best use Contrast for their responsibilities:

• Rules and policy administration: (page 778) RulesAdmins can create and edit policies. Editors can
add applications and manage some content details like scores and notifications.

• Organization administration: (page 809) Organization Administrators can configure settings for a
particular organization.

• System administration: (page 868) For on-premises customers, SuperAdmins can install, configure
and maintain Contrast at a system level. ServerAdmins and System Administrators can also help with
this responsibility.

Rules and policy administration
Maintaining your applications in Contrast requires different roles and permissions depending on what
you'd like to do.

As a RulesAdmin, select Policy management in the user menu.

Here you can manage:

• Assess rules (page 779)
• Security controls (page 780)
• Vulnerability policy (page 783)

Contrast Documentation

Administration 778



• Set Protect rules (page 789)
• CVE shields (page 793)
• Virtual patches (page 797)
• Log enhancers (page 799)
• Block or allow IP addresses (page 805)
• Edit IP source names (page 806)
• Application exclusions (page 800)
• Compliance policy (page 803)
• Library policy (page 807)
• Sensitive data (page 808)

A user with RulesAdmin permissions can also:

• Instrument an application (page 48)
• Enable Protect (page 811)
• Approve or deny pending vulnerability status changes (page 705)
• Enable notifications (page 809)
• Set default scoring (page 830)

Set Assess rules
To view a list of all rules applied, select  Applications > Your application name > Policy > Assess or
under the user menu, select   Policy management > Assess rules. Each rule is listed with a severity
and description, as well as an indicator of which environments it applies to.

You can also set the default Assess rules for an organization (page 780).

Before you begin

• Ensure that you have an Organization Administrator or RulesAdmin role.
• Log in and select the correct organization.

Steps
Apply Assess rules and settings:

1. To apply Assess rules to particular environments for applications:
a. When viewing the list of rules under Applications, use the toggles to turn each rule on or off

for each environment. You can also use the checkboxes in the left column to select multiple
rules, then select Change Mode to apply them. In the window that appears, toggle the rules
on or off for each environment and select Done.

b. Alternatively, under Policy management > Assess rules, select a rule to see a list of
applications that are associated with that rule. Use the toggles to turn rules on or off for each
application.

2. To update settings for individual Assess rules:
a. Under Policy management, select the name of rule to show a list of applications associated

with the rule.
b. To select one or more applications, select the check box next to each application.

To select all applications, select the Application check box.
c. Select the settings icon (  ) in the top right.
d. In the window that appears, select the Likelihood, Impact and Confidence Level of the

vulnerabilities for which this rule is intended.
e. Optionally, select the checkbox to Override to enable this option to update these fields after

the configuration is saved.
f. In the Risk Description field, enter additional information regarding potential consequences of

exposure to this vulnerability. You can also provide a Recommendation

Contrast Documentation

Administration 779



g. In the References field, enter a link to an external reference related to the specific vulnerability
to provide more context for the rule.

h. Select Save.

Set Assess rules for organizations
When you add and configure an agent for an application or create a new organization, Contrast applies
a set of default Assess rules.

Use this procedure to change the default settings for Assess rules at an organization level. These
settings apply to any new application that you add to a Contrast organization. These changes have no
affect on existing applications in the organization.

Before you begin

• Ensure that you have an Organization Administrator or Organization RulesAdmin role.
• Log in and select the correct organization.

Steps

1. Under the user menu, select Policy management.
2. Select Configure the default policy.

3. Select All as the filter.

4. For each Assess rule, use the toggles to turn each rule on or off for each environment.

Security controls
A security control is a method in your code that ensures the data passing through it is safe to use in
your application. Contrast trusts information that is passed through built-in security controls it knows
about. Contrast monitors many methods from third-party libraries to determine whether a data flow is
safe.

In some cases, your organization may choose to build its own security controls which are not known
to Contrast. For these cases, create security controls that teach Contrast to account for your custom
method. Adding custom security controls results in Contrast reporting more accurate results.

Contrast Documentation

Administration 780



Types of security controls

• Input Validators: Validators are methods that ensure only properly formed and formatted data is
accepted as input before it’s passed to other parts of the application. They are designed to allow the
input field to accept or reject specific characters.
Input validation is the primary method of preventing SQLi, XSS, and other input-validation related
attacks.

• Sanitizers: Instead of validating input, sanitizers render input safe before it’s passed to other parts of
the application, like databases. For example, a sanitizer might take a single quote that could be used
in a potential injection attack and change it to double quotes.

When to use security controls
Create security controls when Contrast does not have visibility into methods, classes, or libraries that
your application is using to protect it from input validation issues (sanitizers and input validators).

If you know about the validators or sanitizers that your applications use, you can add them manually or
move a suggested security control that Contrast detects automatically to the list of security controls that
you apply to your applications.

After you add and enable security controls, they suppress input vulnerabilities in Assess that the
security control is designed to mitigate. It is very important that you apply your security control to the
proper vulnerability rule.

Effects of using security controls
Security controls affect any vulnerability and detection for specified rules. Input validators and sanitizers
are usually designed for or are applicable to a specific type of data, a particular field, page, or specific
application. Enabling a security control for all rules can result in false negatives findings.

Use security controls carefully. You might need to apply a security control to specific rules only.
For example, if a validator or sanitizer protects your application from XSS, it may not be effective
against SQL injection. If you apply a security control to all rules, Contrast would likely suppress aSQLi
vulnerability which would results in false negative finding.

A security control should be good enough to assure you that is it protecting your application against a
wide range of attacks.

Roles for security controls management
Only users assigned an organizational role of RulesAdmin or higher can view or modify security
controls.

Supported languages
Security controls apply to Java, .NET Framework, and .NET Core languages only.

Security control example
Assume that you have a method called DoLegacySecurity() inside a class called
com.Acme.OldSecurity that is being reported for using insecure cryptographic algorithms, You
create a security control and specify this method signature:

com.Acme.OldSecurity.DoLegacySecurity(java.lang.String*)

Contrast Documentation

Administration 781



In this example, Java.lang.String* is the marked parameter to be validated.

When creating the security control, you are careful to not include any trailing parameter definitions or
extra characters.

Contrast matches this method signature against the stack trace for any vulnerabilities it finds and
suppresses them.

Add, edit or delete security controls
Security controls apply to Java, .NET Framework, and .NET Core languages only.

Steps

1. Select User Menu > Policy Management, select Security controls.
The Security Controls grid shows a list existing security controls, if there are any.

2. Select the name of an existing security control to edit, or select Add security control to create
one.

3. In the panel that opens, specify this information:
• Name
• Language: Select Java , .NET Framework, or .NET Core.
• Type: Select either one of these methods:

• Input validators accept user input and take corrective action if unsafe data is received.
• Sanitizers clean the data that is passed in, making it safe for consumption by any interpreter.

Many sanitizers prevent one type of attack, but not another.
• API: When specifying the API, consider these conventions:

• Java must include method name and parameters. Use fully qualified types, intended to target
only java.lang.String parameters (not boolean, int, long, short double, float, and so forth).

• .NET Framework and .NET Core :
• Include a return type (or void), method name and parameters. Use fully qualified types,

intended to target only System.String parameters.
• Verify that no white space exists between the parameters.

• Mark the parameters that are going to be validated or sanitized with an asterisk ( * ).
• Applicable vulnerability rules: You can choose All, or select one or more individual

vulnerabilities.

Contrast Documentation

Administration 782



4. Select Save to create a new security control. If you are editing an existing security control, you also
have the option to delete the security control from this panel with the Delete icon.

5. At the bottom of the table, you will see Suggestions for potential security controls that Contrast
detects, along with their class and method. (You can hide the section by clicking on the caret in the
header row.)
If a security control is automatically discovered for the first time, a notification is sent to all users
with at least Viewer permissions for the corresponding applications.
Hover over the API to see where this suggestion was discovered, and optionally, select the name
of the application to see the vulnerabilities in context of that application.
Use the plus icon ( ) at the end of the suggestion row, to add the suggestion as a new security
control and include it in the table above. You can edit the Name, API and Type fields inline before
adding it. After you add the security control, select the name and verify that the security control is
applied to the correct application rules.
Use the Delete icon ( ) to delete the suggestion. Contrast doesn't repeat suggestions, so once
you delete it, an API is never suggested again. There is no way to view historical suggestions or
get them back.

NOTE
Servers may require restart. Contrast provides a list of servers affected by your
selection.

Create security controls for specific vulnerabilities
You can also create security controls in the context of a particular vulnerability with a tag event.

If Contrast has captured runtime data flow for a vulnerability, you can select Vulnerabilities >
Vulnerability name > Details to see more information about that vulnerability. Potential security
controls that are detected trigger a tag event and this is shown as a low severity (green) event. Expand
the event and you can select Add a security control.

Also, if you mark a vulnerability as Not A Problem with the reason "Goes through an internal security
control," you can define that security control at that time.

Vulnerability management policies
Vulnerability policies let administrators with Organization RulesAdmin or Organization Administrator
roles define a set of criteria that, when triggered, either changes the status of a vulnerability or flags it
for review. The criteria that define the policy includes vulnerability rules, severity, application, and route.

Vulnerability policies result in a more accurate view of which vulnerabilities need attention and which
are considered remediated and closed. You have the option of setting auto-verification policies and
violation policies.

You can set in-app notifications (page 828) when vulnerabilities violate these policies. Administrators
are notified of violations in-app and by email.

Types of Auto-verification policies
Auto-verification (page 785) policies automatically change the status of a vulnerability that meets
specific criteria to Remediated - Auto-verified. These policies are useful when you want a more
accurate view of vulnerabilities that need attention instead of relying on manually changing the status of
vulnerabilities after they are fixed and verified.

An auto-verification policy can be session-based, route-based, or time-based:

Contrast Documentation

Administration 783



• Session-based auto-verification (recommended): A combination of metadata values that you set
in the agent configuration file define a session. You control when a session ends by calling a Contrast
API at the end of a test run.
You need an automated test suite for this type of auto-verification.

• Route-based auto-verification: A combination of metadata values that you set in the agent
configuration file define a session. Use this type of auto-verification if you cannot use session-based
auto-verification.
You need an automated test suite for this type of auto-verification.

• Time-based auto-verification: Use this method of auto-verification if you have high confidence that
your application will exercise all routes within a specified time period.
You can use automated or manual testing with this type of auto-verification.

Auto-verification behavior

• Contrast marks a vulnerability as Remediated - Auto-Verified if Contrast does not discover it on the
same route across two different sessions. If two sessions report the exact same session metadata
values, Contrast views the two sessions as a single session.
Depending on the defined values, each agent run could be part of a single session or every agent
run could have its own session. If you are integrating Contrast into a CI/CD pipeline, ensure that
you send at least one session metadata key-value pair that is unique each time you deploy a new
version of the application. For example, configure the agent to send the Commit Hash, Build Number,
or Version metadata because these values are likely to change for each application deployment.

• If a vulnerability that Contrast previously marked as Remediated - Auto-Verified reappears when the
same route is exercised, its status changes to Reported. Contrast updates the details in the Activity
tab on the vulnerability details page.

• If a vulnerability that Contrast previously marked as Remediated - Auto-Verified reappears when the
same route is exercised after you disable or delete an auto-verification policy, the vulnerability status
changes to Reported. Contrast updates the details in the Activity tab on the vulnerability details
page.

Session metadata for session-based and route-based auto-verification
For session-based or route-based vulnerability policies, add session metadata (page 533) to the agent
configuration files:

• Providing unique session metadata allows Contrast to create a baseline of findings that lets it verify
whether a vulnerability was remediated based on route comparisons.

• Using the Test Run session metadata field is a good way to ensure that Contrast is tracking routes
and vulnerabilities across an entire test run even if you restart the agent and the application multiple
times during the run.
Contrast creates a unique session ID for every unique metadata key-value pair. Using session
metadata in this manner combines multiple test runs into a single test session. This action is useful in
situations where different code paths on the same route are tested.

• Using the Commit Hash, Build Number, or Version metadata is useful because these values are likely
to change for each application deployment.

Violation policies
Violation policies (page 788) trigger a violation notice when a vulnerability matches a set of specific
criteria. If triggered, you see the vulnerability in red text in the vulnerabilities list. Use the vulnerabilities
filter to view only vulnerabilities with policy violations.

Contrast Documentation

Administration 784



Policy triggers
These trigger types activate a vulnerability policy:

• Session-based (recommended): Triggers an auto-verification policy when a vulnerability is seen, or
not seen, on a specific route during a session. When you use this trigger, use the Contrast API to end
the session. This feature lets you define when a session ends so that you can get immediate results
from a test run.

• Route-based:Triggers an auto-verification policy when a vulnerability is seen, or not seen, on a
specific route. This trigger is available for technologies where Contrast can identify routes.

• Time: Triggers a violation or auto-verification policy after a specified number of days.

Environments
For optimal results, configure the vulnerability policies to apply to the environments where you are using
test automation. If you are running the same application on multiple servers, ensure that each server is
configured for the Development, QA, or Production environment.

Multiple policy actions
If multiple policies affect the same vulnerability, these rules determine how Contrast applies the policies:

• Auto-verification policies take precedence over violation policies. For example, if an auto-verification
deadline applies first, the vulnerability is closed and never flagged.

• Between two time-based triggers, the action with the closest deadline applies first. For example, if
a violation deadline applies first, the vulnerability is flagged and then auto-verified when the later
deadline applies.

Set auto-verification vulnerability policies
Auto-verification policies for vulnerabilities (page 783) automatically change the status of a vulnerability
that meets specific criteria to Remediated - Auto-verified. These policies can be session-based,
route-based or time-based.

When you add a policy, it is turned on, by default. You can turn a policy off or on in the Enabled column
in the Auto-verification tab.

Before you begin

• Use Contrast version: 3.7.2 and later.
• Verify you are using the minimum version of supported agents:

• .NET Framework 20.4.1
• .NET Core 1.0
• Java 3.7.3.14895
• Node.js 2.11.0
• Python 3.4.0

Contrast Documentation

Administration 785



• Ruby 3.8.4
• Verify that you are using a supported framework. (page 788)
• If you plan to use session-based or route-based auto-verification, configure unique session

metadata (page 533) (for example, Commit Hash, Build Number, or Version) in the agent
configuration files.

Set an auto-verification policy

1. From the user menu, select Policy management.
2. Select Vulnerability management.
3. In Vulnerability policy, select the Auto-verification tab.
4. Select Add policy.
5. In Name, enter a name for the policy.
6. In Vulnerability rules, select one or more severity levels or Assess rules that you want to

associate with the policy.
7. In Applications, select one or more importance levels or applications that you want to associate

with the policy.
To find specific levels or applications, select the Applications box and start typing.

8. In Environments, select one or more server environment where the policy is applied: All
environments, Development, QA, or Production.

9. Under Trigger, select the type of trigger you want to use for the policy (select one or both types of
triggers):
• To set a time-based trigger, select Mark any vulnerability as “Verified – Auto-Remediated”

after and select the number of days after which the vulnerability policy is marked as auto-
verified.
This trigger is useful if you are confident that vulnerabilities will be fixed and routes will be
exercised within the selected time frame. If Contrast finds the vulnerabilities again, it reopens
them.

TIP
Use time-based auto-verification along with session-based or route-based auto-
verification to find situations where routes change drastically from build to build.
For example:

• Major code refactoring where you add new routes and remove old routes.
• A route is no longer exercised because it is no longer valid.

• To set a trigger for session-based or route-based auto-verification:
a. Select Auto-verify based on session or route.

Session or route-based auto-verification take precedence over a time-based trigger.
b. Select ONE of these options (you can't use both options at the sane time):

• Session-based auto-verification (recommended): This type of auto-verification policy
lets you define when a session ends so that you can get immediate results from a test run,
including making pass/fail decisions for your builds. Session-based auto-verification is the
preferred method for auto-verification. When you select this option, you end sessions by
adding calling the Contrast API at the end of a test run.

• Route-based auto-verification: If you can't use session-based auto-verification, consider
using route-based auto-verification. In this case, the session metadata that you configure
for your agent define the session.
Route-based triggers only work for certain technologies with identifiable routes.

10. Select Save.

Contrast Documentation

Administration 786



Configure a test run for session-based auto-verification
Session-based auto-verification, the recommended auto-verification method, requires you to make calls
to the Contrast SBAVRouteSession API at the end of a test run. The following examples show
different approaches for closing sessions.

To find your authorization header and API key, log in to the Contrast web interface and under the user
menu, select User settings.

• End the session defined by a session ID and application ID. Use commands similar to the following
example:

curl --location --request POST 'https://<HOST>/Contrast/api/ng/
organizations/<ORG-UUID>/agent-sessions/sbav' \
--header 'Authorization: <Your-Auth-Header-Value>' \
--header 'API-Key: <API-KEY>' \
--header 'Content-Type: application/json' \
--data-raw '{
    "sessionId":"0",
    "appId":"5b4960b3-a111-4f2a-bf24-7367be7c8302"
}'

• End the session defined by a session ID, the application name, and the application language. Use
commands similar to the following example:

curl --location --request POST 'https://<HOST>/Contrast/api/ng/
organizations/<ORG-UUID>/agent-sessions/sbav' \
--header 'Authorization: <Your-Auth-Header-Value>' \
--header 'API-Key: <API-KEY>' \
--header 'Content-Type: application/json' \
--data-raw '{
    "sessionId":"0",
    "appName":"FakeRubyApp",
    "appLanguage":"JAVA"
}'

• End the session defined by metadata key-value pairs configured for the application and the
application ID. Use commands similar to the following example:

curl --location --request POST 'https://<HOST>/Contrast/api/ng/
organizations/<ORG-UUID>/agent-sessions/sbav' \
--header 'Authorization: <Your-Auth-Header-Value>' \
--header 'API-Key: <API-KEY>' \
--header 'Content-Type: application/json' \
--data-raw '{
    "appId":"abc",
    "metadata":[
        {"label":"developer", "value":"carlos"},
        {"label":"repo", "value":"ts"}
    ]
}'

• End the session defined by these metadata key-value pairs configured for the application with
application name and language. Use commands similar to the following example:

curl --location --request POST 'https://<HOST>/Contrast/api/ng/
organizations/<ORG-UUID>/agent-sessions/sbav' \
--header 'Authorization: <Your-Auth-Header-Value>' \
--header 'API-Key: <API-KEY>' \
--header 'Content-Type: application/json' \
--data-raw '{

Contrast Documentation

Administration 787



    "appName":"FakeJavaApp",
    "appLanguage":"JAVA",
    "metadata":[
        {"label":"developer", "value":"carlos"},
        {"label":"repo", "value":"ts"}
    ]
}'

Update a vulnerability policy

1. From the user menu, select Policy management.
2. Select Vulnerability management.
3. In Vulnerability policy, select the Auto-verification tab.
4. Select the policy.
5. Update the values, as needed.
6. Select Update.

Auto-verification supported frameworks
These frameworks support auto-verification policies:

• Java: Jersey 2, Spring MVC 4, Struts 1, Struts 2, Servlets (beta)
• .NET Framework: ASP.NET MVC (versions 4 and 5), WebForms, WebAPI and WCF
• .NET Core: ASP.NET Core MVC (versions 2.1, 2.2, 3.0 and 3.1) and ASP.NET Core Razor Pages

(versions 2.1, 2.2, 3.0, and 3.1)
• Node.js: Express, Hapi 17+, Koa, and Kraken
• Python: Django, Pyramid, and Flask
• Ruby: Rails and Sinatra

Set violation vulnerability policies
Violation policies mark a vulnerability as being in violation of a policy. When this policy is triggered, the
vulnerability is displayed in red text in the Vulnerabilities list.

When you add a policy, it is turned on, by default. You can turn a policy off or on in the Enabled column
in the Violation tab.

Before you begin

• An Organization Rules Admin or Organization Admin role is required.

Contrast Documentation

Administration 788



Steps

1. From the user menu, select Policy management.
2. Select Vulnerability management.
3. Select the Violation tab.
4. To add a policy:

a. Select Add policy.
b. In Name, enter a name for the policy.
c. In Vulnerability rules, select the vulnerability severity levels or Assess rules that you want to

associate with the policy.
d. In Applications, select the application importance levels or applications that you want to

associate with the policy.
e. In Environment, select the environments for the servers hosting the applications where you

want to apply the policy.
f. Under Trigger, select Flag any existing vulnerability after and select the number of days.
g. Select Save.

5. To update a policy:
a. On the Violations tab, select a policy.
b. Change any of the policy values.
c. Select Update.

Protect rules
Apply Protect rules to monitor or block specific kinds of attacks in application environments. Every rule
represents a type of attack that exploits vulnerabilities in either custom code or open-source libraries,
such as SQL injection or cross site scripting.

Contrast includes many Protect rules you can use to monitor or block attacks, like these:

• Command injection: Carefully crafted inputs can execute tainted operating system level commands.
• Cross-site scripting: A web application vulnerability that can allow users to run arbitrary JavaScript

in other user's browsers.
• Expression language injection: A vulnerability type for many frameworks and custom code that

happens when an application mistakenly evaluates user inputs as expression languages like OGNL,
SpEL, or JSP EL.

• Method tampering: An attack against authentication or authorization systems that have implicit
"allow all" settings in their security configuration.

• Path traversal / Local file include: A vulnerability that allows users to control which files an
application opens and reads.

• SQL and NoSQL injection: Carefully crafted inputs to the application that alter SQL or NoSQL
queries in order to steal data or execute code.

• Unsafe file upload: A vulnerability in the upload process that allows malicious files to bypass upload
protections and perform malicious actions. This rule affects files with commonly-used extensions
including (but not limited to): SVG, ASP, ASPX, *SH, JAR, and JAVA. In Monitor mode, this rule
reports potentially unsafe file uploads to Contrast. In Block mode, Contrast blocks uploads of these
files.

• Untrusted deserialization: A web application vulnerability that allows users to pass arbitrary objects
to a deserializer and execute remote code.

• XML external entity processing: A vulnerability in XML processing that allows users to read, write,
and potentially, execute remote code to a file.

Set Protect rules
You can set Protect rules (page 789) that monitor or block attacks in your application environments.

When you add new applications, Contrast applies a set of default Protect rules to them. You can
change the modes for an organization's default Protect rules (page 792).

Contrast Documentation

Administration 789



Before you begin

• Ensure that Contrast (hosted customers) or a SuperAdmin (on-premises customers) granted Protect
permissions (page 908) for the organization.

Steps

1. Select Applications in the header.
2. Select an application name and select Policy.
3. Select Protect.

4. To find a specific rule, enter the rule name in the search box.
5. For each rule, set the mode for each environment:

a. Select the dropdown for each environment.
b. Select one of these modes:

• Off: This mode disables the rule.
• Monitor: The agent identifies and reports attacks.
• Block: The agent identifies, reports and blocks attacks.

IMPORTANT
If an attack matches a rule and the mode for that rule is set to
Block, the Java, .NET Framework, and .NET Core agents throw an
AttackBlockedException.

To ensure the application doesn't crash, edit the application to handle the
AttackBlockedException.

• Block at perimeter: The agent blocks a possible attack before the application can process
it. This option is not available for all rules.

• Monitor at perimeter: The agent attempts to identify and report a possible attack before the
application can process it. This option is not available for all rules.
If you block or monitor at the perimeter, the agent doesn't verify the attack at the sink. This
action can lead to false positive results.

TIP
You can test policies by setting a different mode for a Protect rule in
each environment. This action lets you see how various options work in
pre-production and won't disrupt production defenses.

6. To apply settings to multiple rules, use one of these methods:
a. Select the checkbox next to each rule that you want to change and and select Change Mode.
b. To change settings for all rules, select the Rules checkbox and select Change Mode.

Contrast Documentation

Administration 790



c. In the Change Mode window, set the mode for each environment and select Save.

7. To set Protect rules for all applications in the organization that use a specific rule:
This step requires an Organization RulesAdmin role.
a. Select user menu > Policy management > Protect rules.
b. To filter the list of rules, use the dropdown to filter the rules by language or the search field to

find a rule by name.
c. Select a rule name to manage settings for all applications that currently use the rule.

d. Use the dropdown to set the Protect mode for each environment.

Contrast Documentation

Administration 791



Set Protect rules for organizations
When you add and configure an agent for an application or create a new organization, Contrast applies
a set of default Protect rules.

NOTE
Starting in August 2021, new organizations include an optimized set of Protect
rules. This configuration is designed to provide the highest value to users, including
enhanced performance.

Use this procedure to change the default settings for Protect rules at an organization level. Changing
these settings affects new application that you add to a Contrast organization. These changes have no
affect on existing applications in the organization.

Before you begin

• Ensure that you have an Organization Administrator or Organization RulesAdmin role.
• Log in and select the correct organization.

Steps

1. Under the user menu, select Policy management.
2. Select Protect rules.
3. Select Configure the default policy.

4. For each Protect rule, select the dropdown for the environment where the application is hosted
(Development, QA, and Production).

5. Select one of the following modes:
• Off: This mode disables the rule.

Contrast Documentation

Administration 792



• Monitor: The agent identifies and monitors attacks.
• Block: The agent identifies, reports, and blocks attacks.
• Block at perimeter The agent blocks a possible attack before the application can process it.

This option is not available for all rules.
• Monitor at perimeter: The agent attempts to identify and report a possible attack before the

application can process it. This option is not available for all rules.

CVE shields
Common Vulnerabilities and Exposures (CVE) provide a standardized identifier for a given vulnerability
or exposure. They also provide a baseline for evaluating the coverage of your tools.

Contrast provides several CVE shields to help protect your applications that contain CVEs. CVE shields
are useful for legacy applications that use vulnerable libraries that are difficult to update.

You only need CVE shields when the vulnerability isn't a common attack class like SQL injection or
untrusted deserialization. In some cases, Contrast creates a CVE shield to get more data that is specific
to a particular threat, even if there's an existing Protect rule that prevents the attack from occurring. This
action helps provide more context into exploitation. It helps organizations map ongoing attacks to trends
in the overall security ecosystem.

View CVE shields (page 793)

Set modes for CVE shields (page 794)

View CVE shields
The CVE shields list displays the following information:

• The CVE shields that Contrast provides for specific CVEs.
• A description of the CVE.
• The environments in which the servers hosting an application are running.
• The mode configured for the CVE shield:

• Off: This mode disables the CVE shield entirely.
• Monitor: In this mode, the CVE shield identifies and reports attacks.
• Monitor at perimeter: In this mode, the CVE shield tries to identify and report a possible attack

before the application can process it. This option is not available for all CVE shields.
• Block: In this mode, the CVE shield identifies, reports, and blocks attacks.

Contrast Documentation

Administration 793



• The applications, if any, that contain a specific CVE.
The CVE shield defends this vulnerability against attack.

Steps

To view CVE shields:

1. From the user menu, select Policy management.
2. Under Protect, select CVE shields.
3. To find a specific CVE, enter a full or partial name in the search box.
4. To view details about a specific CVE, click the link below the CVE name.

5. To view which applications contain a CVE, in one of the environment columns, hover over the
number. The tooltip lists the applications that the CVE shield is defending.
The number indicates the number of applications that contain the CVE. The mode indicates how
the CVE shield is configured.

Set modes for CVE shields
Instead of detecting categories of attacks, CVE shields defend specific CVEs in applications from
attacks.

Set one of the following modes for applications hosted on servers running in a Development, QA, or
Production environment:

• Off: This mode disables the CVE shield entirely.

Contrast Documentation

Administration 794



• Monitor: In this mode, the CVE shield identifies and reports attacks.
• Monitor at perimeter In this mode, the CVE shield tries to identify and report a possible attack

before the application can process it. This option is not available for all CVE shields.
• Block: In this mode, the CVE shield identifies, reports, and blocks attacks.

Before you begin

• Required: Check that you have Organization or Rules Admin permissions.
• Check that settings (page 592) for servers hosting your applications are configured to use the correct

environments.

Steps
To view CVE Shields.

1. From the user menu, select Policy management.
2. Select CVE shields. and click the name of a CVE shield.

To find a specific CVE shield, enter a partial or full name in the search box.
3. To set the mode for all or multiple applications:

a. To select all applications, select the Application checkbox. To select multiple applications,
select the checkbox for each application.

b. Click Change mode.
c. In the Change Mode window, select the CVE shield mode for the selected applications in a

one or more environments.
d. Click Done.

4. To set the mode for a single application:

a. At the end of the row for an application, select the menu in an environment column.

Contrast Documentation

Administration 795



If an environment is not defined for the server hosting the application, when you hover on that
environment, a tooltip appears. To configure the server for that environment, click Set up and
select the settings icon ( ) at the end of the server row.

b. Select a CVE shield mode for the application in the selected environment.
c. Click Done.

Set modes for CVE shields for organizations
When you add and configure an agent for an application in a Contrast organization, Contrast applies a
set of default CVE shields.

NOTE
Starting in August 2021, new organizations include an optimized set of CVE shields.
This configuration is designed to provide the highest value to users, including
enhanced performance.

Use this procedure to change the default settings for CVE shields at an organization level. These
settings apply to any new application that you add to a Contrast organization. These changes have no
affect on existing applications in the organization.

Before you begin

• Ensure that you have an Organization Administrator or Organization RulesAdmin role.
• Log in to or select the correct organization.

Steps
To change modes for CVE shields:

1. Under the user menu, select Policy management.
2. Select CVE shields.
3. Select Configure the default policy.

4. For each CVE shield, select the dropdown for the environment where the application is hosted
(Development, QA, and Production).

5. Select one of the following modes:
• Off: This mode disables the CVE shield entirely.

Contrast Documentation

Administration 796



• Monitor: In this mode, the CVE shield identifies and reports attacks.
• Monitor at perimeter: In this mode, the CVE shield tries to identify and report a possible attack

before the application can process it. This option is not available for all CVE shields.
• Block In this mode, the CVE shield identifies, reports, and blocks attacks.

Manage virtual patches
Virtual patches are custom, short-term rules that block HTTP requests matching specific criteria (for
example, URL, parameter keys or values, and so forth) before an application can process them.

Organization Administrators and RulesAdmins can view and manage virtual patches.

To add a virtual patch:

1. In the user menu, under Policy management, select Virtual patches.
2. Find virtual patches by using the language filters or the search field above the grid.

3. Click on the name of a patch to edit the rule configuration, or select Add virtual patch to add a
new one.
You can also select the Delete icon to delete a rule or use the toggles in the grid to enable or
disable each environment.

4. In the window that appears, add a Name and Description .

Contrast Documentation

Administration 797



5. Under Apply to, use the radio button to choose whether the rule applies to specific Applications,
an Application language or an Application technology. After clicking the appropriate button, use
the multiselect field that appears to further refine your choice.

6. Under Conditions, use the dropdowns to select the conditions under which the patch should apply
to the applications. Select Add another condition in a separate row, if necessary.
When you select how the virtual patch value is applied, select one of the following options:
• Equals
• Contains
• Matches (using Perl-Compatible Regular Expressions - PCRE)
• Does not equal
• Does not contain
• Does not match (using Perl-Compatible Regular Expressions - PCRE)
Both the Matches and Does not match options support the use of Perl-Compatible Regular
Expressions (PCRE). If you select Matches or Does not match option, you can define a regular
expression that matches a value in the selected field of the HTTP request.
If the expression matches, or does not match as specified, the virtual patch is applied and the
mitigation action specified in the patch configuration is taken.

NOTE
Regular expressions can be very powerful, but they can also be complex and
difficult to create correctly. If you're not familiar with PCRE expressions, ask for
assistance from a security expert or Contrast Security to ensure that your Virtual
Patches are configured correctly and effectively.

As a starting point, look at Regular expression reference (page 802). This
reference provides some examples of what is possible with PCREs.

7. Select Add to save the configuration.

Contrast Documentation

Administration 798

https://support.contrastsecurity.com/


Add or edit log enhancers
Log enhancers are instrumentation instructions that allow the Contrast agent to log additional
parameters and data in the application, without requiring any source code changes.

By using these deep security instrumentation techniques, a user can specify the API and parameter to
log, and the Contrast agent adds this information to the security.log file as part of RASP logging.

NOTE
Starting in August 2021, new organizations include an optimized set of log enhancers.
This configuration is designed to provide the highest value to users, including
enhanced performance.

To add, edit or delete a log enhancer:

1. Under policy management (page 778), select Log enhancers.
2. Filter by language, or use the search to find the existing log enhancer you want to edit and select

the name, or select Add log enhancer. Use the toggles in the grid row to enable or disable the rule
in each environment.

3. In the window that appears, enter a Name and Description.

Contrast Documentation

Administration 799



4. Enter a Log level (page 952) and Log type.
5. Under API to log, enter:

• Language
• API: Use the structure <class_name>.<method_name>(<argument_types>). For

example:

public boolean com.acme.Authenticator.authenticate(String user, \
String password)

• Format: Enter the log description, including relevant data from the function call. You can include
any of the following placeholders in your message:
• {{O}}: Print the string representation of the object on which this call is made. If the method is

static, this may be null or empty.
• {{Pn}}: Print the given parameter at index n. Note that n starts at 1.
• {{P1}}: Print the first parameter into the message.
• {{R}}: Print the return value of the function.

6. Select Add to save the rule.

Application exclusions
Exclusions are used to suppress events. You might want to suppress events if you are using an
external security control outside of the scope of Contrast's agent instrumentation. For example:

• As an administrator, you need to change the HTML that shows up on your web page, even though
this qualifies as a cross-site scripting (XSS) vulnerability. In this case, you can create an exclusion
that prevents these changes from being reported.

• You use an edge device to place the correct headers on outbound HTTP responses to stop
clickjacking attacks. However, the issue might be appropriately reported because the application
never provided the required protection.

• When you test beta rules, you can use exclusions to suppress false positives.

If you are using Java, Node.js, .NET, Python, Go, or Ruby agents, you can add an application
exclusion (page 801) under policy management, or from the list of attack events.

To view a list of existing exclusions, go to Applications > Your application name > Policy >
Exclusions or user menu > Policy management > Application exclusions.

Contrast Documentation

Administration 800



To add application exclusions for a specific application, go to Applications > Your application name>
Policy > Exclusions or Attacks > Attack Events.

Add application exclusions
Java, .NET Framework, .NET Core, Node.js, Python, Go, and Ruby agents let you use an application
exclusion (page 800) to exclude certain applications, or parts of them, from security analysis.

Currently, PHP agents do not support application exclusions.

Before you begin

• Java and .NET agents support code exclusions.
• Java, .NET, Node.js, Python, Ruby, and Go agents support input exclusions.
• Java, .NET, Node,js, Python, and Ruby agents support URL exclusions.
• Java and .NET Core agents support queue/topic (message queue) exclusions.

Steps

1. Select Applications in the header and select the name of your application.
Exclusions only apply to the application for which they were created.

2. Select the Policy tab and then, select Exclusions.
3. Select Add Exclusion.

TIP
You can also create an exclusion from an existing attack event. When viewing
the list of attack events, Attacks > Attack events, select the triangle in the far
right column, then select Add exclusion. Selecting this button pre-populates the
exclusion fields based on the details of this specific event.

Once created, this exclusion is visible in the list of exclusions.

4. In Add Exclusions, enter a Name for this exclusion (something you'll remember easily).
5. Select the Exclusion type.

Input, URL and Queue/topic-based exclusion definitions accept a s subset of Perl Compatible
Regular Expressions (PCRE) which includes these values:

.* for 0 or more of any character

.+ for 1 or more of any character

.? for 0 or 1 of any character

. for 1 of any character
\. for an escaped literal of . for usage Examle: somefile\.jsp

Use these regex examples (page 802) to guide you.
Select one of these options:
• Code: Enter the method signatures you want to be suppressed. For example, if you have a

method called doLegacySecurity() inside a class called com.Acme.OldSecurity that is
being reported for using insecure cryptographic algorithms, you can ignore it by entering:

Com.Acme.OldSecurity.DoLegacySecurity

Be sure to include the entire method signature without a trailing parameter definition or any
other extra characters. Contrast matches this method signature against the stack trace for any
vulnerabilities found. Contrast suppresses any method signatures containing a match.

• Input: Enter an input type and an input name. Any findings using this input will be suppressed.

Contrast Documentation

Administration 801



• For Parameter, Header and Cookie: You must specify the name of the particular input for
which you wish to suppress findings. You can use wildcard * to suppress all findings from the
selected input type.

• QueryString and Body: These will suppress findings from the entire QueryString and Body,
respectively. The QueryString and Body may only be excluded in conjunction with the URL
exclusion pattern defined below.

For the Input exclusion type, under Applied URLs, choose how to apply URLs:
• All URLs: Findings using the specified input type and name will be suppressed regardless of

where they’ve come from.
• These URLs: Specify a set of paths to which to apply the exclusion. You can use

regex (page 802) and wildcard expressions. (page 803)

IMPORTANT
Do not include protocol schemes (http:// or https://) or hostnames; only
use path names beginning with /.

Slash followed by dot-wildcard /.* is an acceptable substitute for listing all URLs.
Designate URLs that should be ignored by certain rules.

• URL: Designate URLs that should be ignored by certain rules. List the URL paths to be
excluded, one per line. You can use regex (page 802) and wildcard expressions (page 803).

• Queue/topic: Specify a message queue or topic that should be ignored by certain rules. A
message queue has one consumer while a topic has multiple consumers.
Currently, this option is supported by Java only.
For the Queue/topic exclusion type, under Applied queues, choose how to apply the queues or
topic names:
• All queues/topics: Findings from all queues and topics are suppressed.
• These queues: Specify a list of queue or topic names to be excluded. You can specify queue

names or use regex. (page 802) and wildcard expressions (page 803).
6. Under Applicable rules, specify the scope of rules affected by the exclusion. All rules is the

default, or you can click in the box to select multiple options:
• All rules applies the exclusion to all vulnerabilities found in both Assess and Protect mode.
• Under Assess, All Assess rules applies to all vulnerabilities found when Assess is enabled.
• Under Protect, All Protect rules applies to all attack events when Protect is enabled.
• Under the Assess section or the Protect section, selecting individual rules lets you further narrow

the focus. Exclusions are only applied to vulnerabilities that the selected rules find.
If you select Input as the exclusion type, you can only select rules that are not triggered by user
input.

• Under Assess and Protect, select individual rules found in both Assess and Protect mode.
7. Select the box next to Suppress all events that match this exclusion if you want Contrast to

suppress historical events that have already been reported.
8. Select Add.

The exclusion is added to the list of exclusions. Any inputs that match the criteria you entered won't
be processed with the rules you've applied.
You can view this list either at Applications > Your application name > Policy > Exclusions or in
the user menu > Policy management > Application exclusions. From the list, you can use the
toggles to enable or disable the exclusion for Assess or Protect.

Regular expression reference
Use this table, and the examples below, for reference when creating application exclusions (page 801):

Effect Pattern Example pattern Example match

Start of a string ^ ^w+ Start of a string

Contrast Documentation

Administration 802



Effect Pattern Example pattern Example match

End of a string $ w+$ End of a string

Case-insensitive match of following string (?i) (?i)%0a %0a or %0A

A single character of: a, b or c [abc] [abc]+ a bb ccc

A character except: a, b or c [^abc] [^abc]+ Anythingbutabc.

A character in the range: a-z [a-z] [a-z]+ Only a-z

A character not in the range: a-z [^a-z] [^a-z]+ Anythingbuta-z.

A character in the range of: a-z or A-Z [a-zA-Z] [a-zA-Z]+ abc123DEF

Any single character . .+ abc

Any whitespace character \s \s anywhitespacecharacter

Any non-whitespace character \S \S+ any non-whitespace

Any digit \d \d not 1 not 2

Any non-digit \D \D+ not 1 not 2

Zero or one of a a? ba? ba b a

Zero or more of a a* ba* a ba baa aaa ba b

One or more of a a+ a+ a aa aaa aaaa bab baab

Exactly 3 of a a{3} a{3} a aa aaa aaaa

3 or more of a a{3,} a{3,} a aa aaa aaaa aaaaaa

Between 3 and 6 of a a{3,6} a{3,6} a aa aaa aaaa aaaaaa aaaa

Period (dot) is a literal character . a.b string.string

Wildcard expressions

When specifying Input, URL, or Queue/topic exclusions for applications, you can build wildcard
expressions using:

• .* to mean 0 or more of any character
• .+ to mean 1 or more of any character
• .? to mean 0 or 1 of any character
• . to mean 1 of any character
• \. for an escaped literal of . for usage

Example: somefile\.jsp

Wildcard expression examples

Desired effect Regular expression Example

Exclude all subpaths /myapp/.+ Excludes all paths with the initial URL of /myapp/

Exclude one character from subpath /.yapp Excludes all subpaths that are 5 characters and end in yapp
(like myapp)

Exclude one subpath explicitly /myapp/thispath Excludes only /myapp/thispath

Exclude path ending /.*ignore Excludes all paths ending in ignore

Exclude paths containing /.*value.* Excludes all paths containing value

Exclude path containing /.?value.* Excludes all paths either starting with value or paths that
have one character before value

Exclude paths where a period (dot)
is used as a literal character and not
a wildcard.

/myapp\.js Excludes only myapp.js

You can use up to three instances of this expression.

Set compliance policy
You can define compliance policies for application compliance within your organization. If any
designated applications violate this policy, Contrast marks them so you can quickly find them and fix
them. (Administrators are also notified of violations by email.)

To set compliance policy:

Contrast Documentation

Administration 803



1. Under policy management (page 778), select Compliance policy.
2. You will see a list of existing compliance policies if there are any. You can enable or disable policies

using the toggles, or delete them with the Delete icon.
3. Select the name of any policy to edit, or select Add policy at the top of the grid to create a new

compliance policy.
4. In the panel that opens enter:

• Name: Choose a name for the policy.
• Policy criteria: The default is All rules, or you can type ahead and select vulnerabilities by

severity level(s), security standards or Assess rules.
• Applications: The default is All applications or you can type ahead and select applications by

level(s) of importance and/or individual name.
5. Select Add or Save.

NOTE
For default policies, the Name and Policy criteria fields are locked, and you cannot
delete them. However, you can modify application selections for default policies.

TIP
Enabled policies can be used to filter applications by compliance policy. To do this
select Applications. In the Applications page, click the Advanced link to filter application
by Compliance Policy.

NOTE
If an applicable vulnerability isn't remediated, or applicable Security Standards and
Assess Rules are being violated, Contrast flags the corresponding applications in the
Applications page. Hover over the warning icon in the Applications grid or go to the
application's details page for a link to the violated policy.

IP management
Manage IP policy in your organization with denylists, allowlists (trusted hosts), and source names:

NOTE
For denylists and allowlists, Contrast checks the Client Address and the X-
Forwarded-For request headers to see if the IP addresses match the list entries.

• IP denylist: Sets rules that let Contrast Protect block all IP addresses in this list
Using a denylist is appropriate for immediate triage until you can put a more permanent Protect policy
in place or conduct an investigation.

Contrast Documentation

Administration 804



• IP allowlist: Marks trusted hosts conducting internal vulnerability scans as safe. Contrast doesn't
show data for IP addresses in this list.
Entries in this list don't override entries in IP denylists
Contrast Assess features remain unaffected and continue to function as normal.
Contrast Protect ignores all IP addresses (or ranges) that match entries in this list. It does not monitor
or block any attacks from IP addresses in the list.

• Source name: Labels attack events caused by known sources, such as pen testers, based on one or
more IP addresses or subnet masks.
When you view attacks in the Attacks > Monitor and Attack Details pages, Contrast displays the
source name instead of the attacker's IP information. Displaying this value allows you to quickly
identify and differentiate expected events from attack events that need your attention.

See also

• Block or allow IPs (page 805)
• Manage source names (page 806)

Deny or allow IP addresses
Use IP denylists or IP allowlists to manage IP addresses (page 804) in your organization.

Before you begin

• You must have the organization role of Admin or RulesAdmin role.
• You can use Classless Inter Domain Routing (CIDR) notation to specify a subnet mask.

Steps

1. From the user menu, select Policy Management > IP Management.
2. Manage denylists:

a. Select the IP denylist tab.
b. To edit a denylist, select a denylist name, change the displayed information, and select Save.
c. To add an IP address to a denylist, select Add IP to denylist, specify the details, and select

Add.

3. Manage allowlists:
a. Select the IP allowlist tab.
b. To edit an allowlist, select the allowlist name, change the displayed information, and select

Save.

Contrast Documentation

Administration 805



c. To add an trusted host to an allowlist, select Add trusted host, specify the details, and select
Add:

Manage source names
Use source names to quickly identify non-threatening, internal traffic and testing, while monitoring
attack events in your organization.

You can label one or more IP addresses and subnet masks with a source name of your choice. When
the source name is saved, you can see the name (rather than user IP information) by selecting Attacks
> Monitor or looking on the Attacks details page. This can make it easier to identify the named
attacker as a known source when assessing attack events.

To create source names:

1. Go to the user menu > Policy management > IP management > Source names.
2. Select Add source name.
3. Enter the Name you want to use to identify one or more IP addresses.
4. Add the IP address/Subnet mask to identify with this source name. Use the link to Add more IP

addresses or subnet masks to the group, if necessary.
5. Use the dropdowns to select the Start and End dates and times for the source name. You may

choose to create a custom time span that starts on a past date; in this case, the source name
applies retroactively to any attack events.

6. Once the fields are completed, select Add to save the source name.
Once a source name is added in your organization, the source name appears for attacks
that match the criteria on the Monitor and Attack details pages. This will help you monitor
attacks (page 709).
If the data reported for an attack event matches more than one source name, Contrast applies the
name that you updated most recently.

7. To edit a source name later, select the source name. In the Edit source name form that opens,
make changes and select Save.

8. To delete a source name, either select the Delete icon in the Source names grid, or below the
Edit source names form. Once the name is deleted, all references to the name are replaced with
the IP information.

Contrast Documentation

Administration 806



Set library policy

IMPORTANT
License policy is available to Contrast SCA customers only. Contact your Organization
Administrator to enable SCA.

Contrast can flag libraries that don't meet your organization's criteria to ensure your applications are
secure.

If a library is restricted or used in an application that's below a specific version, it's marked as a policy
violation by Contrast. You can also tell Contrast to automatically grade any library that violates the
policy with the letter "F" to flag it in the Contrast interface. (Administrators are notified of violations in
both the product and by email.)

NOTE
Library versions include any major, minor, and patch versions.

To set a library policy:

1. In the user menu, select Policy Management > Library Policy.
2. Check the box to Restrict libraries and choose which libraries you want to exclude from your

portfolio. You can select multiple.
3. Check the box to Enable version requirements and choose one or multiple libraries that must be

within your given number of versions.
4. Click the Add another requirement link to create version requirements for additional library

groupings.
5. Check the Restrict licenses box to set a policy on open-source licenses that you want to restrict. If

an open-source license is restricted, then any libraries that use the restricted license will be marked
as a policy violation.
The license policy lists open-source licenses in SPDX format, listed by short identifier and followed
by the full name. Any license type that you want to restrict must be selected. Contrast includes
any ‘or later’ licenses it identifies in your portfolio. For example, if you restrict by GPL-3.0-only, any
licenses that are GPL-3.0-or-later will be included in that restriction.

6. Check the box next to Fail libraries in violation of policy, to automatically assign a failing score
to any library that violates a set policy.
If a library fails to comply with a set policy, the name, a warning icon and the library score are
highlighted in red in the Libraries page. Hover over the icon or go to the library's Overview page
for more information about the violation.
If you choose to automatically fail libraries, Organization Administrators will be notified when
adjusting score settings (page 830).

Sensitive data masking
Sensitive data masking limits risk to your organization and helps meet compliance requirements.

Data masking protects sensitive data in your applications by redacting it in vulnerability and attack
reports that are sent to Contrast, syslog or security log.

Contrast Documentation

Administration 807



Contrast offers several categories of sensitive data, or data types, that are comprised of specific
keywords that the agent automatically identifies and redacts in reports. A user with at least RulesAdmin
permissions can manage sensitive data (page 808).

Contrast agents mask sensitive data in query parameters, request headers, cookies and body. Your
agent identifies sensitive data by searching for specific keywords used in the input name. If the
agent finds a match, it redacts the value for that input, and replaces it with a placeholder with the
format contrast-redacted-{datatype}, where datatype is the category of sensitive data to
which the keyword belongs.

Contrast agents do not mask individual fields in request bodies with a content type other
than application/x-www-form-urlencoded; however, you can configure the agent to mask the
entire request body. Contrast agents also do not mask data that appears in the data flow portion of a
vulnerability report, if using Assess, or in the vector of an attack event, if using Protect.

NOTE
Contrast agents make a “best effort” attempt to avoid printing sensitive data in Contrast
log statements; however, it’s possible that sensitive data could appear in the Contrast
log, if the log level is set to DEBUG or lower. Whenever possible, you should avoid
setting production systems to log at DEBUG or lower. If a system that deals with
sensitive data is set to log at DEBUG or lower, you should take steps to ensure that
those logs are not being sent to an external system to avoid leaking any sensitive data.

For example, this HTTP request sent by an agent as part of a vulnerability report shows two inputs that
the agent identified as sensitive, as well as the placeholders it used to mask the values of the input
before sending the report to Contrast, syslog server or security log.

PUT /employee/5 HTTP/1.1 
Host: yourdomain.com 
Content-Type: application/x-www-form-urlencoded 
Content-Length: 30 
apikey: contrast-redacted-authentication-info 

ssn=contrast-redacted-government-id&department=sales

In this case, the header value is masked because "apikey" matches a keyword in the "Authentication
Info" data type, and the form parameter is redacted because "ssn" matches a keyword in the
"Government ID" data type for your Contrast organization. (Keyword matches are case insensitive.)

Manage sensitive data types
Sensitive data masking (page 807) limits risk to your organization and helps meet compliance
requirements.

1. Under policy management, select Sensitive data.
2. Here you can see an alphabetical list of sensitive data types. Use the search field to find a

particular type by name or keyword.
3. Check the box next to Mask entire body to enable redaction of the entire HTTP request body. This

will apply to all applications in your organization.
4. Critical data types and keywords determined by Contrast apply to all applications in your

organization by default, and can't be edited or disabled. For data types that Contrast has not
determined to be critical, you may use the toggle in the grid to enable or disable them for the
organization.

Contrast Documentation

Administration 808



5. Click on the name of the data type in the grid to add custom keywords. In the Edit sensitive data
type form, select Add custom keywords to add more keywords and specify the applications to
which they apply. Default keywords aren't editable, and apply to all applications.

6. Select Save.

Add and edit notifications as a RulesAdmin
Notification defaults are set by an Organization Administrator, but as a RulesAdmin you can enable or
disable existing notifications or create new ones.

1. Under organization settings (page 814), select Notifications.
2. Use the toggles to enable or disable existing notifications.
3. To create a new notification, select Create notification.
4. In the window that appears, enter:

• Name
• Frequency
• Description
• Applications
• Application tags
• Users

5. Select Save.

Organization administration
If you have Organization Administrator permissions you can do everything a RulesAdmin (page 778) or
Editor (page 515) can do, plus, at an organization level you can:

• Configure organization settings (page 814)
• Enable Assess (page 809)
• Enable Protect (page 811)

NOTE
Organization Administrators have the highest organization level permissions. Other
organization roles (page 947) also have capabilities that span across their
organization.

If configured at a system level (page 906), users can fill the Organization
Administrator role across multiple organizations.

Enable Assess
You can use configuration files, variables, or the Contrast web interface to configure the Assess
setting. This procedure describes how to enable Assess in the Contrast web interface. YAML
configuration (page 73) and Environment variables (page 76) describe how to use methods outside
of the web interface to configure agent settings.

Before you begin

• Although you can see the types of vulnerabilities that Contrast discovers without an Assess license,
you won't be able to retrieve any details unless you apply licenses to applications.

Contrast Documentation

Administration 809



Steps

1. Log in to Contrast.
2. Select Servers in the header.
3. Either scroll or use the search at the top of the page to find the servers associated with the

applications you want to analyze with Assess.
4. To manage the Assess setting for specific servers in the Contrast web interface, use either of these

methods:
• In the Servers list, select the setting in the Assess column.
• In the Servers list, select a server name to open its detailed view and use the Assess setting

there.

NOTE
• If you use only the Contrast web interface to turn Assess on or off, the Assess

setting is green if ON and gray if OFF. You can change this setting in the
Contrast web interface.

• If you used a method external to the Contrast web interface to configure the
setting for Assess (for example, an agent configuration file), the setting is green
but disabled if ON and grey but disabled if OFF. You cannot change this setting
in the Contrast web interface.

• If the setting in the Contrast web interface is disabled, hover over the setting to
see where it is configured. The order of precedence (page 72) determines which
setting Contrast uses as the effective configuration.

5. To To determine if an application is using Assess on each server associated with it, go to the
Applications page:
a. Select Applications in the header.
b. Select an application.
c. In the Overview tab, under each environment, if at least one server has Assess turned on, the

bar next to the Assess setting indicates the Assess status for all servers associated with the
application. A green bar represents the number of servers that have Assess turned on. A white
bar represents the number of servers that have Assess turned off.

If no servers have Assess turned on, you see an OFF icon ( ).
d. To see if the application is configured to use Assess for each server associated with it, select a

section of the Assess setting bar to open a filtered view of the Servers list.

Contrast Documentation

Administration 810



6. To set a default Assess setting for new servers, from the user menu, select Organization settings
> Servers and use the Assess setting there.

7. If the application you want to analyze with Assess is unlicensed, add a license to it:
a. Select Applications in the header.
b. Select Unlicensed next to the application name
c. In the Apply License window, select Apply license.
d. Restart the application server to ensure the Contrast agent instruments your application with

Assess capabilities. Once that's complete, Contrast begins to receive vulnerability analytics.
The application no longer has Unlicensed next to it, which means there is an Assess license
assigned to it.

NOTE
Organization Administrators can configure a default setting that applies Assess
licenses automatically to new applications rather than applying licenses manually
for every application.

1. Under organization settings (page 814), select Organization.
2. In Licenses, under Assess, select Automatically apply licenses to new

applications.

Enable Protect
Enabling Protect for users lets them access and see Protect data. Enabling Protect for servers lets
applications use Protect to monitor and block attacks.

NOTE
If you enable Protect on servers with existing applications, restart the applications to
have Protect take effect.

Before you begin

• Go to Organization settings > Users and verify that you have permissions to access Protect data
and settings.
• For hosted customers, Contrast grants Protect permissions to organizations and user roles in the

organization.
• For on-premises customers, SuperAdmin, ServerAdmin, or System Administrator roles are required

to grant Protect permissions for one or more organizations. (page 908)

Contrast Documentation

Administration 811



These roles can also configure which user roles have access to Protect data.
• Ensure that you have licenses (page 816) that you can apply to servers.
• To enable Protect for users, an Organization Administrator role is required.

Let users access Protect data

1. Log in to Contrast.
2. Enable users to see and use Protect data:

a. In the user menu, select Organization Settings.
b. Select Users.
c. For each user who needs access to Protect data, turn on the Protect setting ( )
d. To have the new setting take effect, tell users to log out of the Contrast web interface and log

in again.

Enable Protect for servers
You can use configuration files, variables, or the Contrast web interface to configure the Protect
setting. This procedure describes how to enable Protect in the Contrast web interface. YAML
configuration (page 73) and Environment variables (page 76) describe how to use methods outside
of the web interface to configure agent settings.

1. To configure a default Protect setting for new servers in selected environments:
If you use a method outside the Contrast web interface to configure the Protect setting for a
specific server, that configuration overrides this default setting.
a. From the user menu, select Organization settings.
b. Select Servers (page 825).
c. Select an environment.
d. Under Protect, turn on the Protect setting.

NOTE
To automatically allocate licenses (page 816), an Organization Administrator
or RulesAdmins role is required. This option is useful if you don't want to
enable Protect for servers, one at a time.

2. Enable Protect for specific servers:
a. Select Servers in the header.
b. To enable Protect in the Contrast web interface, turn on the Protect setting ( ). Use either of

these methods:
• In the Servers list, turn on the setting in the Protect column.
• In the Servers list, select a server name and in the Overview tab, turn on the Protect setting.

Contrast Documentation

Administration 812



NOTE
• If you use only the Contrast web interface to turn Protect on or off, the

Protect setting for a specific server is green if ON and gray if OFF. You can
change this setting in the Contrast web interface.

• If you used a method external to the Contrast web interface to configure the
setting for Protect (for example, an agent configuration file), the setting is
green but disabled if ON and grey but disabled if OFF. You cannot change
this setting in the Contrast web interface.

• If the setting in the Contrast web interface is disabled, hover over the
setting to see where it is configured. The order of precedence (page 72)
determines which setting Contrast uses as the effective configuration.

3. To verify that Protect is turned on for a specific server, in the Servers tab, select the server, select
Overview and verify the Protect setting is green.
• If one or more applications associated with the server are not configured to use Protect, a

warning icon displays next to the Protect setting.

4. To determine if an application is using Protect on each server associated with it, go to the
Applications page:
a. Select Applications in the header.
b. Select an application.
c. In the Overview tab, under each environment, if at least one server has Protect turned on,

the bar next to the Protect setting indicates the Protect status for all servers associated with
the application. A green bar represents the number of servers that are protected. A white bar
represents the number servers that are not protected.

If no servers have Protect turned on, you see an Off icon ( ).
d. To see if the application is configured to use Protect for each server associated with it, select a

section of the Protect setting bar to open a filtered view of the Servers list.

Contrast Documentation

Administration 813



License behavior
Contrast applies Protect licenses automatically to servers when these conditions exist:

• Protect is turned on for an organization.
• Automatic application of Protect licenses is turned on for an organization and Protect is NOT enabled

by a method external to the Contrast web interface (for example, an agent configuration file).
If Protect is enabled with a method external to the Contrast web interface, that effective configuration
overrides the automatic licensing option in the Contrast web interface.

• A server exists in one or more environments where automatic licensing is turned on.

If you also use the Protect setting in an agent configuration file, it overrides the license behavior in the
following ways:

• Protect is turned on in the agent configuration file
• If Protect licenses are available when the application starts, you might notice the server is licensed

for a very brief period of time. Contrast removes the license automatically as soon as the agent
registers the application.

• If no Protect licenses are available when the application starts, Contrast tries to apply a license to
the server every time the agent communicates with Contrast.

• Protect is turned off in the agent configuration file
• If Protect licenses are available when the application starts, Contrast tries to apply a license to the

server. When an agent registers an application with Contrast, it removes the license applied to the
server.

• If no Protect licenses are available when the application starts, Contrast doesn't apply a license to
the server.

Configure organization settings
If you have Organization Administrator permissions you can configure settings for your organizations:

Contrast Documentation

Administration 814



Steps

1. If you have multiple organizations, select the name of the organization you want to configure in the
user menu.

2. Select Organization settings in the user menu.
The organization settings are:
• Organization (general information (page 816), licenses (page 816), and usage

analytics (page 821))
• Users, groups and permissions (page 818) including API only users (page 819).
• Security (passwords (page 822), two-step authentication (page 822), IP range (page 822),

email domain restrictions (page 822))
• API (view organization and agent keys)
• Single sign-on (SSO) (page 823)
• Integrations (page 724)

Contrast Documentation

Administration 815



• Servers (page 825)
• Applications (page 826)
• Notifications (page 827)
• Score Settings (page 830)

Configure general organization information

1. Under organization settings (page 814), select Organization in the left navigation.
2. In the top right corner you can see the UUID for this organization. (This is helpful in bulk adding

users (page 904).)
3. This panel also shows general information about the organization like:

• Organization name
• Default time and date formats for the organization
• Default language settings for the organization such as Japanese (if enabled by a superadmin), or

English

NOTE
Individual user settings override most general organization settings (time and date
formats, for example) with the exception of language settings. User language
settings override organization language settings for things specific to the user,
such as user notifications or emails. However, user language settings will not
override organization language settings for things specific to the organization,
such as organization-level notifications.

4. Select Edit to change any of the information on this panel.
5. Make changes and select Save.

Allocate licenses for organizations, applications, and servers

Before you begin

• An Organization Administrator role is required.
• If your organization has consumed all allocated Assess licenses, hosted customers are asked to

contact Support.
• For on-premises customers, the SuperAdmin can make more licenses available at a system

level (page 932).

Steps

1. See an overview of license usage in an organization:
a. From the user menu, select Organization settings.
b. Select Organization.
c. Under Licensing, view information about Assess and Protect licenses:

• Available and used Assess (application) licenses, as well as how many applications are
unlicensed.

• Available and used Protect (server) licenses as well as how many servers are unlicensed.
If you are using more licenses than you purchased, the available licenses section of the
license bar is replaced with the number of additional licenses in use.

2. (Optional) Under Licensing, automatically apply licenses to new applications or servers:
a. For Assess licenses, turn on Automatically apply licenses to new applications.

Contrast Documentation

Administration 816

https://support.contrastsecurity.com/hc/en-us/requests/new?ticket_form_id=360000011243


b. For Protect licenses, turn on Automatically apply licenses to new servers.
Select the server environments.

If you use a method external to the Contrast web interface for Protect settings (for example, an
agent configuration file), Contrast considers that configuration to be the effective configuration.
An effective configuration takes precedence over the automatic licensing setting in the
Contrast web interface:
• If an agent's effective configuration has Protect turned OFF and the automatic licensing

setting is turned ON, Contrast ignores the setting in the Contrast web interface. It doesn't
apply a license to the server automatically.

• If an agent's effective configuration has Protect turned ON and the automatic licensing
setting is turned OFF, Contrast ignores the setting in the Contrast web interface. It applies a
license to the server automatically.

• If an agent doesn't report an effective configuration, the automatic licensing setting in the
Contrast web interface applies to all new servers.

3. If needed, apply Assess licenses to individual applications:
a. Select Applications in the header.

In the applications list, applications that are unlicensed show Unlicensed after their name.
You cannot view vulnerability data for the application if it is unlicensed.

b. To apply a license to an unlicensed application, select Unlicensed.
c. In the Apply License window, select Apply License.

4. If needed, remove Assess licenses from applications by deleting the application (page 531).
Licenses applied to applications permanently count towards the number of maximum allowable
applications. Deleting a licensed application has no effect on the number of licenses you are
allowed to apply to applications

5. If needed, add or remove Protect licenses from individual servers:
a. Select Servers in the header.
b. Turn the Protect setting on or off for the server.

• If you use only the Contrast web interface to turn Protect on or off, the Protect setting for a
specific server is green if ON and gray if OFF. You can change this setting in the Contrast
web interface.

• If you used a method external to the Contrast web interface to configure the setting for
Protect (for example, an agent configuration file), the setting is green but disabled if ON and
grey but disabled if OFF. You cannot change this setting in the Contrast web interface.

• If the setting in the Contrast web interface is disabled, hover over the setting to see where it
is configured. The order of precedence (page 72) determines which setting Contrast uses as
the effective configuration.

c. Restart applications associated with the server.

Contrast Documentation

Administration 817



Manage users, groups and permissions at an organization level
If allowed at a system level (page 903), an Organization Administrator can manage user permissions
for the organization by:

• Adding a user or editing user settings (page 818)
• Managing organization permissions with access groups (page 818)

Add or edit a user at an organization level 
If you add users within an organization, you can assign them to access groups for the applications
within that organization. For must Contrast installations, the default (page 903) is to set roles
and permissions at an organization level, however if you have users who need to access multiple
organizations, add those users at a system level (page 903).

To add users:

1. Log in to Contrast with Organization Administrator permissions.
2. Select Organization settings in the user menu.
3. Select Users in the left navigation.
4. Select a user name from the list of users to edit their entry, or select Add user to add a new user.
5. For each user you can enter:

• Organization role: Select one of the default organization roles (page 947) that apply to all
applications in this organization or create a custom access group (page 818).

• Application access groups: Select one of the default application roles (page 945) that
apply to all applications in this organization or create a custom access group to grant specific
permissions to certain applications.

• Access permissions: You can allow users access to the API, to the Contrast web interface and
to Protect data. (Protect permissions can also be granted at a system level (page 908).)

TIP
If you assign someone an administrator role, be sure to grant them both API and
Contrast web interface access.

6. Select Add or Save.

Add, edit, or delete an organization access group 
Use organization access groups to assign users permissions and capabilities by role (page 945).

Contrast provides default access groups that you can use instead of creating your own:

• View: Members of this group have read-only access to the Contrast interface to see scores, libraries,
vulnerabilities and comments.

• Edit: Members of this group can remediate findings, add tags, manage vulnerabilities, edit attributes,
merge applications, add or delete applications, and create servers.

• Rules Admin: Members of this group can edit rules and policies in the application, enable Protect,
manage notifications and scoring.

• Admin: Members of this group can configure and manage settings for the organization.

Before you begin

An Organization Administrator role is required.

Steps

1. Under organization settings (page 814), select Groups.

Contrast Documentation

Administration 818



2. Select an existing group to edit, or select Add group to create a new group.

TIP
To find groups you can use the quick filter dropdown or the search field in the top
left, or use the up/down arrows at the top of each column to sort.

The default groups that Contrast provides, indicated with a lock icon, have fixed
applications and roles, and can't be deleted. You can only add or remove users
from these default groups.

3. Fill out the form with:
• Group name: Choose something that reflects the purpose, permissions and capabilities you will

assign to this group.
• Application access: Select the application name here to associate this group with the

application. You can also set a group name when you are setting up a new application.
• Role: Select the application role you want the members of this group to have within the

corresponding application.
• Select Add access to add more applications and roles.

4. Next to Members, on the right, type ahead to select one or more users to assign to the group.
5. When you are finished, select Add to create the new group.

NOTE
If users are assigned to two groups with conflicting roles for all applications or
organizations, the role that provides the most restrictive access applies.

6. To delete a group, select User menu > Organization settings > Groups. Find the group you want
to delete and select the Delete icon in that row.
Once this is confirmed, the group is removed and any access provided by that group is revoked
from all users assigned to the group.

TIP
To assign a user a role for all applications in the organization, assign them both an
organization role and an application role from the default role groups. (For example,
set both the organization and application roles to "Administrator" and they will have
administrator permissions for all applications in your organization.)

To give a user access to a particular application, create an access group for that
application and add the user to that group. Users not assigned to any application
access groups won't have access. A user can have various roles across applications
within a single organization.

Most Contrast customers use single organization deployments. Groups created at an
organization level impact the roles and permissions across that particular organization.
Organization access groups can also be created at a system level (page 906) to allow
users access to more than one organization

Create an API only user
Create an API Only user account that you can use for all plugins or integrations.

Contrast Documentation

Administration 819



Best practice: Add a user account that's only purpose is for use with plugins and integrations. Doing so
avoids a situation where a user leaves and you delete that user's account. The deletion of that account
would result in breaking the plugins and integrations that you use.

An API only account does not receive email notifications, even if the notification settings are turned on.

Before you begin

• An Organization Admin role is required.
• API Only users can access Contrast's REST API but cannot log in to the Contrast web interface.
• If you configured your organization to use SAML-based single sign-on (SSO), you can still create an

API only user.

Steps
To create an API only user:

1. From the user menu, select Organization settings.
2. Select Users.
3. Select Add User.

4. Enter the user name , email address, and time zone information.
5. Select the Role.

Best practice: Select Edit (page 947) for the Organization role to give the user the least
permissive role.
It is not recommended to give API only users Admin permissions.

6. Select an Application access group.
Best practice: Select View (page 945) or Edit (page 945) for the Application access group.
Depending on the API endpoints you want to call, and if you are trying to GET (read) or POST
(write), the API only user might require the higher Edit permission instead of View.

7. Select the API only checkbox.

NOTE
Selecting the API only checkbox overrides the Access option, if it's enabled. API
only users have no access to the Contrast web interface.

Contrast Documentation

Administration 820



8. In Organization Settings > Users, verify that you can see with new user with the API Only label
next to the name.

9. If you are using access groups to restrict access to specific applications, add the API only user to
the groups (page 818) for the applications that you want the API user to access. Verify access by
looking at Permissions in the user profile.

10. To use the API only user account, get the connection strings:
a. From the user menu, select Organization settings.
b. Select Users.
c. Hover over the API only label next to the user's name and copy the displayed Service key.
d. Create the Authorization header with a command similar to this example:

echo -n ‘[email address of the API only account:Service Key]’ |
 base64

Manage usage analytics
Contrast collects usage data to understand how to build a better product. Confidential customer data is
not tracked, and all user data is anonymized for analytics performed on aggregate information.

As an Organization Administrator, you can enable or disable usage data collection for the organization:

1. Under organization settings (page 814), select Organization.
2. Under General settings, use the toggle to disable or enable Product usage analytics. It is

enabled by default.

Diagnostics are also managed at a system level (page 931).

Restricted edit role 

If you want to restrict users from deleting vulnerabilities and archiving applications, use the Restricted
edit role setting. When selected, this setting applies to all users with the Organization edit or Appliation
edit role.

NOTE
This setting is available for on-premises customers only.

Steps

1. From the user menu, select Organization settings.
2. Select Organization.
3. Under General settings, select Restricted edit role.

When selected, all users with the Organization edit or Application edit role cannot delete
vulnerabilities or archive applications.

Contrast Documentation

Administration 821



Set a password policy at an organization level
As long as it is allowed at a system level (page 927), as an Organization Administrator, you can
regulate passwords within your organization by creating a password policy.

1. Under organization settings (page 814), select Security.
2. Enter the following settings for your policy:

• Password Strength: This can be Weak, Medium, Strong, Complex or Custom.
If you choose Custom, enter the minimum required number of Uppercase letters, Lowercase
letters, Numbers and Symbols.

• Enter the number of characters required in the Minimum length field.
• Use the dropdown to choose the length of time allowed before Password expiration.
• Enter the number of login attempts allowed before Login lockout.
• Choose the length of time allowed before Inactive account expiration.
• Check the box to Restrict password reuse, and use the dropdown to choose the number of

times each password may be reused.
• Check the box to Restrict password reset, and use the dropdown to choose the number of

days during which a user can reset their password after their reset request is sent.
• Use the dropdowns to select the amount of time that may pass before Idle timeout and Session

timeout.
3. Select Save.

Restrict email domains
Restrict which email address domains can receive Contrast information.

1. Under organization settings, select Security.
2. Under Email domains, enter comma delimited email domain names that should be allowed to

receive information from Contrast. For example, yourbusiness.com.
3. Select Save.

Set IP range
Restrict which IP addresses can access your Contrast account. This affects both browser and API
access.

1. Under organization settings (page 814), select Security.
2. Enter the IP address for which you want to allow access. Select Add IP address to enter additional

addresses. You can also specify a range of IP addresses by using Classless Inter Domain Routing
(CIDR) notation 10.0.0.0/24.

3. Select Save.

Enable two-step authentication at an organization level

NOTE
If you configure SSO in Contrast and also want to use two-factor authentication,
configure two-factor authentication using your identity provider (IdP), instead of
Contrast. With SSO configured, Contrast passes the responsibility of authenticating
users to the IdP.

To enable or disable two-step authentication:

1. Under organization settings (page 814), select Security in the left navigation.

Contrast Documentation

Administration 822



2. Turn the toggle on (green) to enable two-step authentication.
3. Two-step verification is enabled and users can choose how they want to receive two-step

authentication notices. (page 517)

NOTE
For on-premises customers, this must be allowed at a system level (page 914).

If a user belongs to multiple organizations, their default organization determines their
two-step authentication settings.

Configure single sign-on (SSO) at an organization level
For on-premises customers, single sign-on can be configured at a system level (page 924). For hosted
customers, Contrast Security configures authentication; however, a user may be granted permissions to
set up SSO for their organization.

NOTE
If users are identified with a user ID rather than an email address, those accounts don’t
automatically transfer over to the SSO configuration and must be recreated.

If you configure SSO in Contrast and also want to use two-factor authentication,
configure two-factor authentication using your identity provider (IdP), instead of
Contrast. With SSO configured, Contrast passes the responsibility of authenticating
users to the IdP.

1. From the user menu, under Organization settings, select Single-sign-on and select Get started.
To change an existing configuration, select Edit at the bottom of the screen.

2. You may receive a warning window regarding the implications of changing authentication. Read it
carefully before proceeding.

3. Use the displayed information at the top of the screen to set up Contrast with your IdP.

Contrast Documentation

Administration 823



4. Provide a name for your IdP as well as the associated metadata to connect to Contrast.
5. If you want to automatically create new user accounts when someone make a SAML request to log

in to Contrast, select the Enable user provisioning checkbox at the bottom of the screen.
a. Add the Accepted domains that must be used to trigger user provisioning (for example,

contrastsecurity.com)
b. Specify roles and groups:

• On-premises customers: Use the dropdowns to choose the Default organization role and
Default application access group for the new users.
The value displayed for the Default User Access group does not apply to your configuration.

• Hosted customers: If role-based access control is turned on, use the dropdown to select a
Default User access group for the new users.
The values displayed in the Default organization role and Default application access group
do not apply to your configuration. If you are using the legacy access control, follow the
instructions for on-premises customers.

6. If you want to add users who are members of a SAML group that matches the name of a Contrast
group, select Add users to their Contrast groups upon SSO login.

7. If you want to remove users who are members of a SAML group that does not match the name of a
Contrast group, select Remove users from their Contrast groups upon SSO login .

8. Select Save.
9. Open a new browser window, private browsing session or incognito window, and attempt the SSO

login with your account. If you're unsuccessful, go back to the browser in which you're still logged
in, disable SSO for the organization, select Revert to Contrast-managed authentication and
confirm the change.

See also
Configuring user and group provisioning with Okta

Configuring ADFS to automatically add users to groups

Contrast Documentation

Administration 824

https://support.contrastsecurity.com/hc/en-us/articles/360046274371-Configuring-user-and-group-provisioning-with-Okta
https://support.contrastsecurity.com/hc/en-us/articles/360045849492-Configuring-ADFS-to-automatically-add-users-to-groups


Set server defaults at an organization level
Server settings provide default configurations to new servers (and their agents) that you add to
Contrast. You can customize these configurations and set specific defaults for each environment.

Steps

1. Under organization settings (page 814), select Servers.
2. Use the dropdown to choose the environment in which you want to apply the default (Development,

QA, or Production). Check the box next to Set as default environment if you want to specify a
default environment for future server configuration.

3. Use the dropdown to choose the Log Level. The default log level (page 892) selection is ERROR.
4. Under Automatic server cleanup, enter the length of time that you would like servers to be offline

before they are automatically cleaned up. The default value is 30 days.
A background task runs every five minutes to check if there is an organization with automatic
server cleanup enabled.
If there are one or more servers with no activity received within the configured time frame, Contrast
disables the servers automatically. They are no longer visible under Servers in the Contrast web
interface.
Contrast keeps Information on vulnerabilities and attacks related to these servers even after they're
disabled. Protect licenses from disabled servers return to the pool of licenses.

5. Under Assess, specify these settings:
a. Select which stacktraces should be captured (all, some or none).
b. To optimize analysis performance, select Enable sampling for higher performance.

• If Contrast sees the same URL being called multiple times, it analyzes the URL based on
the the number of times specified in the Baseline setting.

• Afterwards, if Contrast continues to see the same URL, it only checks it based on the
Frequency setting.

• Contrast retains samples for the number of seconds specified for the Window setting.
After the time specified for the Window setting elapses, Contrast analyzes the URL again,
according to the Baseline setting.

Configure these settings:
• Baseline: The number of times that Contrast analyzes URLs to complete sampling. The

default setting is 5.
• Frequency: The number of times that Contrast analyzes URLs after the Baseline is

achieved. The default setting is 10.
• Window: The number of seconds that Contrast retains samples before reverting to the

Baseline. The default setting is 180.
6. Under Protect, specify these settings:

a. To enable Protect, turn on the Protect toggle.

IMPORTANT
Turning Protect on selects the setting to apply Protect licenses to new servers
automatically.

Administrators receive emails each time a server is licensed. As servers
go up and down frequently, you may want to setup an email filter for any
unwanted traffic.

In this section, the license bar shows the number of purchased Protect licenses in use. If
you are using more licenses than you purchased, the license bar also shows the number of
additional licenses in use.

b. To turn on bot blocking, select  Enable bot blocking.
Bot blocking blocks traffic from scrapers, attack tools and other unwanted automation.

Contrast Documentation

Administration 825



To view blocked bot activity, under Attacks > Attack Events, use the Automated filter option.

NOTE
You can configure bot blocking in the YAML files (page 73) for Java, .NET
Framework, .NET Core, Ruby, and Python.

c. To send Protect events to syslog, select Enable output of Protect events to syslog.
Configure these settings:
• Enter the IP Address and Port in the given fields. Use the dropdown to chose the Facility.
• Click on the event severity badges, and use the dropdown to choose a

message Severity level for each one. The defaults are:
• 1 - Alert for Exploited
• 4 - Warning for Blocked
• 5 - Notice for Probe

7. To retain library details, turn on the Retain Library Data toggle. When enabled, Contrast retains
library details for the last server being deleted from Contrast during server cleanup.

8. To send agent data to Contrast, turn on the Agent diagnostics toggle. Contrast uses this data to
improve rules, performance, and to prioritize product improvements.

Set application defaults at an organization level
Use this procedure to choose default settings for applications at an organization level.

Before you begin

• An Organization Admin role is required.

Steps

1. Under Organization settings (page 814), select Applications.
2. Use the dropdown to choose an Importance level for applications. Your options are Critical, High,

Medium, Low, Unimportant. The default selection is Medium.
3. Under Policy, select the remediation and compliance policies (page 803) you would like to

automatically apply to applications.
You can still add applications to policies that aren't included in your default settings at a later time.

4. Under Application onboarding, select either or both of these settings:
• Do not onboard applications that are missing application metadata
• Do not onboard applications that are missing session metadata
Depending on the settings you select, Contrast fails to add applications that are missing
required metadata. These settings help you to enforce the metadata configuration in the agent's
configuration file.

5. Under Session metadata, to set the default session metadata filtering (page 531) to the most
recent session, select Filter application details by most recent session.
This selected filter affects the application's Vulnerabilities and Route coverage tabs.

6. Under Behavior, select Automatically apply licenses to new applications if you want licenses to
be applied automatically.
A status bar shows you how many licenses have been used out of the total number available.
Select the license link to understand the breakdown of your organization's licenses.

7. Use the Application metadata section to configure application metadata (page 826) that should be
provided for each of the applications in your organization.

8. Select Save.

Create requests for application metadata
You can configure requests for application metadata that is collected whenever you add a new
application to Contrast.

Contrast Documentation

Administration 826



When you install and configure an agent (page 48), you are prompted to enter metadata for the fields
you create and to add the information in the agent configuration file. The metadata is then displayed in
the Applications list, where you can also use it to filter applications, and the application's Details page
in the Contrast web interface.

NOTE
The following agent versions support application metadata fields:

• Java 3.5.6.591 and later
• .NET 18.10.35 and later
• Node 1.35.0
• Python 1.2.0
• Ruby 2.0.8

IMPORTANT
The data supplied for application metadata is required for Agent configuration and
YAML file download. The downloads will be disabled without the data.

Steps

1. Under organization settings, select Applications.
2. Under Application metadata, for each field enter:

• Field type: Freeform, Numeric or Point of contact. The type of field determines the type of
validation.

• Name: Enter a label for this field.
To ensure compatibility with the Contrast APIs, use lower camel-case formatting for application
metadata names. For example, use businessID, not BusinessID or Business ID.

• Value condition: Use the checkbox to indicate whether the metadata value provided should be
Required or Unique.

3. Select Add field to complete as many rows as needed.
4. As you provide information for each field, you will see the formatted property that you can copy and

paste into your agent configuration files. Add the information for each key=value pair to the agent
configuration file.

5. To prevent reporting of data for applications that don't include all required fields, select Restrict
applications missing required fields. This option applies to new and existing applications in the
organization.
When you select this option, the Contrast web interface displays a warning message if an
application is missing a required field in the agent configuration file. The Contrast web interface
displays the application, however, the agent reports no data for it, including exercised routes and
vulnerabilities.
If you choose not to restrict applications, any application missing a required field is successfully
added and the agent reports data. Contrast displays a warning message that one or more fields are
missing.

Manage notifications at an organization level
Notifications alert users in specific situations, such as the discovery of a vulnerability or an attack
on an application. Organization Administrators can set default settings (page 828) for Contrast

Contrast Documentation

Administration 827



notifications for all users in their organization. Individual users can choose how they want to receive
these notifications (page 519).

There are two primary channels available for notifications:

• In Contrast: Notifications are available directly in the Contrast application. Select the Notification
icon in the top right header to view your notifications.

• Email: A System Administrator can configure Contrast (page 935) to communicate with an
appropriate SMTP system to receive notifications by email.

NOTE
For some features that require user notifications, Contrast automatically notifies the
affected users when a Contrast administrator enables the feature. (You can't control
these notifications in the Notifications page.) Contrast requires user and administrator
notifications for features including vulnerability status approval (page 862) and
other Policy Management settings.

Set administrative notifications
Administrators automatically receive the following notifications for high-level events in their organization
in the Contrast application and by email.

• Application licensed: A new application was licensed (page 816) in Contrast.
• Application license expiring: The license for an active application is expiring. (Contrast sends this

notification two months, one month and one week prior to the expiration date).
• Licenses expiring: Existing license(s) with no associated applications is expiring. (Contrast sends

this notification two months, one month and one week prior to the expiration date).
• Remediation policy violation: A vulnerability is in violation of an existing remediation

policy. (page 783)
• Library policy violation: A library is in violation of an existing library policy (page 807).
• Compliance policy violation: An application is in violation of an existing compliance

policy (page 803).

Administrator and RulesAdmin users at the application and the organization level must receive policy
violation notifications. You can manage your notifications (page 519) to minimize the number of
notifications or consolidate them into a single email.

You can also receive notifications soliciting approval when a user requests to close certain
vulnerabilities. This must be configured (page 862) by an Organization Administrator.

Set default user notifications
As an Organization Administrator, you can define default notification settings for all users in your
organization both for integrations and for email and in-app notifications in Contrast. Individual users can
choose how they receive those notifications (page 519).

To configure default notification settings for an organization:

1. Under organization settings (page 814), select Notifications.
2. Use the toggles to enable or disable the subscriptions listed on the left:

• Active attack: There is an active attack on an application with Protect enabled.
• New vulnerability: Contrast has detected a new vulnerability. Click in the field to enable

notifications for specific severity levels or "Library"; the default selection is "All".

Contrast Documentation

Administration 828



• Server offline: Contrast can't reach a server.
• New comment: A team member commented on a finding.
• New asset: A new asset to which the user has access has been onboarded. Click in the field to

set this notification for "Application" or "Server"; the default selection is "All".
• Email digest: A daily summary of Contrast activities. (Email only)

NOTE
To enable subscriptions for a particular integration, select Add integration to add
an integration, or select an existing integration from the dropdown at the top of the
Integrations column.

Create custom notifications
As an Organization Administrator, you can set notification defaults, or create custom notifications.

To create a custom notification:

Select Organization settings > Notifications > Create notification at the top of the Custom
notifications list. In the window that appears, fill out the following form fields.

1. Use the radio buttons to choose Vulnerability or Attack.
2. Choose a Name for the notification.
3. Use the dropdown to set the notification Interval as Daily, Weekly, or On Event.
4. Enter a Description for the notification's purpose.
5. Click in the multiselect field to choose the Applications for which this notification applies.
6. Choose the Application Tags for which this notification applies.
7. Choose which organization Users should receive the notifications.
8. Use the dropdowns to choose your Conditions.

Click the Add Condition link to add a row.
Contrast supports these conditions for custom notifications:

Notification
types

Condition Description

Category Is or Is Not Categories are high-level groupings of rule types such as
Authentication, Injection, Cryptography, etc. There are 11 categories
within Contrast rule types.

Impact Is, Is Lower Than, Is
Higher Than

Impact is measured in High, Medium and Low ratings based on how
a rule type affects a given organization. Every rule type has a default
impact configuration setting which can be customized.

Likelihood Is, Is Lower Than, Is
Higher Than

Likelihood is measured in High, Medium and Low ratings based on
how frequent a rule type may occur. Every rule type has a default
likelihood configuration setting that can be customized.

URL Is, Contains, Starts With A specific URL from an application.

Class Is, Contains, Starts With A specific Java or .NET class.

Method Is, Contains, Starts With A specific Java or .NET method.

IMPORTANT
If you choose multiple conditions, Contrast uses AND logic for the notifications.
Contrast generates the notifications when all selected conditions apply to the
situation.

Contrast Documentation

Administration 829



Customize score settings at an organization level
Contrasts designates an application score (page 950), which can optionally depend on a library
score (page 608). To customize score settings at an organization level:

1. Under organization settings (page 814), select Score settings.
2. Under Overall score, choose how applications in this organization are scored:

• Default score is the average of your application's library score and its custom code score.
• Custom code-only score ignores library score when calculating the overall application score. If

you select this option, you can click to select specific languages, or apply it to all languages.
3. Under Library score, choose how libraries in this application are scored:

• Default score uses an algorithm that includes vulnerabilities, as well as the age and versioning
of a library.

• Vulnerability-only score bases scoring solely on vulnerabilities present in the library.
4. Select Save.

TIP
A RulesAdmin can configure policy settings in Policy Management so that any library
in violation automatically receives a failing score (F). Once these settings are chosen,
you'll see an alert message in Score Settings. Clicking the policy link in the alert
navigates you to Library Policy, where administrators may view and revise these
settings.

Role-based access control 
To manage user access to applications, projects, and organization settings in Contrast, set up resource
groups, roles, and user access groups.

NOTE
This feature is supported for hosted customers only and is in preview mode. If you
want to be an early adopter, contact Contrast support.

On-premises customers manage Contrast access by setting up organization users and
access groups (page 818).

Contrast Documentation

Administration 830

https://support.contrastsecurity.com/hc/en-us/requests/new


Access control settings
Access control requires these settings:

• Users: (page 837) The list of Contrast users who you can add to user access groups.
• Resource groups: (page 843) These groups determine which applications, data, settings, scan

projects, and organization settings users can access, depending on their assigned role.
You can use built-in resource groups or create custom groups.

• Roles: (page 848) Roles define the actions that users have permissions to perform.
You can use built-in roles or create custom roles.
The built-in role, Organization administrator. lets you manage all user access groups, roles, and
resource groups.

• User access groups: (page 856) These groups assign roles to users.
You can use built-in user access groups or create custom user access groups.

Methods for managing access control
To manage access control, use either of these methods:

• Contrast web interface
The Contrast web interface provides an visual method for setting up and managing access control.
This method requires an Organization Administrator or Organization Admin role.

• Access control APIs
The access control APIs are useful if you want to automate access control management or integrate
it into existing systems. This method requires the PLATFORM_ORG_MANAGE permission.
Read more about the access control APIs.

Naming standards and requirements
Names for resource groups, roles, and user access groups must be unique for each organization. For
example, you can't create two roles with the name, MyAdmins.

Before you create custom roles or groups, consider developing a naming standard for all custom
settings. Doing so will help make managing a large number of custom settings easier. One approach
is to map the names of resource groups to the roles that you would associate with those groups. For
example, if you create a resource group named Ecommerce, a good role name would be Ecommerce
Developer. The users with this role are your developers working on ecommerce applications.

Naming requirements for all custom settings

Contrast Documentation

Administration 831

https://api.contrastsecurity.com/


• Names can contain up to 50 alphanumeric characters.
• Descriptions can contain up to 1,024 characters.
• You can use special characters and spaces in names and descriptions.
• Names are case insensitive.

For example, ecommerce developers and Ecommerce Developers are considered to be the same
name.

Actions and permissions 
Each action that you assign to a role provides permissions to perform specific tasks and access to data.

NOTE
This feature is supported for hosted customers only and is in preview mode. For
access to this feature, contact Contrast support.

On-premises customers manage Contrast access by setting up organization users and
access groups (page 818).

Organization actions and permissions

This action: Includes these permissions: And is part of these built-in roles

View organization General

• Log in to the Contrast web interface
• View your user profile
• View notifications

Reports

• Generate application reports

Organization viewer

App Security administrator

DevOps administrator

Edit organization General

• Log in to the Contrast web interface
• View your user profile
• View notifications
• View score settings
• View report settings
• View organization settings
• Access the Add new button

Security

• Get Agent keys

Reports

• View report settings
• Generate application reports

Organization editor

Contrast Documentation

Administration 832

https://support.contrastsecurity.com/hc/en-us/requests/new


This action: Includes these permissions: And is part of these built-in roles

Manage organization rules General

• Log in to the Contrast web interface
• View your user profile
• View notifications
• View score settings
• View organization settings
• Enable or disable Protect
• Access the Add new button

Policies

• Manage scoring policies

Reports

• View report settings
• Generate application reports

Organization rules administrator

Manage organization General

• Log in to the Contrast web
interface

• View your user profile
• View notifications
• View organization settings
• Access the Add new button

Integrations

• View integration
details

• Edit integration
settings

Servers

• Manage server licenses

Users

• View users
• Create users
• Delete users
• Edit user settings

Policies

• Manage scoring policies

Reports

• View report settings
• Change report

settings
• Generate application

reports

Security

• Rotate API keys
• View audit log
• Manage IP restrictions
• Manage password policy
• Manage session timeouts
• Manage two-step

verification and SAML

Protect

• Enable and disable
Protect

Organization administrator

DevOps administrator

Manage platform
organization

Access control

• Manage user access groups
• Mange roles
• Manage resource groups.

Reports

• Generate application reports

DevOps administrator

Organization administrator

Contrast Documentation

Administration 833



Application actions and permissions

This action: Includes these permissions: And is part of these built-in
roles

View
application

General

• Log in to the Contrast web interface
• View your user profile
• View notifications
• Customize score settings
• Change report settings
• Change notification settings

Vulnerabilities

• View vulnerability details
• Export vulnerabilities, traces, and routes
• Replay HTTP requests

Applications

• View application details
• View tags

Policies

• View application policies
• View application exclusions

Servers

• View server details

Reports

• Generate application reports

Libraries

• View library details
• View tags
• View manifest details
• Export libraries

Organization viewer

DevOps administrator

App security administrator

Application viewer

Application administrator

Application editor

Application rules administrator

Edit application General

• Log in to the Contrast web interface
• View your user profile
• View notifications
• View organization settings
• Customize score settings
• Change notification settings
• Access the Add new button

Vulnerabilities

• View vulnerability details
• Send vulnerabilities to a bug tracker
• Merge vulnerabilities
• Edit vulnerability settings
• Manage discussions
• Delete vulnerabilities
• Export vulnerabilities, traces, and routes
• Replay HTTP requests

Applications

• View application details
• View tags
• Merge applications
• Archive applications
• Restore applications
• Edit and delete tags
• Manage filters
• Manage traces
• Manage bug tracking settings

Policies

• View application policies
• View application exclusions
• Manage scoring policies

Servers

• View server details
• Edit and delete tags
• Edit server settings
• Manage bug tracker settings

Reports

• Generate application reports
• Change report settings

Libraries

• View library details
• View tags
• Edit and delete tags
• View manifest details
• Export libraries

Protect

• Enable and disable Protect

Application administrator

Application editor

App security administrator

Manage
application
rules

General

• Log in to the Contrast web interface
• View. your user profile
• View notifications

Architecture

• View architecture details

Policies

• Manage Assess rule settings
• Manage library policies
• Manage remediation policies

Protect

• Enable and disable Protect

Application rules administrator

App Security administrator

Application administrator

Contrast Documentation

Administration 834



This action: Includes these permissions: And is part of these built-in
roles

Manage
application

General

• Log in to the Contrast web interface
• View your user profile
• View notifications
• View organization settings
• View score settings
• Customize score settings
• Change report settings
• Change notification settings
• Access the Add new button

Policies

• View applications policies
• View application exclusions
• Manage job outcome policies
• Manage Assess rule settings
• Manage library polices
• Manage remediation policies
• Manage scoring policies

Applications

• View application details
• View tags
• Edit and delete tags
• Merge applications
• Archive applications
• Restore applications
• Manage filters
• Manage traces
• Manage bug tracker settings
• License applications
• Edit application settings
• Reset applications
• Delete applications

Architecture

• View architecture details.

Servers

• View server details
• Edit and delete tags
• Edit server settings
• Delete servers
• Manage bug tracker settings
• Manage server licenses

Protect

• Enable and disable Protect

Integrations

• View integration details
• Edit integration settings

Reports

• Generate application reports
• View report settings

Libraries

• View library details
• View tags
• Edit and delete tags
• View manifest details
• Export libraries

Users

• Manage user access groups
• Manage roles
• Manage resource groups

Vulnerabilities

• View vulnerability details
• Send vulnerabilities to a bug tracker
• Merge vulnerabilities
• Edit vulnerability settings
• Manage discussions
• Delete vulnerabilities
• Export vulnerabilities, traces, and routes
• Replay HTTP requests

Application administrator

Project actions and permissions

This action: Includes these permissions: And is part of these built-in roles

View project Scan

• View details about scan projects and scans
• Download scan results in a SARIF or CSV file

DevOps administrator

App Security administrator

Project viewer

Project administrator

Upload scans Scan

• Upload files for scanning
• Start scans
• View details about scan projects and scans
• Download scan results in a SARIF or CSV file

Scan uploader

Contrast Documentation

Administration 835



This action: Includes these permissions: And is part of these built-in roles

View, edit, delete project Scan

• Archive scan projects
• Delete scan projects
• Edit project settings
• Upload files for scanning
• Start scans
• View details for scan projects and scans
• Download scan results in a SARIF or CSV file

App security administrator

Project administrator

Create project Scan

• Create scan projects

Project administrator

Edit project Scan

• Edit scan project settings
• Upload files for scanning
• View details for scan projects and scans
• Download scan results in a SARIF or CSV file

Project administrator

Delete project Scan

• View details for scan projects and scans
• Download scan results in a SARIF or CSV file
• Delete scan projects

Project administrator

Protect actions and permissions

This action: Includes these permissions: And is part of these built-in
resource groups

Access Protect Protect

• View Protect data

Protect viewer

Manage Protect
exclusions

Protect

• View application exclusions for Protect rules
• Create and edit application exclusions for Protect rules

Protect exclusion administrator

Manage Protect policies Protect

• View and edit Protect policies
• Add or edit log enhancers
• Manage attack alerts
• Manage the IP denylist
• Manage Protect licenses
• Manage Protect rule settings.

Protect policy administrator

Manage Protect sensitive
data policies

Protect

• View details for sensitive data policies
• Edit polices for sensitive data

Protect sensitive data administrator

Serverless actions and permissions

This action: Includes these permissions: And is part of these built-in roles

View Serverless Serverless

• View Serverless data
• Interact with API endpoints

Serverless user

Migration from organization users and groups 
As of August 14, 2023, Contrast provides new access control settings that let you manage user access
at a more granular level.

Contrast automatically migrates your existing users and application groups to the new access control.

Contrast Documentation

Administration 836



NOTE
This feature is supported for hosted customer only and is in preview mode. For access
to this feature, contact Contrast support.

On-premises customers manage access to Contrast by setting up organization users
and groups (page 818).

What happens after migration
Contrast migrates your users as follows:

• Based on a user's organizational role, Contrast migrates them to a built-in user access group that
provides an equivalent role.
You can change the user access group for the user after the migration is complete.

• No application permissions are migrated to the new access control.
Make sure the user (page 840) belongs to a user access group that provides access to the required
applications.
A user access group specifies the roles for users. The resource groups for the user's role include
permissions for specific applications.

Users 
Once you add users to the Users list, you can assign them to specific user access groups.

NOTE
This feature is supported for hosted customers only and is in preview mode. For
access to this feature, contact Contrast support.

On-premises customers manage access to Contrast by setting up organization users
and groups. (page 818)

Users tab
The Users tab shows details about the Contrast users:

• Name: The first and last name of the user.
• Access groups: The user access groups assigned to the user.

User Access groups determine the roles assigned to the user. The roles determine the actions and
resources for the user.

• Type: The type of account: user, API or guest.
To copy the credentials for the API user, select the cloud icon ( ) next to the type. Then, select the
copy icon ( ) next to the credentials.
To change a guest account to a standard account, select Guest in the Type column and then, select
Add user.

• Status: The current status of the user account:
• Active: The user has access to Contrast data.
• Waiting for activation: Users needs to respond to the activation email from Contrast before they

can access Contrast data.
• Inactive: The account is no longer in use.

Contrast Documentation

Administration 837

https://support.contrastsecurity.com/hc/en-us/requests/new
https://support.contrastsecurity.com/hc/en-us/requests/new


To re-activate the account, select the Activate icon ( ) and select Activate.
• Locked: The user is locked out of their account based on a security policy.

To unlock the account, select the check mark next to it and select Unlock.
• Last login: The most recent date and time when the user logged in to Contrast.

Filters and sorting
You can refine the view by selecting one of these filters:

• All: Displays all users
• Locked: Displays users with a locked account.
• API: Displays user with API access.

You can sort the view by Name, Status, and Last login date.

Contrast Documentation

Administration 838



Tasks
From this tab, you can:

• Add a user (page 839) and assign them to one or more user access groups.
• Edit a user's details (page 840).
• Delete a user (page 841).

Add a user 

Use this procedure to add a user.

NOTE
This feature is supported for hosted customers only and is in preview mode. For
access to this feature, contact Contrast support

On-premises customers manage Contrast access by setting up organization users and
access groups (page 818).

Before you begin

• On-premises users: Use the Add or edit a user at an organization level (page 818) procedure.

Steps

1. From the user menu, select Organization settings.
2. Select Access control.

Contrast Documentation

Administration 839

https://support.contrastsecurity.com/hc/en-us/requests/new


3. Select the Users tab.
4. Select Add user.
5. Specify the user details:

• First name: The user's first name.
• Last name: The user's last name.
• Email: The user's email address
• Restrict UI access: Select the API only option if you want the user to have access to the

Contrast API but not the web interface.
When you select this setting, a user cannot log in to the Contrast web interface with a password.
When you clear the setting, a user can log in with their password and continue to use the API as
well.

• Allow access: Select a bult-in or custom user access group.
The access group determines the actions and resources available to the user.

• Date and time preferences: Select the time format, the date format, and the time zone for the
user.

6. Select Add.

Edit a user 

Use this procedure to edit user details.

 

Contrast Documentation

Administration 840



NOTE
This feature is supported for hosted customers only and is in preview mode. For
access to this feature, contact Contrast support.

On-premises customers manage access to Contrast by setting up organization users
and access groups (page 818).

Steps

1. From the user menu, select Organization settings.
2. Select Access control.

3. Select the Users tab.
4. Select the Edit icon ( ) at the end of the row for the user whose details you want to change.
5. Change the settings, as needed and select Save.

To change a user's email address, add a new user (page 839) and include the new address.

Delete a user 

Use this procedure to delete a user.

Contrast Documentation

Administration 841

https://support.contrastsecurity.com/hc/en-us/requests/new


NOTE
This feature is supported for hosted customers only and is in preview mode. For
access to this feature, contact Contrast support.

On-premises customers manage access to Contrast by setting up organization users
and access groups (page 818).

Steps

1. From the user menu, select Organization settings.
2. Select Access control.

3. Select the Users tab.
4. Select the Delete icon ( ) at the end of the row for the user you want to delete.
5. In the Delete user window, select Delete.

Create an API only user 
Create an API user account that you can use for all plugins or integrations.

NOTE
This procedure is for hosted customers only.

If you are an on-premises customer use this Create API user (page 819) procedure.

Contrast Documentation

Administration 842

https://support.contrastsecurity.com/hc/en-us/requests/new


Best practice: Add a user account that's only purpose is for use with plugins and integrations. Doing so
avoids a situation where a user leaves and you delete that user's account. The deletion of that account
would result in breaking the plugins and integrations that you use.

An API only account does not receive email notifications, even if the notification settings are turned on.

Before you begin

• API users can access Contrast's REST API but cannot log in to the Contrast web interface.
• If you configured your organization to use SAML-based single sign-on (SSO), you can still create an

API user.

Steps

1. From the user menu, select Organization settings.
2. Select Access control.
3. Select the Users tab.
4. Select Add user.

5. Enter the user's first name, last name, and email address.
6. Select the API access option.

7. Select Add.
8. In the Users list, verify you see the new user with the API label in the Type column.

9. To use the API access account, get the connection strings:
a. In the Users list, select the API icon  in the Type column and copy the service key and

authorization heading.
b. Use these credentials when you use a Contrast API.

Resource groups 
Resource groups let you specify the applications, projects, and organization settings that users can
access, based on their assigned roles.

NOTE
This feature is supported for hosted customers only and is in preview mode. For
access to this feature, contact Contrast support.

On-premises customers manage access to Contrast capabilities by setting
up organization users and access groups (page 818).

Resource groups tab
The Resource groups tab displays the list of existing groups. From this tab, you can:

• View a list of resource groups.

Contrast Documentation

Administration 843

https://support.contrastsecurity.com/hc/en-us/requests/new


Use search to find specific groups.
• Manage resource groups:

• Add a resource group (page 844).
• Edit a resource group (page 846).
• Delete a resource group (page 847).

Built-in resource groups
You can select these built-in resource groups for access control roles:

• All applications: Provides access to all applications in your organization.
• All Protect exclusions: Provides access to all Protect exclusion settings
• All Protect sensitive data policies: Provides access to all sensitive-date policy settings.
• All functions: Provides access to all Serverless functions and data endpoints.
• All projects: Provides access to all scan projects in your organization.
• All roles: Provides access to all roles in your organization only.
• All access control settings: Provides access to all settings for users, roles, user access groups,

and resource groups.
• All organization settings: Provides access to all organization settings, including management of all

users access groups, resource groups, and roles.
• All user access groups: Provides access to all user access groups.
• All resource groups: Provides access to all resource groups.

NOTE
You cannot change the settings for built-in resource groups. To view the settings for
these groups, select the View icon ( ).

Add resource groups 

Custom resource groups let you specify the applications, projects, and organization settings that users
can access.

Contrast Documentation

Administration 844



NOTE
This feature is supported for hosted customers only and is in preview mode. For
access to this feature, contact Contrast support.

On-premises customers manage Contrast access by setting up organization users and
access groups (page 818).

Steps

1. From the user menu, select Organization settings.
2. Select Access control.

3. Select the Resource groups tab.
4. Select Add group.

5. In the Add resource group window, specify these settings:

Contrast Documentation

Administration 845

https://support.contrastsecurity.com/hc/en-us/requests/new


• Resource group name: Specify a descriptive name.
The name must be unique for the organization. Use up to 255 characters, including spaces and
special characters.

• Resource group description: Specify a description that's easy to understand.
Consider using a description that identifies the purpose of the group. Use up to 1,024 characters,
including spaces and special characters.

• Resource groups: Select resource groups to include in this group.
The list of available resource groups might not show all individual resource groups that exist
in your organization. If an individual resource group is part of another resource group, you
can't select the individual group. You can, however, select the resource group that includes the
individual resource group. For example:
• You create Resource Group 1 and include MyResource group.
• When you create Resource Group 2, you don't see MyResource group in the list. You do

see Resource Group 1, which you can add to Resource Group 2.
If you select resource groups, selecting an individual project or application is not allowed..

• Projects: Select individual scan projects to include in this group.
If you select individual scan projects, selecting resource groups is not allowed.

• Applications: Select individual applications to include in this group.
If you select individual applications, selecting resource groups is not allowed.

6. Select Add.
You can now assign this resource group to a role.

Edit custom resource groups 

Use this procedure to change settings for a custom resource group. You cannot change settings for
built-in resource groups.

Contrast Documentation

Administration 846



NOTE
This feature is supported for hosted customers only and is in preview mode. For
access to this feature, contact Contrast support.

On-premises customers manage access to Contrast by setting up  organization users
and access groups (page 818).

Steps

1. From the user menu, select Organization settings.
2. Select Access control.

3. Select the Resource groups tab.
4. Select the Edit icon ( ) at the end of the row for the group you want to change.
5. Change the settings for the resource group and select Save.

Delete custom resource groups 

Use this procedure to delete a custom resource group. You cannot delete built-in resource groups.

Contrast Documentation

Administration 847

https://support.contrastsecurity.com/hc/en-us/requests/new


NOTE
This procedure is supported for hosted customers only and is in preview mode. For
access to this feature, contact. Contrast support.

On-premises customers manage access to Contrast by setting up  organization users
and access groups (page 818).

Steps

1. From the user menu, select Organization settings.
2. Select Access control.

3. Select the Resource groups tab.
4. Select the Delete icon ( ) at the end of the row for the group you want to delete.
5. In the Delete resource groups window, select Delete.

Roles 
Roles let you define the applications, projects, and organization settings that users with a specific role
can access.

Contrast Documentation

Administration 848

https://support.contrastsecurity.com/hc/en-us/requests/new


NOTE
This feature is supported for hosted customers only and is in preview mode. For
access to this feature, contact Contrast support.

On-premises customers manage access to Contrast by setting up organization users
and groups (page 818).

Contrast provides a set of built-in roles or you can add custom roles.

Roles tab
The Roles tab displays the list of existing roles. From this tab, you can:

• View a list of roles.
Use search to find specific roles.

• Add a custom role (page 851)
• Edit a custom role (page 853).
• Delete a custom role. (page 854)

Built-in roles and actions
Each action associated with a role provides permissions for a specific set of tasks and data (page 832).

NOTE
You cannot change the settings for the built-in roles. To view the settings for roles,
select the View icon ( ).

Contrast Documentation

Administration 849



Organization roles

This role: Includes these built-in resource groups: And these actions:

Organization viewer All organization settings View organization

Organization editor All organization settings Edit organization settings

Organization administrator All access control settings

All organization settings

Manage organization

Manage platform organization

Organization rules administrator All organization settings Manage organization rules

App Security roles

This role: Includes these built-in resource groups: And these actions:

App Security administrator All applications

All organization settings

All projects

Manage application rule

View, edit, delete projects

View organization

DevOps roles

This role: Includes the built-in resource groups: And these actions:

DevOps administrator All applications

All organization settings

All projects

All resource groups

All roles

All user access groups

Manage organization

View application

View project

View organization

Application roles

This role Includes these built-in resource groups: And these actions:

Application viewer All applications View application

Application editor All applications Edit application

Application administrator All applications Manage application

Application rules administrator All applications Manage application rule

Scan project roles

This role: Includes these built-in resource groups: And these actions:

Project viewer All projects View project

Scan uploader All projects Upload scans

Project administrator All projects View, edit, delete projects

Create project

Protect roles

This role: Includes these built-in resource groups: And these actions:

Protect viewer All applications Access Protect

Protect policies administrator All applications Manage Protect policies

Protect exclusions administrator All Protect exclusions Manage Protect exclusions

Protect sensitive data administrator All Protect sensitive data policies Manage protect sensitive data policies

Contrast Documentation

Administration 850



Serverless roles

This role: Includes these built-in resource groups: And these actions:

Serverless user All functions View Serverless

Add roles 

Create roles to customize which Contrast resources and actions users can access.

NOTE
This feature is supported for hosted customers only and is in preview mode. For
access to this feature, contact Contrast support.

On-premises customers manage Contrast access by setting up organization users and
access groups (page 818).

Before you begin

• Hosted customers: You need a role withthe Manage user access action.
• On-premises customers: Manage access to Contrast by setting up organization users and access

groups. (page 818)
• Determine if you need to add a custom resource group (page 844) for the role.

Steps

1. From the user menu, select Organization settings.
2. Select Access control.

Contrast Documentation

Administration 851

https://support.contrastsecurity.com/hc/en-us/requests/new


3. Select the Roles tab.
4. Select Add role.

5. Specify the role settings:

a. Role name: Specify the name for the role.

Contrast Documentation

Administration 852



The name must be unique for the organization. Use up to 255 characters, including spaces
and special characters.

b. Role description: Specify a description of the role.
Consider using a description that indicates the purpose of the role. Use up to 1,024 characters,
including spaces and special characters.

c. Resource groups: Select one or more resource groups.
Select a built-in resource group (page 843) or a custom group (page 844).

d. Actions: Select the actions (page 832) for the group:

Edit custom roles 

Use this procedure to edit a custom role. You cannot change built-in roles.

NOTE
This feature is supported for hosted customers only and is in preview mode. For
access to this feature, contact Contrast support.

On-premises customers manage access to Contrast by setting up  organization users
and access groups (page 818).

Steps

1. From the user menu, select Organization settings.
2. Select Access control.

Contrast Documentation

Administration 853

https://support.contrastsecurity.com/hc/en-us/requests/new


3. Select the Roles tab.
4. To edit an existing role, select the Edit icon ( ) at the end of the row for the role you want to

change.
5. Change the settings, as needed and select Save.

Delete roles 

Use this procedure to delete a custom role. You cannot delete built-in roles.

NOTE
This feature is supported for hosted customers only and is in preview mode. For
access to this feature, contact Contrast support.

On-premises customers manage access to Contrast by setting up organization users
and access groups (page 818).

Steps

1. From the user menu, select Organization settings.
2. Select Access control.

3. Select the Roles tab.
4. Select the Delete icon ( ) at the end of the row for the role you want to delete.
5. In the Delete role window, select Delete.

Contrast Documentation

Administration 854

https://support.contrastsecurity.com/hc/en-us/requests/new


Best practices for custom roles
If you have multiple teams collaborating on one or more projects, consider creating custom roles.
Custom roles ensure that your teams have access to the appropriate resources and the correct
permissions for those resources.

You can view the settings for the built-in roles to help you determine the types of actions and resource
groups to add to your custom roles.

Custom role planning
Your first step is to create a plan for your custom roles.

• Think about the roles that people currently have.
For example, do you have managers and lead developers who need different access than other
developers?

• Think about the resources your teams need to work on.
For example, will any of your teams use static scanning to check for vulnerabilities? In this case, they
will need access to scan projects.
Consider which applications your teams are working on so you can ensure they have access to them.

• Think about the tasks or actions that individuals need to perform for the resources they need to
access.
For example, do individuals need to change organization settings? Do they need to be able to upload
artifacts for scanning? Do they need to access application data?

Resource groups
Consider these best practices:

• For ease in management, create resource groups that include one type of resource only. For
example, keep your project resources in one group and your applications in another.
if a built-in resource group meets your needs, you could also use it instead of creating a custom
group.

• Use roles to specify the actions users can take for the different resource groups.

Example
This example shows one approach for creating custom roles.

In this example, an administrator is creating custom roles for development teams collaborating on an
ecommerce product.

Step 1: Create a plan for all the custom roles

• Current roles: For this project, there are development managers, development leads, front-end
developers working on a user interface , and back-end developers creating services and APIs. All of
these teams collaborate together.

• Resources: The Ecommerce product includes shared application components that are instrumented
with Contrast agents as well as scan projects for coe that is scanned early in the development cycle.

• Actions: The development managers and leads need to be able to manage all settings for
applications and scan projects.. The front-end developers need to be able to access shared user
interface modules. The back-end developers need to be able to access APIs and back-end services.

Step 2: Create custom resource groups

To accommodate the different permissions you need to assign to different users, you create these
resource groups:

• Shared UI applications: This resource group includes the UI-focused applications that front-end
developers need to test at runtime.

Contrast Documentation

Administration 855



• Shared UI projects: This resource group includes the UI-focused scan projects that front-end
developers run to find vulnerabilities during the early stages of development.

• Shared API applications: This resource group includes the shared API applications that back-end
developers need to test at runtime.

• Shared back-end services: This resource group includes the shared services that back-end
developers need to test at runtime.

You group all the resource groups into a parent resource group called Ecommerce development.

All custom roles will include the parent group. You use actions to determine which role can access
specific resources and the permissions users have for these resources.

Step 3: Create custom roles.

You set up these roles to use the parent resource group, Ecommerce development, with specific
actions:

• Ecommerce administrator: This role is for the Ecommerce development managers and leads. It
includes these actions:
• Manage application rules: Lets users perform tasks such as changing Assess or Protect rules,

setting remediation policies, and setting library policies.
• Manage application: Lets users change application settings.
• View, create, edit project: Lets user view, edit or create scan projects.
• Delete project: Lets user delete scan projects.
• View organization: Lets users perform tasks such as viewing score settings and getting API keys.

• Ecommerce front-end developer: This role is for the Ecommerce front-end developers. It includes
these actions:
• View application: Lets users view application data such as vulnerabilities, application details, and

library details.
• Edit application: Lets users perform tasks such as merging applications, sending data to bug

trackers, editing vulnerability settings
• View organization: Lets users perform tasks such as viewing score settings and getting API keys.
• Upload scans: Lets users scan code for vulnerabilities.

• Ecommerce back-end developers
• View applications: Lets users view application data such as vulnerabilities, application details, and

library details.
• Edit application: Lets users perform tasks such as merging applications, sending data to bug

trackers, editing vulnerability settings
• View organization: Lets users perform tasks such as viewing score settings and getting API keys.

Step 4:, Create custom users groups

You create user access groups for each role and assign individual users, based on the resources they
need to access.

• Ecommerce administrators: Includes all users with the Ecommerce administrator role.
• Ecommerce front-end developers: Includes all users with the Ecommerce front-end developer role.
• Ecommerce back-end developers: Includes all users with the Ecommerce back-end developer role.

User access groups 
User access groups let you specify specific roles and resource groups for one or more users. Roles and
resource groups define the permissions for users.

You can add users to built-in user access groups or create custom groups (page 858).

Contrast Documentation

Administration 856



NOTE
This feature is supported for hosted customers only and is in preview mode. For
access to this feature, contact Contrast support.

On-premises customers manage access to Contrast by setting up organization users
and access groups (page 818) .

User access groups tab
The User access groups tabs displays the list of existing groups. From this tab, you can:

• View a list of user access groups.
Use search to find specific groups.

• Add a user access group (page 858)
• Edit a user access group (page 860)
• Delete a user access group (page 861)

Built-in user access groups
You can add users to these built-in user access groups:

This built-in group: Includes these built-in roles:

Organization viewers Organization viewer

Project viewer

Application viewer

Organization editors Organization editor

Organization rules administrators Organization rules administrator

Contrast Documentation

Administration 857

https://support.contrastsecurity.com/hc/en-us/requests/new


This built-in group: Includes these built-in roles:

Organization administrators Application administrator

Project administrator

Organization administrator

Protect viewer

Serverless user

AppSecurity administrators App Security administrator

DevOps administrators DevOps administrator

Developers Organization viewer

Protect viewer

Serverless user

Scan uploader

Application viewer

Project viewer

Scan manager Project viewer

Protect viewers Protect viewer

Serverless users Serverless user

NOTE
Other than adding or removing users, you cannot change the settings for the built-in
user access groups.

See also
Built-in roles (page 848)

Add user access groups 

Create user access groups to let a collection of users access projects, applications, and organization
settings. The roles you assign to users in the group determine which capabilities they can access.

NOTE
This feature is supported for hosted customers only and is in preview mode. For
access to this feature, contact Contrast support.

On-premises customers manage access to Contrast by setting up  organization users
and access groups (page 818).

Before you begin

• Add users (page 839), if necessary.
• Determine whether you need to add custom roles (page 851) or custom resource groups (page 844).

Contrast Documentation

Administration 858

https://support.contrastsecurity.com/hc/en-us/requests/new


Steps

1. From the user menu, select Organization settings.
2. Select Access control.

3. In the User access groups tab, select Add group.

4. In the Add user access group window, specify these settings:

Contrast Documentation

Administration 859



• User access group name: Specify a name for the user group.
The name must be unique for the organization. Use up to 255 characters, including spaces and
special characters.

• User access group description: Specify a description of the group.
Consider using a description that clearly identifies the purpose of the group. Use up to 1024
characters, including spaces and special characters.

• Users: Specify users for the group.
To display a list of users, select the triangle  at the end of the box or start typing a name.
If you don't see specific users, go to the Users page under user menu > Organization settings
and verify that they are Contrast organization users.

• Roles: From the dropdown, select one or more roles to apply to all users in the group.
You can select built-in roles (page 848) or custom roles (page 851).

5. Select Add.

Edit user access groups 

Use this procedure to edit a user access group.

For built-in user access groups, you can only change the users assigned to the group.

NOTE
This feature is supported for hosted customers only and is in preview mode. For
access to this feature, contact Contrast support.

On-premises customers manage access to Contrast by setting up organization users
and access groups (page 818).

Contrast Documentation

Administration 860

https://support.contrastsecurity.com/hc/en-us/requests/new


Steps

1. From the user menu, select Organization settings.
2. Select Access control.

3. Select the User access groups tab.
4. Select the Edit icon ( ) at the end of the row for the group you want to change.
5. Change the settings, as needed and select Save.

Delete custom user access groups 

Use this procedure to delete a custom user access group. You cannot delete built-in user access
groups.

NOTE
This feature is supported for hosted customers only and is in preview mode. For
access to this feature, contact Contrast support.

On-premises customers manage access to Contrast by setting up  organization users
and access groups (page 818).

Steps

1. From the user menu, select Organization settings.

Contrast Documentation

Administration 861



2. Select Access control.

3. Select the User access groups tab.
4. Select the Delete icon ( ) at the end of the row for the group you want to delete.
5. In the Delete user access group window, select Delete.

Require vulnerability approval
As an Organization Administrator, you can require administrative approval when closing
vulnerabilities (page 783) in your organization. You must be an Organization RulesAdmin with
RulesAdmin permissions for the target application in order to approve or deny vulnerability
closures (page 705).

To configure this requirement:

1. In the user menu, select Policy management > Vulnerability management > Vulnerability
behavior.

2. Select the box next to Require administrator approval when closing vulnerabilities.
3. Choose the statuses and severities of vulnerabilities that should automatically go into

a Pending state when a user moves to close them.
4. When a user requests to close any qualifying vulnerabilities, Contrast sends an in-app notification

to all Organization Administrators saying that a review is needed.
Each vulnerability status will remain Pending until an Organization Administrator submits a review
of the closure. To qualify for administrative approval, both a status and severity must be selected.
If a reviewer denies the closure of a vulnerability, they must provide a reason for denial. Once
confirmed, the reviewer's feedback appears in the vulnerability's Activity tab.
If you disable the feature, any pending closures are automatically approved.

Contrast Documentation

Administration 862



NOTE
While in a Pending state, the vulnerability's previous status still applies for the purpose
of organizational reports and statistics.

View audit log
Contrast captures activity about all user sessions including changes to settings or licenses, actions on
vulnerabilities, and much more.

1. Under the User Menu, select Organization Settings > Security.
2. Click the View Audit Log option on the upper-right of the screen.

This opens the audit log page.

Contrast Documentation

Administration 863



This is where you'll find information about:

Agents Downloading the agent/agent launcher/contrast service

Alerts Creating

Deleting

Updating

Applications Applying a license

Archiving

Changing Assess rule configurations

Changing organization settings

Enabling/disabling a rule

Merging/unmerging

Restoring

Resetting

Contrast Documentation

Administration 864



Attacks Adding notes to events

Creating/Editing/Deleting notes

Suppressing

Bugtrackers Creating

Updating

Email Adding domains

Sharing libraries

Groups Creating/Updating/Modifying membership of organization groups

IP ranges Adding

Removing

Keys Rotating API and Agent service keys

Notification settings Updating for an organization or user

Patches Creating/Updating/Toggling/Deleting virtual patches

Policies Changing cleanup settings

Changing library restrictions

Changing password

Changing scoring

Changing timeouts

Creating/Deleting/Disabling/Enabling/Updating compliance policies

Creating/Deleting/Updating/Enabling organization remediation policies

Creating/Deleting/Updating/Enabling security controls

Creating/Deleting/Updating/Enabling rule exclusion policies

Reports Creating reports

Vulnerability trend reports

Servers Changing defaults

Creating notifications

Deleting/Disabling/Updating/Removing licenses

Enabling/Disabling Protect

SuperAdmin Creating

Impersonating a user

Updating

Traces Adding/Editing/Deleting notes

Auto-remediation

Sharing/Deleting/Merging/Marking status of a trace (or bulk traces)

Updating severities

Users Adding

Activating

Changing access

Creating/creation via provisioning/in bulk

Deleting

Granting/Revoking Protect

Importing into an organization

Underprivileged user attempts

Updating

Contrast Documentation

Administration 865



Webhooks Creating

TIP
Use the search fields to look for a specific log by date or name.

Impersonation
Impersonation lets someone with a system role (page 949) access an organization as an existing user
to troubleshoot issues.

Contrast turns off impersonation for organizations after 24 hours, automatically.

For hosted customers, if the impersonation setting is not visible for your organization, contact Contrast
Support. On-premises customers can manage and use impersonation, as needed.

Impersonation access

By default, the impersonation setting is enabled for all organizations. Organization Admins manage
whether you can impersonate another user in an organization.

To change access to impersonation:

• SuperAdmins can turn on or turn off the Can enable impersonation setting for a specific
organization by editing the organization (page 901).
This setting affects whether Organization Admins can see the Impersonation setting for an
organization.

• Organization Admins can manage impersonation use by editing an organization's Security
settings. (page 866)

When you turn on impersonation:

• If you have a SuperAdmin role, you can use impersonation (page 911) by selecting Impersonate for
an organization on the Organizations page.
You can impersonate the first Organization Admin for the organization.

• If you have a SuperAdmin role, you can select a user to impersonate on the Users page.
• If you have a SuperAdmin role, you can use impersonation (page 911) by selecting Impersonate for

an organization on the Organizations page.
You can impersonate the first Organization Admin for the organization. You must have access to the
organization.

Audit log
The Contrast audit log shows impersonation activity including:

• When impersonation is turned on or off
• The organization where impersonation occurred
• The server key associated with an impersonation status change
• Rejected impersonation attempts

Enable impersonation

Use this procedure to turn on impersonation (page 866) for an organization.

Contrast Documentation

Administration 866

https://support.contrastsecurity.com/hc/en-us/requests/new?ticket_form_id=360000011243
https://support.contrastsecurity.com/hc/en-us/requests/new?ticket_form_id=360000011243


Before you begin

• Verify that the setting to enable impersonation is visible under Organization settings > Security.
If the setting is not visible:
• Hosted customers: Contact Contrast Support..
• On-premises customers: Ask a SuperAdmin to edit the organization (page 901) and turn on the

Can enable impersonation setting.

Steps

1. From the user menu, select Organization settings.
2. Select Security.
3. Under Impersonation, select the setting to enable it and select Save.

Contrast Documentation

Administration 867

https://support.contrastsecurity.com/hc/en-us/requests/new?ticket_form_id=360000011243


System Administration

Only on-premises customers require system administration. System administration is handled by
Contrast Security for hosted customers.

See an overview of how to get started on-premises (page 868) or decide how to manage your system
administration (page 900).

Get started on-premises
As an on-premises customer, you can set up your own instance of Contrast without a connection to the
internet. You only need to set this up once per organization.

IMPORTANT
If you are able to use Contrast as a hosted solution, you don't have to complete the
additional installation and maintenance of the Contrast application on-premises.

Contrast hosted is SOC-2 Type II compliant and continuously receives feature updates.
To connect to Contrast hosted, use the credentials provided by your administrator to
log in and continue to install an agent (page 48).

For on-premises customers, to use Assess, Protect or both, you must complete at least two
installations:

• Install Contrast (page 873)
• Install an agent for each application server (page 48)

The Contrast installation contains all embedded components that make up the system configuration,
including a Tomcat servlet container, MySQL database instance, and an AdoptOpenJDK Hotspot Java
Virtual Machine. All of these components are embedded within the installation binary and deployed to a
single server as part of the Contrast architecture.

Before installing the Contrast application, verify that your environment complies with the:

• System requirements (page 869)
• Sizing recommendations (page 870)

After installation, you can further configure:

• Tomcat (page 885)
• JRE (page 885)
• HTTPS (page 886)
• Contrast settings (page 929)

For the long term, make sure you have a plan to:

• Manage system administration (page 900)
• Configure settings (page 929)
• Maintain the Contrast system (page 936)

Contrast Documentation

System administration 868



Contrast installation
Options for installing and deploying Contrast in an on-premises environments include:

• Install with the Contrast installer (page 873)
• Use a distributed MySQL database (page 877)
• Deploy with a WAR file. (page 876)
• Deploy in a distributed environment (page 879)

Next steps

• Review the Contrast system requirements. (page 869)
• Review the Contrast sizing recommendations (page 870).
• Download the Contrast installer from the Contrast Hub or with curl commands (page 871).

Contrast system requirements
The following table lists the system requirements for installing the Contrast application.

Before you install Contrast:

• Download the Contrast Installer (page 872) from the Contrast Hub or by using curl
commands (page 871).

• Review the sizing recommendations. (page 870)

Requirement Recommended Minimum Notes

OS Architecture 64-bit 64-bit Due to memory requirements, the
Contrast application can only run
on 64-bit architectures.

Operating system • RHEL 8
• RHEL/CentOS 7
• Microsoft Windows 2019
• Ubuntu 18.04 LTS or

higher (up to 20.04 LTS)

• RHEL/CentOS 7
• Microsoft Windows 2012

R2 or higher
• Ubuntu 16.04 LTS

Support for CentOS 6 ended on
December 1, 2020.

Java Java is bundled with the installer.

MySQL • For on-premises customers using Contrast versions 3.8.11 or prior, MySQL 5.7.23 is bundled with the
installer.

• Beginning with Contrast 3.9.0, MySQL 8 is bundled with the Linux on-premises installer.
• Beginning with Contrast 3.9.3, MySQL 8 is bundled with the Linux and Windows on-premises installer.

If you experience issues, contact Support.

IMPORTANT

• For on-premises customers using MySQL 8 (which has binary logging enabled by
default), the system variable log_bin_trust_function_creators must be set
to ON so that Contrast can create stored procedures. For more details, see MySQL
documentation.

• For on-premises customers using MySQL 8, the system
variable local_infile must be set to ON so that Contrast can accept CSV files
to help the import of SCA data. For more details, see Security Considerations for
LOAD DATA LOCAL.

Contrast Documentation

System administration 869

https://hub.contrastsecurity.com/h/
https://hub.contrastsecurity.com/
https://support.contrastsecurity.com/hc/en-us/requests/new?ticket_form_id=360000011243
https://dev.mysql.com/doc/refman/8.0/en/stored-programs-logging.html#:~:text=By%20default%2C%20this%20variable%20has,enabled%2C%20log_bin_trust_function_creators%20does%20not%20apply
https://dev.mysql.com/doc/refman/8.0/en/stored-programs-logging.html#:~:text=By%20default%2C%20this%20variable%20has,enabled%2C%20log_bin_trust_function_creators%20does%20not%20apply
https://dev.mysql.com/doc/refman/8.0/en/load-data-local-security.html#:~:text=For%20the%20mysql%20client%2C%20local%20data%20loading%20capability%20is%20determined%20by%20the%20default%20compiled%20into%20the%20MySQL%20client%20library.%20To%20disable%20or%20enable%20it%20explicitly%2C%20use%20the%20%2D%2Dlocal%2Dinfile%3D0%20or%20%2D%2Dlocal%2Dinfile%5B%3D1%5D%20option.
https://dev.mysql.com/doc/refman/8.0/en/load-data-local-security.html#:~:text=For%20the%20mysql%20client%2C%20local%20data%20loading%20capability%20is%20determined%20by%20the%20default%20compiled%20into%20the%20MySQL%20client%20library.%20To%20disable%20or%20enable%20it%20explicitly%2C%20use%20the%20%2D%2Dlocal%2Dinfile%3D0%20or%20%2D%2Dlocal%2Dinfile%5B%3D1%5D%20option.


MySQL and Java requirements for distributed installations
Use these requirements if you are deploying Contrast as a distributed application or are using your own
MySQL database. For all other on-premises installations, use the MySQL and Java software included in
the Contrast installer.

If you experience issues, contact Support

Requirement Recommended Minimum

Java 17 11

MySQL • 8.0.36 (Contrast 3.11.0 or later)
• 8.0.30 (Contrast 3.9.1 or later)
• 5.7.23 (Contrast 3.9.0 or earlier)

• 8.0.27 (Contrast 3.9.1 or later)
• 5.7.23 (Contrast 3.9.0 or earlier)

SuperAdmin account
To ensure that connections for integrations work correctly, create a SuperAdmin account that is different
from the default account that Contrast Security created. Continuing to use the default SuperAdmin
account can result in connection errors.

Distributed configuration for large number of agents
If you plan to use more than 100 connected agents, use a distributed configuration (page 879).
Without a distributed configuration for this situation, you are likely to experience performance issues.

Sizing recommendations for the Contrast application
The CPU and memory resources for Contrast can vary based on the number of agents connected and
application traffic communicating back to the Contrast application. The recommendations on this page
apply to the application service.

Additional factors that impact performance include:

• Web traffic from consumers of Contrast reporting data. 
Contrast is a highly transactional system that presents calculated and real-time data sets back to
consumers of the data. The more users interface with the system, the greater the demand for
computing and memory.

• Large amounts of data maintained in the application over extended periods of time.
You can proactively purge data over time or choose to keep the data. With any transactional system,
the larger the data set to query against, the greater the computing requirements.

• More than 100 connected agents
If you plan to use more than 100 connected agents, use a distributed configuration (page 879).
Without a distributed configuration for this situation, you are likely to experience performance issues.

Use these guidelines to choose the appropriate mix of resources to scale the requirements to your
workload:

• Small workload: A small workload is about three to 30 agents communicating to Contrast, and about
five to to 25 web traffic end users who access the system multiple times a day and actively use alerts,
reports and integrations.
The greater the number of connected agents, the greater the memory requirements are for Contrast
to handle in-flight traces. Storage depends on the life of trace data and the preservation of log files by
system administrators.

vCPUs Clock speed RAM Storage

~4 to ~8 2.5 GHz to 3.3 GHz 16 GB to 24 GB 100 GB to 200 GB

• Large workload: A large workload is about 30 to 100 agents communicating to Contrast, and more
than 25 web traffic users for full-scale enterprise deployments. End users access the system multiple
times of day, and actively engage in Contrast features such as alerts, reports and integrations.

Contrast Documentation

System administration 870

https://support.contrastsecurity.com/hc/en-us/requests/new?ticket_form_id=360000011243


The greater the number of connected agents and end users, the greater the memory requirements for
Contrast to handle in-flight traces. Storage depends on the life of trace data and the preservation of
log files by system administrators.

vCPUs Clock speed RAM Storage

~8 to ~16 2.5 GHz to 3.3 GHz 24 GB to 48 GB 200 GB to 500 GB

IMPORTANT
Regardless of your workload size, allocate at least 16 GB of RAM to the Contrast
application.

TIP
Follow the large workload guidelines if you are using the Contrast REST
API architecture for automation or data extraction purposes and for continuous
integration of agents with large automated regression suites.

Download Contrast software with curl commands
When your license is provisioned, a good way to download the Contrast installer and licenses is to use
curl commands. If you're unsure about who holds access for your company, contact Support.

You can also download other software files using curl commands.

Alternatively, you can download installers and license files from the Contrast Hub.

NOTE
Starting with Contrast 3.9.10, the installer doesn't include the library and CVE
data. For an air-gapped installation, you need to download this data manually. If
you have internet access, you can configure your system to upgrade this data
automatically (page 898).

Steps for downloading installation files

1. To download the latest version of the Linux Contrast installer, use this command:

curl -L https://hub.contrastsecurity.com/h/api/artifacts/installer/sh/
nocache -u <ContrastHubUsername> -o "contrast-latest-nocache.sh"

Replace <ContrastHubUsername> with the username for your Contrast Hub account. After you
enter the command, you are prompted to enter the password.

2. To download the latest version of the Windows Contrast installer, use this command:

curl -L https://hub.contrastsecurity.com/h/api/artifacts/installer/exe/
nocache -u <ContrastHubUsername> -o "contrast-latest-nocache.exe"

Replace <ContrastHubUsername> with the username for your Contrast Hub account. After you
enter the command, you are prompted to enter the password.

Contrast Documentation

System administration 871

https://support.contrastsecurity.com/hc/requests/new?ticket_form_id=360000011243
https://hub.contrastsecurity.com


3. Air-gapped installations: To download the library and CVE data, use this command:

curl -JLO https://hub.contrastsecurity.com/h/api/artifacts/ardy_export -
u <ContrastHubUsername>

Replace <ContrastHubUsername> with the username for your Contrast Hub account. After you
enter the command, you are prompted to enter the password.

4. To download the latest Contrast WAR file, use this command:

curl -JLO https://hub.contrastsecurity.com/h/api/artifacts/war -
u <ContrastHubUsername>

Replace <ContrastHubUsername> with the username for your Contrast Hub account.
The WAR file is useful if you have an existing Tomcat server and you want to install Contrast on
that server.

5. To download the license file, use this command:

curl --request GET --url https://hub.contrastsecurity.com/h/rest/
customer/license/text -u <ContrastHubUsername> > license.lic

Replace <ContrastHubUsername> with the username for your Contrast Hub account. After you
enter the command, you are prompted to enter the password.

6. After you download the files, install Contrast (page 873).

Additional software downloads
You can use this curl command to download additional Contrast software:

curl -JLO https://hub.contrastsecurity.com/h/api/artifacts/<OtherSoftware>
-u <ContrastHubUsername>

Replace <Other Software> with any of the these values:

• For the .NET Framework agent, use dotnet
• For the .NET Core agent, use dotnet_core
• For the .NET Core installer for IIS, use dotnetcore_installer_for_iis

Download the Contrast installer
When your license is provisioned, you get access to a Contrast Hub account where you can download
installers and licenses. If you're unsure about who holds access for your company, contact Support.

Alternatively, you can use curl commands (page 871) instead of the Contrast Hub to download installers
and licenses.

NOTE
Starting with Contrast 3.9.10, the installer doesn't include the library and CVE
data. For an air-gapped installation, you need to download this data manually. If
you have internet access, you can configure your system to upgrade this data
automatically (page 898).

Steps

1. Log in to the Contrast Hub with the credentials provided to you.

Contrast Documentation

System administration 872

https://hub.contrastsecurity.com/
https://support.contrastsecurity.com/hc/requests/new?ticket_form_id=360000011243


2. Download the Contrast installer for your operating system.
a. Select Downloads in the header.
b. Select Installers
c. Select the file to download:

• Linux installer:Contrast<version>-NO-CACHE.sh
• Windows installer:Contrast<version>-NO-CACHE-x64.exe

3. Air-gapped installations: Download the library and CVE data (page 897).
If you have internet access, you don't have to download the data; you can configure your system to
upgrade library and CVE data automatically (page 898) after installation.

4. Download the license file.
The license file is configured with a SuperAdmin (page 949) account and a regular user account.
You'll need the license to complete the installation of the Contrast application.
a. Select Home in the header.
b. Select Licenses.
c. Select the license file to download.

5. After you download the files, install Contrast. (page 873)

Install Contrast on-premises

IMPORTANT
These installation instructions are for on-premises use only.

If you are using the hosted version of Contrast, you can instrument your
applications (page 48) without installing Contrast. Get started by installing an
agent (page 48).

Contrast updates the library data approximately every 24 hours. If you have internet access, your
Contrast installation pulls the data from a Contrast database hosted on the cloud. If you don't have
internet access (air-gapped installations), you can download the data manually.

Before you begin

• Download the Contrast Installer (page 872) from the Contrast Hub or by using curl
commands. (page 871)

• If you don't have internet access (air-gapped installations), download the library data
manually (page 897).

• Review the system requirements (page 869) and sizing recommendations (page 870).

Contrast Documentation

System administration 873

https://hub.contrastsecurity.com/


Steps

1. Preconfigure your base operating system with a shared library for running MySQL. Additionally,
the system package fontconfig is required on Linux to install fonts. Run the command for your
operating system:
• RHEL 8:

[contrast@myserver ~]# dnf install -y ncurses-compat-
libs libaio fontconfig

• CentOS or RHEL 7:

[contrast@myserver ~]# yum install -y libaio fontconfig

• Ubuntu or Debian:

[contrast@myserver ~]# apt-get install -y libaio1 libaio-dev fontconfig

• Windows: MySQL requires Microsoft Visual C++ 2015-2022 Redistributable Update..
2. Run the installer as a privileged user.

• On Windows, right-click on the installer and select Run As Administrator.
• On Linux, use the sudo command to start the installer.

3. Respond to installer questions according to your situation. (For example, you can create a MySQL
backup (page 938) or configure the JRE (page 885)).
You can further configure Contrast after startup. You can customize installer behavior using these
command line arguments when you run the installation script:

Command line argument Description
-h -help Shows help for common command line arguments.

-c Forces the installation to run in Console mode.

-q Executes the installer in Unattended mode.

-g Forces the installation to run in GUI mode. (Windows only).

-console If the installer is executed in Unattended mode and the -console
argument is passed on Windows, a second console shows the
output of the installer.

-overwrite Forces the installer to overwrite all files in Unattended mode
regardless of the overwrite policy specified in the installer.

CAUTION
This can cause your configuration to be
overwritten back to default values.

-dir Only valid in Unattended mode; specifies the directory where
Contrast should be installed.

-Dinstall4j.debug By default, the installer catches all exceptions, creates a crash log
and informs the user about the location of that log file. This might be
inconvenient when debugging an installer; so, this system property
switches off the default mechanism, and exceptions are printed to
stderr.

-Dinstall4j.keepLog=true
-Dinstall4j.alternativeLogfile=[path]

The installer creates a log file prefixed i4j_log for all installations
and uninstallation in your temp directory. This log file can be
helpful for debugging purposes. If your installer contains an Install
files action and terminates successfully, the log file is copied to
[installation dir]/.install4j/installation.log. Otherwise, the file is deleted
after the installer or uninstaller terminates by default.

When using the -Dinstall4j.keepLog=true option,
the log file won't be deleted. With the
-Dinstall4j.alternativeLogfile=[path] option, the log file
is copied to the file specified with [path]. This should be an
absolute path name. Neither option has any effect if the log file has
already been copied to the installation directory.

Contrast Documentation

System administration 874

https://docs.microsoft.com/en-US/cpp/windows/latest-supported-vc-redist?view=msvc-170


Command line argument Description
-varfile (filename) Specifies a variable-file to be used. When installing in Unattended

mode, this allows you to provide customizations to the default values
set by the installer.

--skip-preflight Skips preflight checks (current user is root, dependencies present).
If using this parameter, it must be the first parameter passed on the
command line.

NOTE
If you're using a distributed setup for the Contrast application, you should use a
distributed MySQL instance during setup.

IMPORTANT
Client agents use the Contrast URL to communicate back to the application.
Contrast makes the best attempt to determine the hostname and pre-populate this
value; but, if the provided hostname isn't resolvable by clients on the network, they
won't be able to communicate back to the server.

Please set this value to a Contrast host or load balancer that's reachable by your
agent hosts.

4. Installation completes and the Contrast application performs its initial configuration. To confirm it
has finished, you can visit the URL you specified above.

NOTE
If you're upgrading your version of Contrast (page 895), any required update
tasks are included at this point.

5. The first time the Contrast application starts after installation, there are only two users that can
log in (page 883) to the user interface: the default SuperAdmin and the default Organization
Adminstrator. Go to http://<ContrastServer>:8080/Contrast (where <ContrastServer> is either the
IP address or hostname setup during installation), log in as both users and change the password
for each.

IMPORTANT
To keep your application secure, either disable these default logins and create
new ones, or at very least change the default passwords.

6. Once Contrast is installed, the next step is to configure system settings (page 929) (for example,
allocate licenses, set up authentication, and allow users to receive notifications and run reports).
To ensure your library data is current, configure your system to upgrade library data
automatically (page 898). If you don't have internet access (air-gapped installations), update
library data manually (page 897).

Additional options
After you install Contrast, you have options for expanding your installation:

• Use a distributed MySQL database (page 877)
• Deploy with a WAR file (page 876)
• Deploy in a distributed environment (page 879)

Contrast Documentation

System administration 875



Deploy Contrast with a WAR file

Using this procedure lets you manage the different components of the Contrast installation separately.
After using this method to deploy Contrast, you can upgrade your configuration by replacing the existing
WAR file with a new one.

Before you begin

• Install Contrast. (page 873)

Steps

1. Create a compressed file that contains the following files from the directory where you installed
Contrast (for example, /usr/local/contrast):
• data/agents/

• data/conf/

• data/esapi/

• data/.contrast

• data/.initialized

• data/cache/

• data/contrast.lic

• webapp/Contrast.war

Example: This example shows how to create a TAR file that contains the Contrast files:

$ cd /usr/local/contrast
$ tar -czvf ~/ctdc.tar.gz data/agents data/conf data/contrast.lic data/
esapi/ data/cache/ data/.initialized data/.contrast webapp/Contrast.war

2. Install Tomcat and Java:
• Use the same version of Tomcat that is included in the Contrast installer.
• A supported version of Java (page 869)

3. Set up the contrast-data directory.
The volume where you create this directory must be large enough for log files, caches and
ActiveMQ persistence. For best performance, use a separate volume to handle growth without
impacting your overall system.
a. Create the contrast-data directory with a command similar to the following:

$ mkdir /opt/contrast-data

This example creates the directory in the /opt directory, but you can create it in any location.
b. Unarchive the compressed file you created in step 1 into the contrast-data directory.
c. Check the contents of the directory using a command similar to the following:

ls /opt/contrast-data/conf  

You should see files named general.properties and database.properties among
several others.

d. To ensure there are no access issues, change the owner and group for the contrast-data
directory with a command similar to the following:

$ chown -R tomcat7:tomcat7 /opt/contrast-data

4. To complete the configuration, in the JAVA_OPTS environment variable, set the location
of contrast.home and contrast.data.dir to the location where you unarchived the
compressed file.
This example shows one way to set the JAVA_OPTS variable. Use the documentation for your
environment to determine the best way to set this variable.

Contrast Documentation

System administration 876



-XX:+UseTLAB
-XX:+UseCompressedOops
-XX:+UseConcMarkSweepGC
-XX:+UseParNewGC
-XX:CMSFullGCsBeforeCompaction=1
-XX:+CMSParallelRemarkEnabled
-XX:+PrintVMOptions
-XX:+PrintCommandLineFlags
-Xmx4g
-Xms4g
-server
-XX:MaxPermSize=768m
-Dcontrast.data.dir=/opt/contrast-data
-Dcontrast.home=/opt/contrast-data
-XX:+HeapDumpOnOutOfMemoryError
-Xloggc:/opt/contrast-data/gc.out

5. Place the Contrast.war file in the Tomcat webapps directory.
Create a symbolic link, copy, or move the Contrast.war file from the location where you
unarchived the compressed file to the Tomcat webapps directory.
• This example shows how to create a symbolic link to the file in a Ubuntu environment:

$ sudo ln -s /opt/contrast-data/webapp/Contrast.war /var/lib/tomcat7/
webapps/Contrast.war

• This example shows how to copy the file in a Ubuntu environment:

$ cp /opt/contrast-data/webapp/Contrast.war /var/lib/tomcat7/webapps/
Contrast.war

Create a distributed MySQL environment
You can use an external MySQL database (an open-source database that runs on both Windows and
Linux) with your existing on-premises installation. For example, this is necessary if you are using a
distributed deployment of Contrast (page 879).

TIP
Work with your Operations and/or Database team to ensure a secure and durable
installation.

You can use a snippet of Ansible that you can use to install the MySQL on Ubuntu
14.04.

You can also download the gpg. keyfile from MySQL. Contrast changes the bind
address to "*", but recommends binding your MySQL server to the IP of your
application server. Create a user and grants that offer access to only the Contrast
schema and limited to the host IP address or subnet.

Steps
In the following steps, replace <jdbc.host>, <jdbc.port>, <jdbc.user>, <jdbc.pass>, and
<jdbc.schema> with your host, port, user, password, and schema.

1. Install and configure a supported version (page 869) of MySQL on the database server host.
2. Create a maintenance window for Contrast downtime.

Contrast Documentation

System administration 877

https://github.com/Contrast-Security-OSS/ctdc/blob/master/mysql.yml
http://dev.mysql.com/doc/refman/5.7/en/checking-gpg-signature.html


3. Back up the embedded MySQL database (page 938).
4. Connect to MySQL.

• Windows:

mysql -h <jdbc.host> -P <jdbc.port> -u <jdbc.user> -p <jdbc.schema>

• Linux:

./mysql -h <jdbc.host> -P <jdbc.port> -u <jdbc.user> -p <jdbc.schema>

5. Create the Contrast database with this command:

 create database <jdbc.schema>;

6. Create a MySQL user with this command:

CREATE USER '<jdbc.user>'@'%' IDENTIFIED BY '<jdbc.pass>';

7. Grant permissions for the Contrast user with this command:

GRANT ALL PRIVILEGES ON *.* to '<jdbc.user>'@'%';.

8. Exit from MySQL.
9. Restore the MySQL backup. Replace <backup_location> with your backup location and

<backup_filename> with your backup filename.
• Windows:

mysql -h <jdbc.host> -P <jdbc.port> -u <jdbc.user> -
p <jdbc.schema> < <backup_location>/<backup_filename>

• Linux:

./mysql -h <jdbc.host> -P <jdbc.port> -u <jdbc.user> -
p <jdbc.schema> < <backup_location>/<backup_filename>

10. Update the configuration in the encrypted properties editor (page 936). Edit the encrypted
file  $CONTRAST_HOME/data/conf/database.properties. Look for database.type; if it
doesn’t exist, create a new property. Set this value to distributed and modify the database
connection values to point to the distributed database you want to use.

user@ubuntu:/opt/contrast/bin$ ./edit-properties  -e ../data/esapi/ -
f ../data/conf/database.properties
jdbc.type                                         : MYSQL
database.prod.dir                                 : /opt/contrast/data/db
jdbc.debug                                        : false
jdbc.pass                                         : pass
jdbc.schema                                       : contrast
jdbc.host                                         : ubuntu
database.bk.time                                  : 6:39:14
jdbc.port                                         : 3306
database.bk.enabled                               : false
database.enabled                                  : true
jdbc.url                                          : jdbc:mysql://
ubuntu:3306/contrast
jdbc.user                                         : contrast
database.bk.dir                                   : /opt/contrast/data/
backups/db
jdbc.dialect                                      : \
com.aspectsecurity.contrast.teamserver.persistence.CustomMySQL5Dialect
jdbc.driver                                       : com.mysql.jdbc.Driver

Enter the name of the property to edit [q to Quit]: database.type
Create new Property [database.type](y/N): y
Enter a value for the property: distributed

Contrast Documentation

System administration 878



jdbc.type                                         : MYSQL
database.prod.dir                                 : /opt/contrast/data/db
jdbc.debug                                        : false
jdbc.pass                                         : pass
jdbc.schema                                       : contrast
jdbc.host                                         : ubuntu
database.bk.time                                  : 6:39:14
jdbc.port                                         : 3306
database.bk.enabled                               : false
database.enabled                                  : true
database.type                                     : distributed
jdbc.url                                          : jdbc:mysql://
ubuntu:3306/contrast
jdbc.user                                         : contrast
database.bk.dir                                   : /opt/contrast/data/
backups/db
jdbc.dialect                                      : \
com.aspectsecurity.contrast.teamserver.persistence.CustomMySQL5Dialect
jdbc.driver                                       : com.mysql.jdbc.Driver

Enter the name of the property to edit [q to Quit]:

NOTE
If you’re converting from a default embedded database configuration to a
distributed configuration, database.bk.enabled also needs to be set to false.
It’s your responsibility to configure your own backups when running a distributed
database configuration with Contrast.

11. If your on-premises installation is on a Windows system, remove the contrast-server service
dependency on MySQL.
Before you restart Contrast, remove the contrast-server service dependency on the MySQL
service with the following command:

sc config contrast-server depend= ""

12. Restart Contrast (page 883).

Distributed deployment of Contrast
A distributed configuration of Contrast deploys the database and application server to separate servers.
Use a distributed configuration if you:

• Plan to use more than 100 connected agents
Without a distributed configuration for this situation, you are likely to experience performance issues.

• Want to use load-balancing for better performance and scalability
• Require additional administration and management

Distributed configuration example
This example shows a configuration for installing Contrast in a Linux environment at /usr/local/contrast.
Your organization may use different environments or have different guidelines on where to install
third-party software.

The example shows a configuration using these servers:

• A load-balancer

Contrast Documentation

System administration 879



• A database server
• Two application servers running the Contrast application.

You can more servers, as needed.

Before you begin

• Distributed deployment requires an understanding of your environment and the loads it can easily
handle.
To determine whether it's best to use a distributed deployment of Contrast or a dedicated instance,
contact Support.

• If you are already using Contrast, use your existing instance as Application Server 1 and be sure
it uses a distributed database configuration. Before you continue, you should:
• If you don't already have one, create a distributed MySQL environment (page 877).
• Determine the version of Contrast running on Application Server 1 by looking at the contents of

the $CONTRAST_HOME/VERSION file.
• If the installer you plan to use to create Application Server 2 is using a higher version of Contrast

than Application Server 1, you must first upgrade (page 895) Application Server 1 to the same
version.

• If you are new to Contrast, you should:
• Install and configure MySQL on the database server, as described in steps 1 through 8 in Create a

distributed MySQL environment (page 877).
• Install Contrast (page 873) on Application Server 1 with a distributed database configuration. For

example:

Choose a MySQL database configuration.
Default [1, Enter], Distributed [2]2
Host
[localhost]
<enter hostname of MySQL server>

Port
[13306]
<enter port to be used to access MySQL server - usually 3306>

Contrast Documentation

System administration 880

https://support.contrastsecurity.com/hc/en-us/requests/new?ticket_form_id=360000011243


Credentials
Username
<enter name of MySQL user that was created for Contrast>

Password
<enter password for MySQL user>

Set up distributed servers

1. Copy the following files from Application Server 1 to a temporary location on Application Server
2:
• $CONTRAST_HOME/data/conf/server.properties

• The associated Server KeyStore file if you configured (page 886) Application Server 1 for
HTTPS.

2. If you configured Single Sign On (SSO) (page 924) on Application Server 1, complete these
steps:
a. Run the encrypted properties editor (page 936) against $CONTRAST_HOME/data/conf/

saml.properties to retrieve the configured values. Enter q at the prompt (you aren't
changing any values). For example:

$ bin/edit-properties -e data/esapi/ -f data/conf/saml.properties

authenticator.saml.keystore.default.key           : some_alias
authenticator.saml.secret.url                     :
authenticator.saml.keystore.path                  : /path/to/
samlKeystore.jks
authenticator.saml.keystore.password              : changeit
authenticator.saml.keystore.passwordMap           : \
some_alias=changeit

Enter the name of the property to edit [q to Quit]: q

b. Create a new file named saml.properties.cleartext containing the values you retrieved
above, but formatted with an = replacing the :, for example:

authenticator.saml.keystore.default.key=some_alias
authenticator.saml.secret.url=
authenticator.saml.keystore.path=/path/to/samlKeystore.jks
authenticator.saml.keystore.password=changeit
authenticator.saml.keystore.passwordMap=some_alias=changeit

c. Copy the associated SAML KeyStore from Application Server 1 to a temporary location on
Application Server 2.

3. Install Contrast (page 873) on Application Server 2 with the same distributed configuration that
you used for Application Server 1.

4. When the installation has completed, stop (page 882) the Contrast Server on this Application
Server.

5. Place the server.properties file, the associated Server Keystore, the
saml.properties.cleartext file and the associated SAML KeyStore (where applicable) in
the same directories on Application Server 2 (usually $CONTRAST_HOME/data/conf/)

6. Start (page 882) the Contrast Server on Application Server 2.
7. Test the default users (page 883) created by the application to be sure they work with both

Contrast Application Servers (1 and 2).
8. Set up a load balancer (like NGINX) on the fourth server. If you choose NGINX, use the basic

installation instructions.

Contrast Documentation

System administration 881

https://docs.nginx.com/nginx/
https://docs.nginx.com/nginx/


NOTE
Contrast requires sticky or persistent sessions for better performance. For
example, with an NGINX load balancer, use the Ip Hash method to guarantee
that requests from the same address get to the same server if it’s available.

9. Once you set up the server, you must configure Contrast to point to your load balancer. To do this,
edit the /data/conf/general.properties file on each node. Change the teamserver.url value in the
YAML config file to that of the load balancer and restart the Contrast application server.
If you are doing health checks for the load balancer, use this URL:
<CONTRAST_SERVER>/Contrast/api/public/ng/information

where <CONTRAST_SERVER> is the host name of the Contrast application server.

IMPORTANT
Agents use the Contrast URL to communicate back to the application. Contrast
attempts to determine the hostname and pre-populate this value. If clients on the
network can't resolve the hostname you provide, they won't communicate back to
the server. Please set this value to a Contrast host or load balancer that the agent
hosts can reach.

When installation is complete, Contrast begins an initial configuration. It can take
two to three minutes to fully start up.

10. To check configuration progress, watch server.log and contrast.log. When the server
successfully starts, you will see something like this in server.log:

260916 20.18.25,837 {} {} {} INFO  (Server.java:303) Contrast \
TeamServer Ready -

Run Contrast
To run Contrast:

• Windows: In Windows, Contrast is installed as a system service. You can start and stop the service
through the Windows Service Manager application.

• Linux: The Contrast daemon is registered as an init.d daemon. To start and stop the server use:

/etc/init.d/contrast-server <start|stop|restart|status>

Or

service contrast-server <start|stop|restart|status>

To start the Contrast server independently of the parent shell, execute:

nohup /path/to/installation/contrast/bin/contrast-server start >/dev/
null 2>1

At this point, it's helpful to tail the server logs:

$ tail -f $CONTRAST_HOME/logs/server.log

And then the application logs:

$ tail -f $CONTRAST_HOME/logs/contrast.log

If Contrast starts successfully, you will see this message in the server.log:

Contrast Documentation

System administration 882



190116 21.22.15,703 {} {} {} INFO  (ConnectionTester.java:50) Received \
code 200 from TeamServer
190116 21.22.15,707 {} {} {} INFO  (ConnectionTester.java:60) Server start \
has been verified
190116 21.22.15,709 {} {} {} INFO  (Server.java:319) Contrast TeamServer \
Ready - Took 208323ms

Default and SuperAdmin credentials
As the system administrator who installs Contrast, you can manage the following sets of credentials:

• Contrast Hub credentials: New customers receive an email with the username and a link to set
the password. You will need these credentials to download the installer (page 873) and to log in to
Contrast Hub.
• Username: Contrast provides the username in the format example@domain.com. It is the same

username as the Default Organization Administrator.
• Password: Create this password when you select the link in the activation email.

• Default SuperAdmin credentials: These credentials are included in the license. They are used for
managing the Contrast application in the role of SuperAdmin (page 949).
• Username: Contrast provides the username in the format contrast_superadmin@domain.com,

where domain is the name of your company's email domain.
• Password: The default password is: default1!.

• Default Organization Administrator credentials: The Organization Administrator can use these
credentials to log in to Contrast after installation (page 873) and set up and maintain the organization.
• Username: Contrast provides the username in the format example@domain.com. It is the same

username as the Default Organization Administrator.
• Password: The default password is: default1!.

IMPORTANT
Be sure to change the supplied default passwords as soon as you have successfully
logged in. You can reset the SuperAdmin password in Contrast (page 517) or by using
command line on Windows (page 929) or Linux (page 928).

Restart Contrast
To restart Contrast:

1. Use the following command(s):
• Windows:

net stop "Contrast Server"

Once the service is completely shut down:

net start "Contrast Server"

• Linux:

sudo service contrast-server restart

2. At this point, it's helpful to tail the server logs:

$ tail -f $CONTRAST_HOME/logs/server.log

3. And then the application logs:

$ tail -f $CONTRAST_HOME/data/logs/contrast.log

Contrast Documentation

System administration 883

https://hub.contrastsecurity.com/


4. If Contrast starts successfully, you will see this message in the server.log:

190116 21.22.15,703 {} {} {} INFO  (ConnectionTester.java:50) Received \
code 200 from TeamServer
190116 21.22.15,707 {} {} {} INFO  (ConnectionTester.java:60) Server \
start has been verified
190116 21.22.15,709 {} {} {} INFO  (Server.java:319) Contrast \
TeamServer Ready - Took 208323ms

Uninstall Contrast
Each installation comes with a script for safely uninstalling Contrast plus all embedded components
such as Java, Tomcat and MySQL. The script is packaged within the root directory of the Contrast
installation. On Unix, the file is an executable script labeled uninstall. On Windows, a command file is
packaged in the installation directory called uninstall.cmd.

Before uninstalling:

• Create a backup of MySQL (page 938) using the database backup tool provided with Contrast.
• Shut down Contrast using either the Windows or Unix service script.

To remove Contrast from your servers using Windows:

1. Open the Windows Explorer.
2. Navigate to the Contrast installation directory.
3. Click on the file uninstall.exe and run. Run the uninstall with the same privileges you ran the

installation (as an administrator).
4. Follow the prompts to perform uninstallation.

To remove Contrast from your servers using Unix:

1. Open a Linux console.
2. Change directory (cd) to the Contrast installation directory.
3. Execute the command uninstall.
4. Follow the prompts to perform uninstallation.

NOTE
You'll delete the vast majority of files when performing an uninstallation. However, an
administrator may need to delete a few remaining files manually, such as:

• The Contrast HOME directory
• The Contrast DATA directory
• The Contrast LOGS directory
• The Contrast MYSQL directory

Post-installation
After you install Contrast, you have options that might help you improve your Contrast environment.

Post-installation tasks
Consider these post-installation options:

• Configure Tomcat (page 885)

Contrast Documentation

System administration 884



• Configure the Java Runtime Environment (page 885)
• Configure HTTPS (page 886)
• Configure HTTP headers (page 889)
• Customize MySQL (page 889)
• Configure reporting storage (page 891)
• Configure logs (page 893)
• Use Redis as a shared cache (page 894)

Configure Tomcat
During installation (page 873), you set some values for the memory used by the embedded Tomcat
server on which Contrast runs.

As you add more applications or find more vulnerabilities, you may notice a degradation in performance
which can indicate you have reached the maximum amount of memory allowed for this server.

To increase memory settings:

1. Stop the Contrast server by running the contrast-server stop command.
2. When the server is stopped and Contrast/logs/contrast-stdout.log ends with [MysqldResource]

shutdown complete, it is safe to change memory settings.
3. In the Contrast bin directory, c:/Program Files/Contrast/bin or the default /opt/Contrast/bin, open a

file named contrast-server.vmoptions. It should look something like this:

-XX:+UseG1GC   
-XX:+UseStringDeduplication   
-XX:+PrintVMOptions   
-XX:+PrintCommandLineFlags   
-XX:+UseContainerSupport   
-XX:InitialRAMPercentage=50.0   
-XX:MaxRAMPercentage=50.0   
-XX:MinRAMPercentage=50.0   
-Dcontrast.data.dir=/opt/contrast-data
-Dcontrast.home=/opt/contrast-data
-XX:+HeapDumpOnOutOfMemoryError
-Xloggc:/opt/contrast-data/gc.out
-server

4. You can update the values for:
• Xms: the amount of memory allocated to the server on start
• Xmx: the maximum amount of memory the server can use
• MaxPermSize

These values can change depending on the memory available on the machine hosting Contrast.
5. Save the file and start Contrast back up using the contrast-server start command.

TIP
See JVM documentation for help with tuning.

Configure the Java Runtime Environment (JRE)
During installation (page 873), you are given the option to use either an embedded JRE or a pre-
installed JRE.

Contrast Documentation

System administration 885

https://www.oracle.com/java/technologies/javase/vmoptions-jsp.html


To configure the JRE:

1. Open $CONTRAST_HOME/.install4j/pref_jre.cfg with a text editor.
2. Add the complete path to the Java version you would like to use. For example:

C:\Program Files\Java\jre11

Configure HTTPS
By default, HTTP is used for connections between Contrast and the agents. You may need to add or
replace HTTP with HTTPS for both Contrast and agent traffic, which you can do with Tomcat's built-in
connector functionality. There are two ways to do this:

• Contrast HTTPS connector: Configure Contrast to listen to HTTPS connections on a port that you
specify by adding a certificate to a Java KeyStore.

• Reverse proxy method: Use a standard web server, such as Apache HTTPD or NGINX, in front of
the Contrast server configured to reverse proxy requests using Contrast's AJP connector.

You can customize the configuration further as described in How-To Modify Supported TLS Versions
and Ciphers on On-Premise Contrast Server.

IMPORTANT
In the following procedures, it is important that you use only a single password
throughout. If any of the CA-provided files are password protected, you must either
remove that password (your CA can help you with this) or ensure that you use the
same password for the resulting JKS KeyStore file.

Use the Contrast HTTPS connector
Use these procedures to create a Java KeyStore (JKS), with a signed certificate, that your on-premises
Contrast application server will use at runtime.

NOTE
It is also possible to use the HTTPS connector with a self-signed certificate.

Certificate Signing Request (CSR) is required

For this situation, create the KeyStore first and then use that as the basis for the CSR.

IMPORTANT
The CA provides you with files that you must import into the same KeyStore from
which you generated the CSR.

Contrast Documentation

System administration 886

https://support.contrastsecurity.com/hc/en-us/articles/360055105652
https://support.contrastsecurity.com/hc/en-us/articles/360055105652


1. Use the Java keytool command to create a Java KeyStore (JKS) (for example, contrast.jks)
containing a private and public key for a certificate with an alias of contrast-server.

keytool -genkeypair -alias contrast-server -keyalg RSA -
keystore contrast.jks

NOTE
When you create the KeyStore, depending on the Java version you're using, the
first prompt might ask “What is your first and last name?”. Enter the Common
Name (the FQDN for which the certificate will be issued). For example, use a
name like mydomain.com instead of your first and last name.

2. Generate a Certificate Signing Request (CSR) (contrast.csr). You can add DNS or IP fields as
needed to include these as Subject Alternative Names on the certificate.

keytool -certreq -alias contrast-server -
file contrast.csr -keystore contrast.jks -
ext san=dns:your_hostname.your_company.com,ip:10.0.0.1

3. Send the resulting CSR file to your CA. The CA will provide you with either multiple PEM files or a
single PCKS #7 file.

4. Import the files into the Java KeyStore. Use these instructions depending on the file type you
receive.
• Multiple PEM files: These files have extensions of .CRT or .PEM (PEM files open as readable

text). One file contains the certificate, while the others contain the root and possibly one or more
intermediate certificates. 
The certificates must be imported into the KeyStore in a top-down order, with the
server certificate itself being imported last. The server certificate should have the same
alias used when the KeyStore was created.  For example, if you were provided
with root.cer, inter.cer and server.cer, you should import them as:

keytool -import -trustcacerts -alias root -file root.cer -
keystore contrast.jks
keytool -import -trustcacerts -alias intermediate -file inter.cer -
keystore contrast.jks
keytool -import -trustcacerts -alias contrast-server -file server.cer -
keystore contrast.jks

• Single PCKS #7 file: This file has an extension of .P7B, .CER or possibly .CRT. This file
contains the server certificate bundled with all necessary root and intermediate certificates.
The server certificate should have the same alias used when the KeyStore was created. For
example, for a file certificate.p7b, import it as:

keytool -import -trustcacerts -alias contrast-server -
file certificate.p7b -keystore contrast.jks 

5. Once KeyStore setup is complete, open the <YourPath>/data/conf/server.properties file
in your text editor, where <YourPath> is the path where Contrast is installed.
Replace <port>, <full path to>, and <password> with your port, JKS file path,and
password.

https.enabled=true
https.port=<port>
https.keystore.file=<full path to>/contrast.jks
https.keystore.pass=<password>
https.keystore.alias=contrast-server

Contrast Documentation

System administration 887



IMPORTANT
If using Windows, the full path to the JKS file must be escaped. For example:

https.keystore.file=C:\\Program\ Files\\Contrast\\data\
\conf\\ssl\\contrast-server.jks

You may find it useful to set the http.enabled and ajp.enabled options to false to ensure
that only connections made over HTTPS are allowed to the Contrast server.

6. Open the <YourPath>/data/conf/general.properties file, and change the value of the
teamserver.url property to reflect your change. Agents must be updated manually the first time
after you make this change. Future updates to the agent will be automatic.

7. Optional: Modify supported TLS versions and cipher suites.
8. Restart the Contrast server service, and ensure that it's now listening on the HTTPS port you

configured.

No CSR is required
For this situation, create a new KeyStore from the files the CA provides you. If you have an existing
KeyStore, delete or rename it before you create the new one.

1. Use one of these methods to create the KeyStore:
• If you have server.crt,priv.key and inter.crt files: Convert the files to a PKCS #12 and

create a KeyStore with these commands.

openssl pkcs12 -export -out cert.pfx -inkey priv.key -in server.crt -
certfile inter.crt -name "contrast-server"
keytool -importkeystore -srckeystore cert.pfx -srcstoretype pkcs12 -
destkeystore contrast.jks -deststoretype jks

• If you have a PKCS #12 file: Create a KeyStore with this command.

keytool -importkeystore -srckeystore cert.pfx -srcstoretype pkcs12 -
destkeystore contrast.jks -srcalias <sourcealias> -destalias contrast-
server -deststoretype jks

2. Once KeyStore setup is complete, open the <YourPath>/data/conf/server.properties file
in your text editor, where <YourPath> is the path where Contrast is installed.
Replace <port>, <full path to>, and <password> with your port, JKS file path,and
password.

https.enabled=true
https.port=<port>
https.keystore.file=<full path to>/contrast.jks
https.keystore.pass=<password>
https.keystore.alias=contrast-server

3. Open the <YourPath>/data/conf/general.properties file, and change the value of the
teamserver.url property to reflect your change. Agents must be updated manually the first time
after you make this change. Future updates to the agent will be automatic.

4. Optional: Modify supported TLS versions and cipher suites.
5. Restart the Contrast server service, and ensure that it's now listening on the HTTPS port you

configured.

Use the reverse proxy method
To use Apache JServ Protocol (AJP) with the reverse proxy method:

Contrast Documentation

System administration 888

https://support.contrastsecurity.com/hc/en-us/articles/360055105652
https://support.contrastsecurity.com/hc/en-us/articles/360055105652


1. Ensure that the Contrast server is configured to listen for connections using the AJP protocol. Open
the CONTRAST_HOME/data/conf/server.properties file in your text editor and verify that
the following options are set:

ajp.enabled=true
ajp.port=8009
ajp.secretRequired=true|false
ajp.secret=somesecret

Choose the ajp.port setting to reflect the port on which you'd like the server to listen for
incoming connections. If you want the AJP connector to be the only way to access the server,
disable the http.enabled and https.enabled options.
If the secretRequired is configured to true, the ajp.secret setting should have a non-null,
non-zero length value. Request workers are required to have the secret keyword; otherwise, the
requests are rejected. The workers must provide a matching value, or the request will be rejected
regardless of the setting of secretRequired.

2. After updating the server.properties file, restart the Contrast server service for the changes to
take effect.

3. To configure the front-end server, refer to your server's documentation for instructions on how to
configure it to use AJP. (For example, see Apache or NGINX AJP documentation.)

Configure HTTP headers

Use this procedure to configure HTTP headers if you are using the Tomcat software that Contrast
provides.

When an HTTP header is enabled, it controls whether a document from an HTTP response can be
loaded inside a navigable child (for example, <iframe>).

The `X-Frame-Options` header in the HTML standard provides details about HTTP header
configuration.

Steps

1. Open the <YourPath>/data/conf/server properties file in your text editor,
where <YourPath> is the path where Contrast is installed..

2. Specify one of these values for the servlet.response.xframe.options property:
• SAMEORIGIN: Same-origin embedding is allowed.
• DENY: Embedding is disallowed.
• No value: The header is omitted. Embedding is allowed.

NOTE
If the servlet.response.xframe.options property is missing, a default
value of SAMEORIGIN is used.

3. After you update the server.properties file, restart the Contrast server service for the changes
to take effect.

Customize MySQL

NOTE
This procedure applies to the embedded MySQL database, not a distributed
configuration.

Contrast Documentation

System administration 889

http://httpd.apache.org/docs/2.2/mod/mod_proxy_ajp.html
http://webapp.org.ua/sysadmin/setting-up-nginx-ssl-reverse-proxy-for-tomcat/
https://html.spec.whatwg.org/multipage/document-lifecycle.html#the-x-frame-options-header:~:text=7.6-,The%20%60X%2DFrame%2DOptions%60%20header,-%E2%9C%94MDN


To match the needs of your environment, you might need to change the default settings that Contrast
specifies for the MySQL database. For example, after an upgrade, you might need to adjust the value
for the innodb_buffer_pool_size setting.'

To change the default MySQL settings, use the my_extra.cnf options file. The Contrast installer
includes this file as part of the on-premises installation.

Contrast loads its default options file first and then, applies custom settings that you specify in the
my_extra.cnf file.

Steps

1. Find the $CONTRAST_HOME/data/conf/my_extra.cnf file.
2. Add or change  MySQL settings, as needed.
3. Restart Contrast. (page 882) or, if you're using Microsoft Windows, restart the MySQL service.

Set up a proxy configuration

Setting up a proxy configuration for your on-premises installation lets you integrate Contrast with tools
that exist inside your network (and don’t require a proxy) and outside of your network (which require
web proxy access).

Set up methods

You can use either of these methods to set up a proxy configuration:

• JVM arguments in the contrast-server.vmoptions file.
• The proxy settings in the Contrast Web interface.

JVM arguments in the options file override settings in the Contrast web interface.

Steps

• Use JVM arguments (prerferred method)
1. In the Contrast bin directory, c:/Program Files/Contrast/bin or the default

directory /opt/Contrast/bin ,open contrast-server.vmoptions.
2. Add these JVM arguments to the file (for security purposes, https arguments are preferred):

• https.proxyHost or http.proxyHost
The host name of the proxy server. Use this argument for communication with externally-
hosted software.

• https.proxyPort or http.proxyPort
The port number on which the proxy server listens for traffic.

• http.nonProxyHosts

A list of hosts, separated by a vertical bar (|), which you connect to directly, bypassing the
proxy server. This argument works for both https and http configurations.
Use this argument to exclude on-premise hosts that are deployed in the same network as your
Contrast installation.
For example, if you have an on-premises Jira installation as well as an integration for MS
Teams in the cloud, you can use the http.nonProxyHosts argument to exclude the Jira
integration from using the proxy server, as shown in the following example:

-Dhttps.proxyHost=89.148.22.17 
-Dhttps.proxyPort=3128 
-Dhttp.nonProxyHosts=jira.mycompany.com|*.internal.mycompany.com

In this example, the proxy host is 89.148.22.17, listening for traffic on port 3128.
This configuration bypasses the proxy server when communicating with the host for
jira.mycompany.com as well as hosts matching *.internal.mycompany.com.

Contrast Documentation

System administration 890

https://dev.mysql.com/doc/refman/8.0/en/option-files.html


• Use the Contrast web interface:
1. In the user menu, select SuperAdmin.
2. Select System settings.
3. Under Internet settings, select Proxy.

4. Specify the proxy host name, the port number, the username for the proxy server, and the
password for the proxy server.

5. Select Save.

Configure reporting storage for the system
As SuperAdmin, you can configure reporting storage options by adding the following properties to
the contrast/data/conf/general.properties file:

• reporting.storage.mode: The value options are DB and FILE_SYS.
• reporting.storage.path: This is required when storage mode is set to FILE_SYS.

The recommended setting for reporting.storage.mode is FILE_SYS. When DB is configured, files
are stored in the database, adding unnecessary contention on the database.

With the FILE_SYS option, you must set up a file-sharing service where all Contrast nodes are able to
access the file path. Provide this path as the value for reporting.storage.path.

Contrast Documentation

System administration 891



NOTE
The path should be an absolute path, such as /Users/user1/reporting.

For Windows, be sure to escape the colon or the path will not work. For example, this
path will fail:

reporting.storage.path=C:\Contrast\data\reports

You must use either forward slashes or two backslashes around the colon for it to
work, like this:

reporting.storage.path=C\:\\Contrast\\datareports

If an Attestation report exceeds the report limits (page 718), an error message displays and the report
doesn't generate. If this situation occurs, change the report selections when you generate the report to
reduce the amount of information in the report.

Contrast logs
For the Contrast application, Log4j version 2 is used as the logging framework.

You can configure logging thresholds (page 893),control log file destinations, and see an overview of
each log available in Contrast.

Find these logs under the $CONTRAST_HOME/logs directory:

• server.log
• catalina.out

Other logs, like these, can be found in $CONTRAST_HOME/data/logs:

• contrast.log
• ldap_ad.log
• migration.log
• audit.log
• mysql_error.log

This table shows all of the primary log files in Contrast.

Log file Description

audit.log Logs audit events such as:

• Logging in and out of the application
• Impersonating another user
• Switching organizations
• Accessing the administrator portal
• Changes to the configuration and settings of Contrast by a SuperAdmin account
• User account service issues (locked accounts, password changed, etc.)
• Deleting traces
• Changes to a license or an expired license notification
• API Key changes

console.log Default application event log

contrast-error.log Logs messages printed to stderr

contrast-
stdout.log

Logs messages printed to stdout

Contrast Documentation

System administration 892



Log file Description

contrast.log Like Tomcat's stdout or console log, contrast.log shows most key events happening inside Contrast to
inform or help with debugging. It includes information about:

• applications
• servers
• libraries
• traces
• users
• Java stack traces for debugging purposes when a server exception takes place

security.log Formerly the esapi.log, this log file is used for capturing key events from Contrast, such as the loading of a
given property file.

migration.log Contains a summary of all database migrations that occur against the Contrast application between
updates. It references the Contrast version, the migration script that ran and the status of the script.

Configure logs at a system level
Contrast collects multiple log files that log events and messages (page 892).

You can configure the log4j2.xml file used to host the Log4j configuration that is packaged in the
Contrast application (and optionally apply Log4j custom levels).

CAUTION
before making any changes to this file to ensure the formatting is syntactically correct.
A server restart is not required if the changes are entered correctly.

1. Find the file under $CONTRAST_HOME/data/conf.
2. The first parameter of the file below is a monitor interval that refreshes the settings based on

the variable defined. By default, Contrast checks every 60 seconds and refreshes the logging
configuration.

<Configuration monitorInterval="60">

3. Edit the file as needed.

Contrast Documentation

System administration 893

http://logging.apache.org/log4j/2.x/manual/customloglevels.html


TIP
Read more about appenders and delivering LogEvents in the Log4j
documentation. Contrast predominantly makes use of the Rolling File
Appender, which is an OutputStreamAppender that writes to the file
named in the fileName parameter, and rolls the file over according to
the TriggeringPolicy and the RolloverPolicy.

Here is a sample file of the appenders for contrast.log. It shows a daily appender
with a 1 GB max file size policy and no more than 15 files of rollover. This
appender also compresses the file and renames it daily.

<RollingFile name="DAILY" fileName="${contrast.logs.dir}/
logs/contrast.log"
            filePattern="${contrast.logs.dir}/logs/
contrast.%d.%i.log.gz" immediateFlush="true">
    <PatternLayout>
        <Pattern>%d{ddMMyy HH.mm.ss,SSS} {%X{session.id}} \
{%X{user.name}} {%X{remote.addr}} %-5p (%F:%L) %m%n
        </Pattern>
    </PatternLayout>
    <Policies>
        <TimeBasedTriggeringPolicy/>
        <SizeBasedTriggeringPolicy size="1 GB"/>
    </Policies>
    <DefaultRolloverStrategy max="15"/>
</RollingFile>

The logger section of the file defines which Java packages should log to a specific
appender and at a given log level.

Use Redis as a shared cache (on-premises)
You can configure Contrast to use a shared cache on a Redis server.

This topic does not provide details about setting up Redis servers.

Contrast properties for Redis
Use these properties:

Property name Description
cache.useredis A Boolean value indicating whether Contrast uses Redis for caches.

contrast.cache.redis.db.index An Integer specifying the database index where Contrast stores cache information.

contrast.cache.redis.proto A string that controls which protocol to use when Contrast connects to the Redis
server.

contrast.cache.redis.host A string containing the host name or IP address of the Redis server.

contrast.cache.redis.port An Integer representing the TCP/IP port that the Redis server uses using to listen
for new client connections.

contrast.cache.redis.password A string containing the password used to authorize client access to the Redis
server.

contrast.cache.redis.client.name A string that identifies the client.

Before you begin

• You need this information:

Contrast Documentation

System administration 894

https://logging.apache.org/log4j/2.x/manual/appenders.html
https://logging.apache.org/log4j/2.x/manual/appenders.html
https://logging.apache.org/log4j/2.x/manual/appenders.html#RollingFileAppender
https://logging.apache.org/log4j/2.x/manual/appenders.html#RollingFileAppender


• The host name or IP address for the Redis server
• The listening port for the Redis server
• The password for a user account on the Redis server
• The database index that the cache should target

• Verify that the Redis server is configured to use TLS (REDISS)

Steps

1. Create a contrast.properties file in the /data/conf/ folder.
Ensure this file has the correct permissions to let a contrast_server user access it.

2. In the property file, add the Contrast properties for Redis.
At a minimum, configure values for the host name, listening port, and password for the Redis
server.
Property file example:

cache.useredis=true
contrast.cache.redis.db.index=0
contrast.cache.redis.proto=rediss
contrast.cache.redis.host=contrast-redis-server.company.com
contrast.cache.redis.port=6379
contrast.cache.redis.password=changeme
contrast.cache.redis.client.name=contrast

3. Restart Contrast (page 883).
4. To verify the configuration look in the /data/logs/contrast.log file.

This file contains all the information on the current configuration and interactions with Redis. Key
terms to look for include:
• RedissonCache
• Redisson
• CacheConfiguration

System updates and upgrades
Periodically, Contrast Security provides updates and upgrades for on-premises Contrast software.

Updates and upgrades
Use these procedures:

• Upgrade Contrast (page 895)
• Upgrade agents (page 896)
• Update IP address (page 897)
• Update library data (page 897)
• Upgrade library data automatically (page 898)
• Update license (page 899)

Upgrade Contrast
Contrast releases patches and upgrades as part of the embedded on-premises installer file, which you
can download from the Contrast Hub.

The installer intelligently determines that a previous version of Contrast exists on a given system. You
can choose to run the updater portion of the process, or run an installation in a separate location. If a
previous installation exists, you must configure a parallel installation to run on separate ports.

Before you begin
Back up thecacerts file in the $CONTRAST_INSTALLATION/jre/lib/security directory.

Contrast Documentation

System administration 895



The upgrade process overwrites this file which can result in login issues. These certificates are used for
LDAP integrations (page 924).

Steps

1. Create a MySQL backup (page 938) and store the backup file on a separate file system or drive
to avoid any issues with restoration. The installer attempts to create a database backup as part of
the upgrade process, but to be safe, do this manually. Also, back up all configuration files located
at $CONTRAST_HOME/data/conf.

2. Be sure the Contrast application is running when you start the installation process. Agents will
continue to send vulnerability and library messages during this time. When the application initiates
a shutdown on its own, the agents defer sending messages until it can reach the application.

3. The upgrade process is nearly identical to the original process to install the Contrast
application (page 873); however, you will be asked to choose to update an existing installation
or perform a new installation. You should choose to update an existing installation.

4. The upgrade will initially perform a database backup. Depending on the size of your database, this
process can take a few seconds to a few minutes. During this operation, the application should be
accessible to agents and end users.

5. The update then deploys a new file system under the installation directory. This primarily consists
of deploying the Contrast.war file directory to the $CONTRAST_HOME/webapps directory. The
application won't be accessible while the file system is updated.

6. Once a successful file system update is complete, the application starts up. While the application
is starting up, you can follow along in the log files (migration.log and contrast.log, specifically). Log
entries are written for both file system and database updates in a sequential manner.

NOTE
Configuration files and database components aren't updated until the initial startup
step.

7. The first indicator of a successful update is that you can access the Contrast application by either
logging in to the Contrast web interface or using an API request.

TIP
In the user menu you will see a link to the Release News for the version you are
using.

8. Review the contents of the migration.log immediately after the upgrade. This log will reveal any
issues experienced as part of the update process.

NOTE
In the minutes after the upgrade, deployed agents might attempt to update to the latest
agent version. These agents won't reflect their own update until each has restarted and
established contact with the Contrast application.

Upgrade agents (on-premises)
You can download most agents from public repositories. To download .NET and .NET Core agents, go
to the Contrast Hub.

Contrast Documentation

System administration 896



Copy downloaded agents to sub-directories in the $CONTRAST_HOME/data/agents directory in the
Contrast application. On-premises installations of Contrast are automatically configured to support this
directory.

Steps

1. Download the latest version of an agent from the appropriate repository:
• .NET: Download from the Contrast Hub.
• .NET Core: Download the .NET Core agent or the .NET Core agent installer for IIS from the

Contrast Hub
• Java: Download from the Maven.
• Node.js: Download from NPM.
• Python: Download from the PyPi .
• Ruby: Download from RubyGems.
• Go: Install with a direct download (page 476).

2. Copy the agents to the appropriate sub-directory for each agent language in the
$CONTRAST_HOME/data/agents directory.
For example, if you download a Java agent, copy it to the $CONTRAST_HOME/data/agents/
java sub-directory.
You don't need to restart the Contrast application. Agents reload dynamically and become
accessible for download.

Update your IP address
Whether you moved the installation, or had to change the hostname or IP address of your Contrast
application, you must also complete these steps.

1. Log in to Contrast as SuperAdmin.
2. In the top right, select SuperAdmin > System Settings > General Settings.
3. In the General panel, change the TeamServer URL to IP:port/Contrast.
4. Select Save.
5. Restart Contrast (page 883) to apply the changes.

Upgrade SCA library data manually
Starting with Contrast version 3.7.4, you can download SCA library data manually from the Contrast
Hub. This method is useful in situations where you don't have internet access (air-gapped installations).

Before you begin

• A Contrast Hub account is required.
• For optimal performance, plan to download the library data on a monthly basis.
• If you have a distributed deployment (page 879) with multiple servers, use the procedure in this topic

for one instance. You can use the same downloaded library data files on multiple installations.

IMPORTANT
For on-premises customers using MySQL 8, the system
variable local_infile must be set to ON so that Contrast can accept CSV files.
For more details, see Security Considerations for LOAD DATA LOCAL.

Contrast Documentation

System administration 897

https://hub.contrastsecurity.com/h/download/all/typed.html
https://hub.contrastsecurity.com/h/download/all/typed.html
https://search.maven.org/artifact/com.contrastsecurity/contrast-agent
https://www.npmjs.com/package/@contrast/agent
https://pypi.org/project/contrast-agent/
https://rubygems.org/gems/contrast-agent
https://dev.mysql.com/doc/refman/8.0/en/load-data-local-security.html#:~:text=For%20the%20mysql%20client%2C%20local%20data%20loading%20capability%20is%20determined%20by%20the%20default%20compiled%20into%20the%20MySQL%20client%20library.%20To%20disable%20or%20enable%20it%20explicitly%2C%20use%20the%20%2D%2Dlocal%2Dinfile%3D0%20or%20%2D%2Dlocal%2Dinfile%5B%3D1%5D%20option.


Steps

1. Log in to the Contrast Hub.
2. Select Downloads.
3. Select Library data exports and download the archive version you want.

4. Extract the downloaded ZIP file and place the CSV files in the Contrast data/libraries directory. For
example:
Unix: /etc/contrast/data/libraries
Windows: C:/ProgramData/contrast/data/libraries
Some files may be hidden due to their names, so ensure all extracted files are moved to this
directory.

5. Restart Contrast. (page 883)
When Contrast restarts, the data is imported in the background. The CSV files are deleted from the
folder as each file is imported.

6. Check the data/logs/contrast.log file for success messages as each script completes. For example,
you may see a message like this:

Beginning CSV import from 'C:\Program \
Files\Contrast\data\libraries\java.csv' into 'artifacts_java'Import \
temporary table 'artifacts_java' completed, time: 36.6886968s

Upgrade SCA library data automatically
Starting with Contrast version 3.6.4, you can configure the Contrast application to update Contrast SCA
library data automatically.

Contrast updates the library data approximately every 24 hours; newly added CVEs are updated every
30 minutes and will then be included in the 24-hour schedule. Your Contrast installation pulls the data
from a Contrast database hosted on the cloud.

Before you begin

• Configure your firewall to allow access to this URL:
https://ardy.contrastsecurity.com/production

Contrast Documentation

System administration 898

https://hub.contrastsecurity.com/h/


• A SuperAdmin role is required.

Steps

1. Log in to the Contrast web interface as a SuperAdmin user.
2. From the user menu, select System settings.
3. Select General settings.
4. Under Internet settings, turn on Contrast Hub.

Update your on-premises Contrast license
You may occasionally need a new license file. There are two ways to update this file:

• As a SuperAdmin, you can log in to the application and update the license in Contrast.
• You can replace the license file on the local file system. (If the license is expired, you must use this

method.)

To replace the license in the Contrast web interface:

1. Log in as SuperAdmin.
2. Select Licensing in the left navigation.
3. Click Update this license at the bottom of the panel.
4. Enter your Contrast Hub credentials (page 883) to download and apply the latest license from the

Contrast Hub.
5. If you don't have access to the Contrast Hub, click Upload license and paste your license in the

field provided.
6. Select Update.
7. Restart Contrast (page 883) to apply the new license changes.

To replace the license in the Contrast file system:

1. Obtain a new license from the Contrast Hub, your account manager or the technical support team.
2. Rename the new license file contrast.new.lic.
3. Stop the Contrast application service.

• Windows: Use the service control panel
• Linux: Execute sudo service contrast-server stop or another appropriate command

for the distribution configuration. Execute ps aux | grep contrast to verify that all Contrast
application processes have stopped, and confirm there are no processes listed. If myslqld is still
running, it may take a few minutes to terminate on its own after stopping the service. If it doesn't
terminate, contact Support. Do not kill the processes.

IMPORTANT
Don't move the current contrast.lic file. Contrast needs both the old and new
license files to upgrade the license.

Contrast Documentation

System administration 899

https://support.contrastsecurity.com/hc/requests/new?ticket_form_id=360000011243


4. Place the new license file in the <contrast_home>/data directory.
On Linux, confirm that the new license file has the same owner, group and permissions as other
files in that directory. (Execute ls -l to list the directory contents with permissions and owners.) A
backup of the current license called contrast.lic.bak will be created in the same directory when the
new one is consumed during startup.
Execute sudo chown contrast_service:contrast_service contrast.new.lic to
change the owner and group.
Execute sudo chmod 644 contrast.new.lic to change the permissions.

5. Start the Contrast application as normal.
• Windows: Use the service control panel.
• Linux: Execute sudo service contrast-server start or another appropriate command

for the distribution configuration.
6. The new license takes effect.

To update all instances of the Contrast application, follow the steps for the file system method described
above for each application instance that's running.

Manage system administration
Depending on the size of your organization and how you manage your Contrast installation, you can set
up roles (page 949) to best meet your system administration needs.

For a small organization, a single SuperAdmin can manage all system administration work. If you want
to share the responsibilities, you can designate additional SuperAdmins or ServerAdmins (page 906).

• A SuperAdmin is responsible for the system administration of Contrast. This may be assigned to one
or more individuals. They have access to the SuperAdmin option in the user menu, which allows
them to configure organizations, applications, servers, vulnerabilities, users and groups.

• A ServerAdmin is identical to a SuperAdmin except without access to users or groups. They have
access to the ServerAdmin option in the user menu, which allows them to configure organizations,
applications, servers and vulnerabilities.

If you have a separate individual or group of individuals that manages end users and agent licenses,
you can add a system access group (page 906) to designate users as System Administrators or
Observers.

• A System Administrator is responsible for maintaining organizations and groups. They have
access to the SuperAdmin option in the user menu, which allows them to configure organizations,
applications, servers, vulnerabilities, users and groups. They can also impersonate administrators at
an organization level.

• A System Observer has read-only access to organizations, users, applications, groups and traces.
They have read-only access to the Observer option in the user menu, which allows them to view
organizations, applications, servers, vulnerabilities and users.

NOTE
If a user is designated as No Access, they are blocked from system level access to
the designated organization(s).

Manage multiple organizations
On-premises users deploying in a multi-tenant environment can set up Contrast to support multiple
organizations within the same system. During the installation process, a default organization is created.
After that, users with SuperAdmin credentials can create additional organizations. To do this:

Contrast Documentation

System administration 900



1. Log in to Contrast as SuperAdmin.
2. In the user menu select SuperAdmin to view system administration options.
3. Select Organizations in the header.
4. Select Add organization.
5. Supply valid information for the new organization and designate an Organization Administrator by

entering credentials of the user who will fill this role.
6. When a user is granted access to the new organization (either in the above step, or by becoming

a member of an organization access group (page 818)) they can move between organizations by
selecting the organization name in the user menu.

IMPORTANT
If you are an Organization Administrator and you want to change settings for a
particular organization, you must first switch to that organization in the user menu,
before selecting Organization settings. The active organization will show a green
check next to its name in the user menu.

Add/edit an organization
In Contrast, an organization is a group of associated users and applications with a shared business
purpose. Contrast uses multi-tenant architecture: each Contrast customer is a tenant, represented as
an organization.

Before you begin

• To create an organization, a System Administrator (page 949) role is required.
• All organizations require a unique name as well as an Organization Administrator (page 947) to

oversee the organization.

Steps

• To add an organization:
1. In the user menu, select SuperAdmin.
2. Select Organizations in the header, then select Add organization.
3. In the Add organization window, specify the details for the organization:

Contrast Documentation

System administration 901



• Enter the new Organization name.
• Use the toggle to enable Protect, if appropriate.
• Use the toggle to Enable SCA licensing, if appropriate.
• Under License consumption, use the radio buttons to manually or automatically apply

allocated licenses.
• Select the default Language for the organization.
• Use the dropdowns to choose Date and Time formats and a Time zone.
• Select additional options for duplicate vulnerability notification, route-based auto-

verification (page 785), DISA STIG checklist reporting (page 719), diagnostics (page 931)
and any other features.

• Complete the profile information for the Organization Administrator, including their email, name
and password.

• Only check the box to Require email activation if you have a mail server set up with the
Contrast application.

4. Select Add to create the organization. You may continue to create as many organizations as you
need for multi-tenant support.

• To edit an organization:
1. In the user menu, select SuperAdmin.
2. Select the name of the organization you want to edit.
3. Update information as needed and select Save. Additional settings in the Edit organization

window include:

Contrast Documentation

System administration 902



• CVSS 3.11: Contrast is compatible with CVSS 3.1. For on-premises customers, SuperAdmins
can enable the scoring by turning on Enable CVSS 3.1. Hosted customers must contact
Contrast Support to turn on this setting.

• Hosted customers must contact Contrast Support to change this setting.
If you turn this setting off, Organization Admins cannot manage impersonation for their
organizations.
Hosted customers must contact Contrast Support to change this setting.

Manage users and permissions at a system level
Before setting up Contrast and adding users, be familiar with Contrast settings for :

• Users: You can add users one at a time (page 903), or bulk add multiple users (page 904). In
the user menu select SuperAdmin, then select Users in the header to see all users and their
status (who's awaiting activation, active or inactive, or locked out of their account based on a security
policy).

• Authentication: You can set up Contrast to use its own internal directory, or use an external directory
like LDAP or Active Directory (page 929).

• Groups and permissions: Access and permissions are determined by roles (page 945). Most roles
are assigned with access groups (page 906). SuperAdmin and ServerAdmin roles are designated
differently (page 906). You can also grant Protect permissions (page 908) at a system level or
when adding a new user (page 903) or bulk adding users (page 904).

As a SuperAdmin or System Administrator, you can add users at a system or organization level.

Adding a user to a system group provides them access to the System Administration interface or allows
them to perform activities across organizations in cross-organization groups.

You can also add users within a single organization with a defined role to determine their application
access and privileges.

Add or edit a user at a system level 
System and Organization Administrators can create users individually, in groups, or through Microsoft
Active Directory (AD) (page 915) or LDAP (page 919) integrations.

Before you begin

• A System Administrator or Organization Administrator role is required.
• All users are required to have a default organization and a default role within that organization.

SuperAdmin and ServerAdmin roles (page 906) are designated differently.
• When adding an individual user, or multiple users at one time, you can also grant Protect permissions

for the users.

Contrast Documentation

System administration 903

https://support.contrastsecurity.com/hc/en-us/requests/new?ticket_form_id=360000011243
https://support.contrastsecurity.com/hc/en-us/requests/new?ticket_form_id=360000011243
https://support.contrastsecurity.com/hc/en-us/requests/new?ticket_form_id=360000011243


Steps

1. Log in as a SuperAdmin or System Administrator.
2. Select SuperAdmin in the user menu.
3. Select Users in the header.
4. Select a user name to edit an existing user or select Add user to add a new user.
5. Enter the user's First name, Last name and Email address.
6. Select Require email activations, if you want to  use email activation instead of requiring a

password.
7. Select a  System roles (page 949) for the user.

The default role is None.
8. Select the Organization to which the user belongs.
9. Select the default Organization role .
10. Select a custom or default Application access group:

Contrast provides these default groups:
• View: Members of this group have read-only access to the Contrast interface to see scores,

libraries, vulnerabilities, and comments.
• Edit: Members of this group can remediate findings, add tags, manage vulnerabilities, edit

attributes, merge applications, add or delete applications, and create servers.
• Rules Admin: Members of this group can edit rules and policies in the application, enable

Protect, and manage notifications and scoring.
• Admin: Members of this group can configure and manage settings for an organization.

11. Select a  Date format, Time format, and Time zone.
12. To let Organization Administrators change user settings at an organizational level, select Use

organization settings.
This option is selected by default.
To create user settings at a system level, clear the this option.:
a. Clear User organization settings.
b. To restrict users to using the API only and not the Contrast web interface, .Select Make user

API only.
c. To let the user see and use Assess data, turn on Access.
d. To let the user see and use Protect data, turn on Protect.

TIP
You can also grant Protect permissions (page 908) at an organization level.

13. Select Add or Save.

Add multiple users to an organization
You can use a CSV file to add multiple users to an organization.

Before you begin

• For on-premises customers, a SuperAdmin role is required.
• For hosted customers, an Organization Administrator role is required.

Steps

1. Go to the Users list:.
a. For hosted customers, under the user menu, select Organization settings and then, select

Users.

Contrast Documentation

System administration 904



b. For on-premises customers, under SuperAdmin, select Users in the header.
2. Create a spreadsheet with the recommended information and save it as a CSV file:

• Include the required fields for each user.
• Format all field headings and values exactly as shown in the table below.
• Add a new column for any optional fields.

TIP
Hover over the Upload icon and select the link in the tooltip to download a CSV
template to get started.

CSV fields:

Field name Required Value

First Name Required User first name

Last Name Required User last name

Email or Username Required If you are using the Contrast's default internal directory, enter the user's
email.

If you are using an external directory, change Email to Username in the
CSV, and enter usernames that match those in your external directory
exactly.

Organization UUID Required for on-
premises customers

Get this value from the organization's general information
settings (page 816).

Organization Role Required Values can be View, Edit, Rules_admin or Admin.

Date Format Optional The default value is the organization setting, such as MM/dd/YYYY.

Time Format Optional The default value is the organization setting, such as hh:mm a.

Timezone Optional The default value is the organization time zone.

Protect Optional The default value is Off.

Groups Optional Values can be View, Edit, Rules Admin, Admin or custom group
names. Format multiple group names as GroupA&&GroupB&&GroupC.

Language Optional The default is the value configured for the organization (page 816).

System
Administration

Optional The default value is Off.

Email Activation Optional If the value is None, the default is Required Password.

Password Optional This field is required if the Email Activation field is set to false.

Contrast Documentation

System administration 905



Field name Required Value

Api Only Optional The default value is Off.

Access Optional The default value is On.

3. Select the black upload icon next to Add user, then select the CSV you created.
Once the spreadsheet upload is in progress, you can leave the page and continue with other tasks
in Contrast. If the upload is successful, you'll see a confirmation message that includes the number
of users uploaded. If the upload failed, you'll see an error message that includes the source of the
error in the spreadsheet.

Designate SuperAdmins or ServerAdmins
The SuperAdmin has the highest level system administration permissions.

A ServerAdmin has the same permissions and capabilities as a SuperAdmin, except without access to
users and groups.

You must have at least one person as SuperAdmin. If you want to designate more than one user as
SuperAdmin, do not share a log in, instead:

1. Log in as SuperAdmin.
2. Select User menu > SuperAdmin > Users.
3. Find the user you want to designate as SuperAdmin. (You can search by name, email or

organization, or find their name in the grid.)
4. Select the user name to open the Edit user window.
5. In the System Administration field, select SuperAdmin or ServerAdmin.
6. Select Save.

TIP
Anyone designated as a SuperAdmin or ServerAdmin will be able to access
SuperAdmin in the top right User menu. Also a small key icon will appear next to
their name in the SuperAdmin > Users grid. Hover over the key to see the assigned
role.

Add, edit or delete a system access group

NOTE
System access groups are only available to on-premises customers. You must be a
SuperAdmin to add a system access group.

To add a system access group:

1. Select User menu > SuperAdmin > Groups.
2. Select an existing group to edit, or select Add group to create a new group.

Contrast Documentation

System administration 906



TIP
To find groups you can use the quick filter dropdown or the search field in the top
left, or use the up/down arrows at the top of each column to sort.

3. Fill out the form with:
• Group name: Choose something that reflects the purpose, permissions and capabilities you will

assign to this group.
• Type: Select System.

TIP
You can also add an access group at an organization level (page 818).
However, if you add access groups at a system level, you have the option of
creating cross-organization groups.

Cross-organization groups might be helpful if you have a security team that
supports multiple business units that each have their own organization.

Members of a cross-organization group are able to switch between
organizations by selecting the name in the user menu.

• System access: Select the organization you want this group to access.
• Role: Select the system role (page 949) you want the members of this group to have within the

corresponding organization.
• Select Add system access to add more organizations and roles.

4. Next to Members, on the right, type ahead to select one or more users to assign to the group.
Select the X to delete members.

NOTE
Users can belong to many groups. They don't have to be created within a
particular organization in order to gain access to that organization.

5. When you are finished, select Add to create the new group, or select Save if you are editing an
existing group. The members you added to this group will now have permissions that correspond to
their role.

Contrast Documentation

System administration 907



IMPORTANT
If users are assigned to two groups with conflicting roles for all applications or
organizations, the role that provides the most restrictive access applies.

Note that only organization and application level groups are visible to a
user (page 519), if you are confused about your access level, it may be that
stricter permissions have been imposed at a system level.

However, a role assigned to a specific application overrides a role assigned to all
applications, even if the application-specific role is more permissive than the role
given to all applications.

If a user is assigned to two custom groups that provide roles for the same
application, the role with the least privilege applies.

System (page 949), organization (page 947) and application (page 945) roles
are listed in order from most to least permissive.

In the following examples of conflicting role permissions, permissions in Group 2
take precedence.

Group 1 Group 2 (takes precedence)

Application Editor for all applications Application Viewer for all applications

Organization Viewer for all applications Application Administrator for the Red application

RulesAdmin for the Red application No Access for the Red application

TIP
To delete a group, select User menu > SuperAdmin > Groups. Find the group you
want to delete and select the Delete icon in that row.

Once this is confirmed, the group is removed and any access provided by that group is
revoked from all users assigned to the group.

Grant Protect permissions (on-premises)
For on-premises customers with multiple organizations, you can grant permissions that let all or some
user roles in one or more organizations access Protect data.

Before you begin

• A SuperAdmin role is required.
• Identify the organizations whose users need access to Protect data.
• Identify which user roles in an organization need access to Protect data.

Steps

1. Log in as SuperAdmin.
2. Select SuperAdmin in the user menu.
3. Select Organizations in the header.

Contrast Documentation

System administration 908



4. Find the organization for which you want to enable Protect. In the Protect column for that row, turn
the setting on.

5. In the Who needs Protect window, select the roles that need permission to see and access Protect
data.

Select All users or specific user roles.
You can also enable or disable Protect access for individual users (page 903).

6. Select Protect.
When you make this change, the users with the selected roles have access to Protect data.

Automatically add users to groups with SSO
You can automatically add users to groups with single sign-on (SSO).

1. Update your SAML configuration in your IDP:

<saml2:AttributeStatement \
xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion">
    <saml2:Attribute Name="contrast_groups" \
NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified">
        <saml2:AttributeValue xmlns:xs="http://www.w3.org/2001/XMLSchema"
                                xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"

Contrast Documentation

System administration 909



                                xsi:type="xs:string"
                                >GROUP1</saml2:AttributeValue>
        <saml2:AttributeValue xmlns:xs="http://www.w3.org/2001/XMLSchema"
                                xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"
                                xsi:type="xs:string"
                                >GROUP2</saml2:AttributeValue>
        ...
    </saml2:Attribute>
</saml2:AttributeStatement>

IMPORTANT
The attribute values listed under contrast_groups must exactly match an
existing group name. Contrast won't create new groups based on the values listed
under this attribute.

2. Then in Contrast, under organization settings (page 814), select Single sign-on and use the check
boxes at the bottom of the form to enable one or both of these:
• Add users to their Contrast groups upon SSO login: Upon login, Contrast adds users to

groups listed in the contrast_groups attribute in the SAML assertion.
• Remove users from their Contrast groups upon SSO login: Upon login, Contrast removes

users from groups not listed in the contrast_groups attribute in the SAML assertion.

References

• User email as NameID

<md:NameIDFormat>urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress</
md:NameIDFormat>

• First name and surname

<saml2:Attribute Name="http://schemas.xmlsoap.org/ws/2005/05/identity/
claims/givenname"
                             NameFormat="urn:oasis:names:tc:SAML:2.0:attrn
ame-format:unspecified"
                             >
                <saml2:AttributeValue xmlns:xs="http://www.w3.org/2001/
XMLSchema"
                                      xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"
                                      xsi:type="xs:string"
                                      >Dan</saml2:AttributeValue>
            </saml2:Attribute>

<saml2:Attribute Name=" http://schemas.xmlsoap.org/ws/2005/05/identity/
claims/surname"
                            NameFormat="urn:oasis:names:tc:SAML:2.0:attrna
me-format:unspecified"
                            >
               <saml2:AttributeValue xmlns:xs="http://www.w3.org/2001/
XMLSchema"
                                     xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"
                                     xsi:type="xs:string"

Contrast Documentation

System administration 910



                                     >Dan</saml2:AttributeValue>
           </saml2:Attribute>

• User group management

<saml2:AttributeStatement \
xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion">
<saml2:Attribute Name="contrast_groups" \
NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified">
<saml2:AttributeValue xmlns:xs="http://www.w3.org/2001/
XMLSchema"xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"xsi:type="xs:string">GROUP1</saml2:AttributeValue>
<saml2:AttributeValue xmlns:xs="http://www.w3.org/2001/
XMLSchema"xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"xsi:type="xs:string">GROUP2</saml2:AttributeValue>
...
</saml2:Attribute></saml2:AttributeStatement>

See also
Configuring user and group provisioning with Okta

Configuring ADFS to automatically add users to groups

Default and SuperAdmin credentials
As the system administrator who installs Contrast, you can manage the following sets of credentials:

• Contrast Hub credentials: New customers receive an email with the username and a link to set
the password. You will need these credentials to download the installer (page 873) and to log in to
Contrast Hub.
• Username: Contrast provides the username in the format example@domain.com. It is the same

username as the Default Organization Administrator.
• Password: Create this password when you select the link in the activation email.

• Default SuperAdmin credentials: These credentials are included in the license. They are used for
managing the Contrast application in the role of SuperAdmin (page 949).
• Username: Contrast provides the username in the format contrast_superadmin@domain.com,

where domain is the name of your company's email domain.
• Password: The default password is: default1!.

• Default Organization Administrator credentials: The Organization Administrator can use these
credentials to log in to Contrast after installation (page 873) and set up and maintain the organization.
• Username: Contrast provides the username in the format example@domain.com. It is the same

username as the Default Organization Administrator.
• Password: The default password is: default1!.

IMPORTANT
Be sure to change the supplied default passwords as soon as you have successfully
logged in. You can reset the SuperAdmin password in Contrast (page 517) or by using
command line on Windows (page 929) or Linux (page 928).

Impersonate users
Impersonating users lets you access organizations as if you have the same role and permissions as the
impersonated user. Impersonation is helpful when you need to troubleshoot issues.

Contrast Documentation

System administration 911

https://support.contrastsecurity.com/hc/en-us/articles/360046274371-Configuring-user-and-group-provisioning-with-Okta
https://support.contrastsecurity.com/hc/en-us/articles/360045849492-Configuring-ADFS-to-automatically-add-users-to-groups
https://hub.contrastsecurity.com/


If you have a ServerAdmin or System Admin role, you can impersonate the first Organization Admin
for an organization by selecting Impersonate for an organization on the Organizations page. To use
impersonation, you must have access to these organizations.

If you have a ServerAdmin or System Admin role, you can impersonate the first Organization Admin
for an organization by selecting Impersonate for an organization on the Organizations page. To use
impersonation, you must have access to these organizations.

Contrast turns off impersonation automatically after 24 hours.

Before you begin

• The user you choose to impersonate must have an organization role (page 947).
• If the Impersonation option is not visible for an organization, a SuperAdmin must turn on the Can

enable impersonation (page 901) setting for the organization.
• An Organization Admin must enable impersonation (page 866) for the organization that you want to

access.

Steps

• To start impersonation at a user level:
1. Log in to the Contrast web interface as a SuperAdmin.
2. Select Users.
3. At the end of the row for the user you want to impersonate, select the triangle ( ) and and select

Impersonate.
4. In the Please confirm window, select Impersonate to confirm that you want to impersonated the

selected user.

Contrast opens a session as the impersonated user.
• To start impersonation at an organization level:

1. Log in to the Contrast web interface as a SuperAdmin, ServerAdmin, or System Administrator.
2. Select Organizations, if not already selected.
3. At the end of a row for an organization you want to access, select the triangle ( ) and select

Impersonate.
4. In the Please confirm window, select Yes to confirm that you want to impersonate the displayed

user or select a different user who is an administrator for the organization you want to access.

Contrast Documentation

System administration 912



Configure authentication

NOTE
For hosted users, Contrast Security configures authentication. However, an
Organization Administrator may be granted the ability to override these settings,
including SSO setup.

To request this change contact Contrast Support.

By default, Contrast stores a user directory that includes user's login name, credentials and other
details about application authentication. Database credentials are stored (using a one-way hash)
in the internal Contrast database. You can set a password policy (page 927) and two-step
authentication (page 914) for users in Contrast.

Alternatively, you can use an external directory for authentication, in which case, only the username is
stored in the Contrast database. Contrast supports:

• LDAP (page 919)
• Active Directory (page 915)
• Single Sign-On (page 924)
• Trusted HTTPS Proxy (page 927)

Any changes to the authentication settings require that you restart Contrast (page 883). To change
authentication, select Authentication under system settings (page 929).

Contrast Documentation

System administration 913

https://support.contrastsecurity.com/hc/requests/new?ticket_form_id=360000011243


IMPORTANT
When you switch between authentication modes, be aware:

• Any users that were created under the previous authentication mode will no longer
work, unless the user's email address is the same between the new and old
authentication provider.

• After you setup your new authentication mode and restart your server, users can't
login to Contrast until their accounts are added to a new or existing organization.
For on-premises customers, the SuperAdmin can take care of the Organization
Administrator accounts, and then each Organization Administrator is responsible for
the users within that organization.

NOTE
When you use an external authentication provider mode (LDAP or AD), the username
field when adding a user functions as a live search that shows users in the proper
group.

TIP
Since roles and permissions are managed by access groups (and not the user
directory), it is best practice to create access groups before configuring authentication.
You will need at least two unique access groups, one for administrators and one for
users.

Enable two-step authentication at a system level

NOTE
If you configure SSO in Contrast and also want to use two-factor authentication,
configure two-factor authentication using your identity provider (IdP), instead of
Contrast. With SSO configured, Contrast passes the responsibility of authenticating
users to the IdP.

To enable or disable two-step authentication:

1. Under system settings (page 929), select Security in the left navigation.
2. Turn the toggle on (green) to enable two-step authentication.
3. Select the box next to Allow organization override to allow Organization Administrators to choose

whether or not to require the feature for users (page 822).

Contrast Documentation

System administration 914



NOTE
If a user belongs to multiple organizations, their default organization determines their
two-step authentication settings.

A user can also choose how they want to receive two-step authentication
notices. (page 517)

Configure Microsoft Active Directory
As a System Administrator (page 949), you can configure Contrast to connect to a Microsoft Active
Directory (AD). Use the AD connector to configure this integration. AD has a well-defined structure for
directories, resulting in fewer possibilities and a more direct configuration.

NOTE
Switching to AD from a different authentication method such as a local database may
result in issues if the user ID attribute is inconsistent.

Access if AD is offline
In the event that your AD service experiences connectivity or configuration issues, use the default
SuperAdmin account to log in to Contrast. This feature ensures that you continue to have immediate
access to your Contrast account even when AD is offline.

Steps

1. Start by creating a user in the Active Directory Server that is a dedicated read-only user. The
user should have read permission to the directory, including users with permission limited only
to the Search Base. You will need this user to set the Search Base when configuring users for
AD (page 917) and when binding to user.

2. Create user groups in the external AD server. You will later use these groups to assign
SuperAdmin privileges (page 917) in Contrast.

3. Under system settings (page 929), select Authentication.
4. Select Change authentication method and follow the steps to configure server, groups and

advanced settings.
5. Select Active Directory.
6. Enter the following information. Some settings may be different for LDAP over SSL (LDAPS) as

noted.

Contrast Documentation

System administration 915



Under Connect server:
• Protocol: Enter the protocol that should be used to communicate with the LDAP server. Choose

LDAP or LDAPS from the dropdown. The default is LDAP. Additional configuration may be
needed for the LDAPS option if you are using a self-signed or privately-signed certificate with
AD (page 918).

• Hostname: Enter the hostname to connect to when communicating with the LDAP server; either
the DNS hostname or IP address of the AD server. In multi-tenant forests, this should be the
Global Catalog Server. The default is localhost".

• Port: Enter the port to connect to when communicating with the LDAP server. For standard
(single-tenant, single-domain) directories, this should be port 389 (LDAP) or 636 (LDAPS). In
multi-tenant or multi-domain forests, this should be 3268 (LDAP) or 3269 (LDAPS).

• Search base: Enter the base DN (a distinguished name that represents the global base level
container for your AD environment) to use when communicating with the LDAP server. This is
usually your domain or subdomain name. The default is dc=contrastsecurity,dc=com. If
your login domain is yourdomain.com, your base DN would be dc=yourdomain,dc=com.

Under Bind to server.
• Username: Enter the full DN of the user who can bind to the directory to perform search

functionality. The default is cn=Directory Manager.
• Password: The password of the user account that the application should use when connecting

to the LDAP server.
7. Select Test connection to ensure connectivity to the server. Once connectivity is verified, select

Next.
8. Configure groups. (page 917)
9. Configure advanced settings. (page 917)
10. Once all of the configuration options are set, verify that you are able to log in as both a SuperAdmin

and an Organization Administrator using the Test login button.

NOTE
If the test seems to take an excessive amount of time, it's likely a result
of having the wrong setting for the Follow referrals option in Advanced
settings (page 917). Once you switch the setting, you should be able to verify
login functionality more quickly.

11. Select Finish to complete the configuration.

Contrast Documentation

System administration 916



Configure groups for Active Directory
As part of Active Directory configuration (page 915), you will need to configure groups.

Contrast doesn't perform Data Access Control using the integrated AD servers. In other words,
roles and access to data within the application are handled by the application and Organization
Administrators set user roles. However, there is an Access Control check when logging in or creating
new users to ensure that the provided user belongs to the correct group in Active Directory (AD).

Steps

1.
Use the groups that you created on your external AD server to assign users to one of the following
Contrast groups.
• SuperAdmin group: This group allows users to log in to the Super Administrator interface.

Users in this group are authenticated and authorized the first time they log in to Contrast.
• User group: This group allows users to be added to an organization and log in to the Contrast

web interface. This group is appropriate for all other users.
To let users log in, add them (page 818) to the organization manually in the Contrast web
interface.

NOTE
If you add a user to both groups in your AD instance, Contrast automatically adds
them to the SuperAdmin group during configuration.

2. Select Query for groups to enable a live search of existing groups as you begin to type within the
input fields.

NOTE
To create users with AD authentication in Contrast while bypassing the Access
Control check, execute the following query in the database.

UPDATE teamserver_preferences SET property_value='true' \
WHERE \
property_name='directory.skip.user_existence.validation'

Configure settings for Active Directory
As part of Active Directory configuration (page 915), under Advanced settings enter:

Contrast Documentation

System administration 917



• User base DN: The default is cn=Users, the default container for AD. However, if your AD is
configured differently, this will be the path to the top-most container where users are stored in the
directory.
For example, if your users are stored in the DN
CN=Engineering,CN=GlobalUsers,DC=intranet,dc=example,dc=com and your base
DN is DC=intranet,DC=example,DC=com, the value of the User DN suffix will be
CN=Engineering,DC=GlobalUsers.

• User ID attribute: Enter the user attribute that the user will enter as the username when logging in to
the Contrast application. Use the attribute that will be most familiar to the users. The default is Email
address.
• Login ID: The AD sAMAccountName attribute; this is usually the username that you use to log in

to Windows.
• Email address: The AD mail attribute containing the email address of the user.
• User principal: The AD userPrincipal attribute containing the full username.

• Search within nested groups: Enable or disable searching within nested groups. The toggle is
disabled by default.

• Follow referrals: In multi-tenant or multi-domain enterprise forests, LDAP queries may be referred to
another server for more details. The toggle is disabled by default.

• Limit referrals: Limit to how many referrals should be followed when AD replies with a Referral
response. The default is "5".

Use self-signed or privately-signed certificates with Active Directory
If you configure your AD integration (page 915) to connect to your server using SSL, you may need to
import your server's certificate into a new truststore to be used by the Contrast JRE.

1. Acquire the server's certificate from your administrators in PKCS#12 format. If you're using a
self-signed certificate, this will be the actual AD server's certificate. If you have a private CA, you
need the CA certificate for that server.

2. Once you have the certificate for the server, create a truststore that contains that certificate. Run
the following commands as an administrator from a command shell in the directory where Contrast
is installed.

Contrast Documentation

System administration 918



$ mkdir data/conf/ssl
$ jre/bin/keytool -import -file <path to certificate> -alias <hostname> \
  -keystore data/conf/ssl/truststore.jks

3. After you create your truststore containing either your server's or CA certificate, add the following
lines into the bin/contrast-server.vmoptions file:

-Djavax.net.ssl.trustStore=<full path to truststore>
-Djavax.net.ssl.trustStorePassword=<password you set for the \
trustStore, if any>

4. You should now restart the Contrast server service, and verify that queries against AD will use
SSL.

Configure LDAP
Contrast integrates with many types of Lightweight Directory Access Protocol (LDAP) servers. LDAP
is an Internet protocol that web applications can use to look up users or groups listed on an LDAP
directory server.

Contrast supports these LDAP server types:

• OpenLDAP
• OpenDS
• ApacheDS
• Fedora Directory Server
• Microsoft Active Directory
• Generic LDAP Servers

Connecting to an LDAP directory server is useful if you manage users and groups in a corporate
directory, and you want to delegate the responsibility of managing user access of the application to your
corporate directory administrators.

NOTE
Switching to LDAP from a different authentication method such as a local database
may result in issues if the user ID attribute is inconsistent.

A system administrator can configure the LDAP server:

IMPORTANT
If you configure your LDAP integration to connect to your server using SSL, you may
need to take extra steps for self-signed or privately signed certificates (page 924).

Access if LDAP is offline
In the event that your LDAP service experiences connectivity or configuration issues, use the default
SuperAdmin account to log in to Contrast. This feature ensures that you continue to have immediate
access to your Contrast account even when LDAP is offline.

Contrast Documentation

System administration 919



Steps

1. Start by creating a user in the LDAP Server that is a dedicated read-only user or read-write user
(depending on how you configure Contrast to interact with the LDAP directory). The user should
be have read permission to the directory, including users with permission limited only to the Search
Base. You will need this user to set the Search Base when configuring users for LDAP (page 922)
and when binding to user.

2. Create user groups in the external LDAP server. You will later use these groups to assign
SuperAdmin privileges (page 921) in Contrast.

3. Under system settings (page 929), select Authentication.
4. Select Change authentication method.
5. Select LDAP.
6. Enter required information under Connect server and Bind server.

Option Description Default

Connect server

Protocol The protocol that should be used to communicate with the LDAP server.
Choose between LDAP or LDAP with SSL (LDAPS).

LDAP

Hostname Enter the hostname to use when communicating with the LDAP server. localhost

Port Enter the port to use when communicating with the LDAP server. 389 (LDAP), 636 (LDAPS)

Search base Enter the base distinguished name (DN) to use when communicating
with the LDAP server. If your login domain is yourdoman.com, your base
DN would be dc=yourdomain,dc=com.

dc=contrastsecurity
,dc=com

Bind to server

Method Select the method to use when connecting to the LDAP server. Options
are shown in the next table.

Simple

Username Enter the full DN of the user that should bind to the directory to perform
queries and check authentication.

N/A

Password Enter the password for the bind user specified in the Username field. N/A

There are four supported bind mechanisms that can be used by Contrast. Each has different
required fields:

Contrast Documentation

System administration 920



Method Description Required Fields Optional
Fields

Anonymous Administrators provide anonymous, read-only access to the
directory.

None N/A

Simple This is standard username and password authentication. The
username and password are verified as provided by the
LDAP server.

Username,
Password

N/A

DIGEST-MD5 A username and password are provided and hashed using
MD5 prior to sending to the server to be authenticated.

Username,
Password

SASL Realm

CRAM-MD5 The LDAP server issues a pre-authentication challege, which
is sent with the MD5 hashed username and password to be
authenticated.

Username,
Password

SASL Realm

7. Once you configure the connection to the LDAP server, select Test connection. Testing the
connection ensures that the application can connect to the LDAP server and perform queries.

8. Configure groups for LDAP (page 921).
9. Configure users for LDAP (page 922).
10. To verify that the group and user mappings are correctly configured, select Test login.
11. Once you've successfully logged in as both SuperAdmin and Organization Administrator, select

Finish to complete the configuration.

Configure groups for LDAP
As part of the LDAP configuration (page 919), you will need to configure groups.

Organization Administrators set the roles and permissions (page 945) for users, and each application
handles roles and access to data within that application. When configuring users, you can opt to add
users to an access group on login (page 922). However, even if that is not enabled, Contrast uses the
LDAP directory to ensure that the provided user belongs to the correct group.

To configure groups:

1. Enter the following values:

Contrast Documentation

System administration 921



Option Description Default

Group
type

Groups types depend on your server functionality and configuration. Groups are either:

• Static: Groups track members through an attribute on the object, such
as uniqueMember. The remaining four options in this table only apply to static
groups.

• Dynamic: The user object tracks its own membership. Groups are added
dynamically to the user object when the user becomes a member of a group.

Static

Group
subtree

Configures whether subtrees of the Base DN should be included when searching for
groups in the directory.

Enabled

Base DN This is the distinguished name (DN) where the application can find groups in your
LDAP server (like the User Base DN).

ou=Groups

Object
class

If left blank, the application uses the default values of "group," "groupOfUsers," or
"groupOfUniqueUsers." This isn't a required field, as it is standard across LDAP
deployments.

N/A

Group
member
attribute

The attribute within a group object in the directory that contains the members of that
group. This may differ for your LDAP deployment, so ensure that you are using the
correct attribute with your LDAP administrator.

Each member of the group should be listed as a full distinguished
name (DN) not a relative distinguished name (RDN). For example:
"cn=smith,ou=Users,cn=support,dc=test,dc=org").

If you use an RDN, Contrast does not see that user in the LDAP group.

uniqueMember

2. Use the groups you previously created in your external LDAP server, to assign users to one of the
following groups
• SuperAdmin group: This group allows users to log in with SuperAdmin permissions.
• Users group: This group allows users to be added to an organization and log in to the standard

interface. This group is appropriate for all other users.

IMPORTANT
If a user belongs to both groups, and provisioning is disabled, the user will be
created as a SuperAdmin. If provisioning is enabled, the user will be created
without SuperAdmin permissions.

3. Select Query for groups to enable a live search of existing groups as you begin to type within the
input fields.

Configure users for LDAP

As part of the LDAP configuration (page 919), you will need to configure users.

To fully integrate with an LDAP directory, Contrast needs information on how to connect to the LDAP
server as well as how to find users and groups within the directory.

1. Enter the following information on how you want Contrast to search for users in the directory. The
default settings are correct for most LDAP deployments.

Contrast Documentation

System administration 922



Option Description Default

Base DN Indicate the container (under the global base DN) where Contrast should
start searching for users. In most organizations, this is a single container
(for example, ou=Users), but your LDAP administrator should verify that
you're searching the right container.

ou=users

Object Class Indicate the LDAP object class for user objects in the directory. inetOrgPerson

First Name Attribute Indicate the LDAP field that contains a user's first name. givenName

Last Name Attribute Indicate the LDAP field that contains a user's last name. sn

Email Attribute Indicate the LDAP field that contains a user's email address. mail

User subtree If enabled, subtrees of the Base DN are included when searching for
users.

Enabled

User ID attribute Indicate the LDAP field that should be identified as the User ID. This is
the username to enter when logging in to contrast.

uid

Authentication
strategy

Choose how you want Contrast to authenticate users when they provide
their credentials. Bind means the application sends the user's credentials
to the server for authentication. Compare means the server hashes the
user's credentials and compares them to the value of the password
attribute.

Bind

Password attribute The LDAP field that contains a user's password.

If you selected Compare for the authentication strategy, this attribute
contains the hashed password for the user.

userPassword

2. To automatically create new user accounts when someone makes an LDAP request to log in,
check the box next to Enable user provisioning.
Use the dropdowns to choose the Default organization, Default organization role and Default
application access group for the new users.

3. Contrast can automatically provision or de-provision users at login time based upon the user’s
LDAP groups. When this feature is enabled for LDAP-based authentication, users are added to a
Contrast access group that maps to a corresponding LDAP group and removed from disallowed
Contrast groups. Users can be added to multiple groups, as well as added to groups that give them
access to multiple organizations.

Contrast Documentation

System administration 923



IMPORTANT
For this to work, the Contrast groups must already exist, and the groups from
LDAP (for provisioning purposes) must have the same name as the Contrast
groups.

4. To add users to their groups when they log in to Contrast, check the box next to Add users to their
Contrast groups upon login. To remove users from their groups when they log in to Contrast,
check the box next to Remove users from their Contrast groups upon login.

Use self-signed or privately-signed certificate with LDAP
If you configure your LDAP integration (page 919) to connect to your server using SSL, you may need
to import your server's certificate into a new truststore to be used by the Contrast JRE.

1. To begin, acquire the server's certificate from your administrators in PKCS#12 format. If you're
using a self-signed certificate, this is the actual LDAP server's certificate. If you have a private
certificate (CA), you need the CA certificate for that server.

2. Once you have the certificate for the server, import it into the truststore used by the JRE running
Contrast. Run the following command as an administrator from a command shell in the directory
where Contrast is installed.

$ jre/bin/keytool -import -file <path to certificate> -
alias <hostname> \-keystore <ts install>/jre/lib/security/cacerts

3. You should now restart the Contrast server service, and verify that queries against LDAP now use
SSL.

Configure single sign-on (SSO) at a system level 
Single sign-on (SSO) is an authentication service that allows access to multiple applications using one
set of credentials. As a System Administrator, you can configure Contrast to use this service with a
SAML 2.0 supported provider.

NOTE
For more information, see the SAML 2.0 specification.

If you configure SSO in Contrast and also want to use two-factor authentication,
configure two-factor authentication using your identity provider (IdP), instead of
Contrast. With SSO configured, Contrast passes the responsibility of authenticating
users to the IdP.

Authentication happens through an identity provider (IDP). You may use your own generic IDP or one of
many popular third-party providers, such as Okta, OneLogin, Ping Identity or ADFS.

Have your IDP metadata information ready, and then provide your metadata to connect to Contrast via
an XML file or a Metadata URL.

For on-premises customers, the SuperAdmin configures SSO at the system level. Hosted customers
can configure SSO at an organization level. Multi-tenant hosted instances can have multiple IDPs
configured to a single instance of Contrast.

Contrast Documentation

System administration 924

https://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
https://www.okta.com/
https://www.onelogin.com/
https://www.pingidentity.com/en.html
https://msdn.microsoft.com/en-us/library/bb897402.aspx


NOTE
If users are identified with a user ID rather than an email address, those accounts don’t
automatically transfer over to the SSO configuration and must be recreated.

Before you begin
When using SSO, you must configure your NameID to pass the user's email.

Optionally, to set the user's first and last name, you must configure their IdP to pass additional attributes
via the SAML assertion using:

• First name: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/givenname
• Last name: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/surname

If those fields are not present or are blank, the default is to use the NameID field. And if user
provisioning is enabled, the user’s first and last name will auto-populate.

1<saml2:Attribute Name="http://schemas.xmlsoap.org/ws/2005/05/identity/
claims/givenname"
2                             NameFormat="urn:oasis:names:tc:SAML:2.0:attrna
me-format:unspecified"
3                             >
4                <saml2:AttributeValue xmlns:xs="http://www.w3.org/2001/
XMLSchema"
5                                      xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"
6                                      xsi:type="xs:string"
7                                      >Dan</saml2:AttributeValue>
8            </saml2:Attribute>

Steps

1. Contrast doesn't provide keys for SAML authentication. If you enable SSO without providing private
keys, you're only able to perform IDP-initiated logins. You need to generate your own self-signed
key using the Java Keytool:

keytool -genkeypair -alias some-alias -keypass changeit -keyalg RSA -
keystore samlKeystore.jks

2. Use the encrypted properties editor (page 936) to modify saml.properties, and update the values
to the keystore you created in the previous step.

 authenticator.saml.keystore.path                  : /path/to/
samlKeystore.jks
 authenticator.saml.keystore.default.key           : some-alias
 authenticator.saml.keystore.passwordMap           : some-alias=changeit
 authenticator.saml.keystore.password              : changeit

3. Once you make the changes, restart Contrast so that it picks up the new keystore.
4. In the Contrast, under system authentication (page 913), select Authentication, then Change

authentication method.
5. Select Single sign-on.
6. Use the provided information to set up Contrast with your IDP. (You must also provide the Entity ID

and Metadata URL in your IDP configuration.)

Contrast Documentation

System administration 925



7. Provide a name for your Identity provider.
8. Enter your IDP metatdata. Select the box if you have access to the metatdata URL, then enter

the URL.
9. If you want to automatically create new user accounts when someone make a SAML request to log

in to Contrast, check the box next to Enable user provisioning.
• Use the dropdowns to choose the Default organization role and Default application access

group for the new users.
• Add the Accepted domains that must be used to trigger user provisioning (for example,

yourdomain.com).

NOTE
You can also automatically add users to groups (page 909).

10. Select Save. If an error occurs, you can check debug logs (page 892) for troubleshooting.
11. Restart Contrast (page 883) to apply the changes.

Once connected, you can return to the SSO tab to view and edit your settings. (You must retest
and restart Contrast (page 883) to apply the changes.) To return the organization back to the default
configuration, select Revert to Contrast-managed authentication and confirm the change.

Contrast Documentation

System administration 926



If SuperAdmin was disabled during installation, you're provided with two sets of metadata: one for the
public node and one for the secret node. You need to set up the configuration for both in the Contrast
interface.

See also
How to troubleshoot problematic SAML integrations

Configuring user and group provisioning with Okta

Configuring ADFS to automatically add users to groups

Enable HTTPS proxy authentication
You can use a trusted proxy for authentication, which authenticates the user and then sends the user's
username to Contrast in an HTTP header. (This type of authentication is particularly useful for x509
clients.)

Users must be configured in Contrast before starting their authentication configuration, and use the
same email address as their usernames for both configurations, in order to be granted access to
Contrast after authentication.

To enable trusted HTTPS proxy authentication:

1. Update the auth.properties property file by changing the authentication mode in ~/
path_to_contrast_installation/data/conf/auth.properties to http_header.

2. By default, the HTTP header name is Contrast-Authentication. You can also configure this in
the auth.properties file by updating the value of auth.http.header.field.name.

3. After restarting Contrast, each request must include the HTTP header Contrast-Authentication:
username to log in.

NOTE
Trusted HTTPS proxy authentication should only be used if all Contrast nodes are
accessible exclusively through a trusted proxy. No nodes should be accessible directly;
otherwise, an attacker could impersonate any authorized user.

Set a password policy at a system level
Regulate passwords at a system level by creating a password policy.

1. Under system settings (page 929), select Security.
2. Under Default password policy, select the box if you want to Allow organization override. This

way organization administrators can set password policy for their organizations (page 822).
3. Enter the following settings for your policy:

• Set the password strength. This can be Weak, Medium, Strong, Complex or Custom.
If you choose Custom, enter the number of minimum Uppercase letters, Lowercase
letters, Numbers and Symbols required.

• Enter the number of characters required in the Minimum length field.
• Use the dropdown to choose the length of time allowed before Password expiration.
• Enter the number of login attempts allowed before Login lockout.
• Enter the length of time allowed before Inactive account expiration.
• Check the box to Restrict password reuse, and use the dropdown to choose the number of

times each password may be reused.

Contrast Documentation

System administration 927

https://support.contrastsecurity.com/hc/en-us/articles/360037535052-How-to-troubleshoot-problematic-SAML-integrations
https://support.contrastsecurity.com/hc/en-us/articles/360046274371-Configuring-user-and-group-provisioning-with-Okta
https://support.contrastsecurity.com/hc/en-us/articles/360045849492-Configuring-ADFS-to-automatically-add-users-to-groups


• Check the box to Restrict password reset, and use the dropdown to choose the number of
days during which a user can reset their password after their reset request is sent.

• Use the dropdowns to select the amount of time that may pass before Idle timeout and Session
timeout.

4. Select Save.

Reset SuperAdmin password on Linux
To change the SuperAdmin password, edit the contrast-server.vmoptions file or use
environment variables.

In most cases, editing the contrast-server.vmoptions file is the easiest method to use. If you are
using containers for your Contrast application, use environment variables to reset the password.

Steps

1. Open a command prompt and log in using the Contrast service account created during installation.
For example:
sudo -su contrast_service

2. Shut down the Contrast server with this command:

 $CONTRAST_INSTALLATION/bin/contrast-server stop

3. Are you going to use the contrast-server.vmoptions file to reset the password?
• If yes, go to step 4.
• If no, go to step 5.

4. To reset the password with the contrast-server.vmoptions file, use this procedure:
a. Go to the $CONTRAST_INSTALLATION/bin directory. On most systems, this directory

is /opt/Contrast/bin.
b. Open the contrast-server.vmoptions file in a text editor.
c. Add the following options to the file (replace youremaildomain.com with your email

domain):

-Dreset.superadmin=true
-Dsuperadmin.username=contrast_superadmin@<your.email.domain.com>
-Dsuperadmin.password=<password>

5. To reset the password with environment variables instead of the vmoptions file, use this
procedure:
a. Go to the $CONTRAST_INSTALLATION directory. On most systems, this directory is /opt/

Contrast.
b. Enter the following command:

 export INSTALL4J_ADD_VM_PARAMS="$INSTALL4J_ADD_VM_PARAMS -
Dreset.superadmin=true -
Dsuperadmin.username=contrast_superadmin@<your.email.domain.com> -
Dsuperadmin.password=<new password>"

6. Start the Contrast server with this command:

  $CONTRAST_INSTALLATION/bin/contrast-server start

When the server starts, use the password you specified in step 4 or 5.
7. Shut down the Contrast server with this command:

 $CONTRAST_INSTALLATION/bin/contrast-server stop

8. If you used the contrast-sersver.vmoptions file, remove the options you added in step 4.
9. Start the Contrast server as you normally would and exit the shell.

If you used environment variables to reset the password, this step clears the password from
the INSTALL4J_ADD_VM_PARAMS environment variable.

Contrast Documentation

System administration 928



Reset SuperAdmin password on Windows
To reset the SuperAdmin password in the Contrast application.

1. Stop the Contrast Server service.
2. Launch a command prompt (cmd.exe) as an Administrator by right-clicking on cmd.exe and

selecting Run As Administrator.
3. Go to the Contrast\bin directory. (On most systems, this is C:\Program Files\Contrast\bin.)
4. Use this command to edit the JVM options:

  notepad contrast-server.vmoptions

5. Add the following options to the file. (Replace youremaildomain.com with your email domain.)

 -Dreset.superadmin=true
  -Dsuperadmin.username=contrast_superadmin@<your.email.domain.com>
  -Dsuperadmin.password=<password>

6. Save the file and exit Notepad.
7. Use this command to start the Contrast service:

  net start "Contrast Server"

8. Verify you are able to log in with the new password.
9. Enter the following command to stop the Contrast service:

  net stop "Contrast Server"

10. Enter the following command to edit the JVM options:

  notepad contrast-server.vmoptions

11. Remove the options added in step 5.
12. Save the file and exit Notepad.
13. Exit the command prompt.
14. Start the Contrast Server service as normal (from the Services control panel).

Manage keys
As a System Administrator, you can set policies for the keys across all your organizations to make sure
they always meet your security standards.

1. In system settings (page 929), select Security.
2. Under API keys choose the number of characters required as well as the minimum number of

numerals, upper case characters and lower case characters required in the key. These standards
apply when anyone rotates the API key (page 71).

3. Check the box at the top of the form if you want to Mask invalid IPs on login.
4. Select Save.

Configure system settings
The System settings page lets you configure standard settings at a system level.

A distributed deployment (page 879) of Contrast requires a different configuration.

Contrast Documentation

System administration 929



Steps

1. Log in as SuperAdmin, ServerAdmin or System Administrator.
2. Select SuperAdmin in the user menu.
3. Select System settings in the user menu.

You can access:
• General settings (page 931)
• Licensing (page 932)
• Policy (page 935) (library compliance settings)
• Security (passwords (page 927), two-step authentication (page 517) and key

management (page 929))
• Agent keys (these are the same Agent keys (page 71) that you can find in Organization settings).
• Authentication (page 913)
• Mail (page 935)
• Score settings (page 830)

Additional system settings
Additional system settings include:

Contrast Documentation

System administration 930



• Configure Tomcat (page 885)
• Configure Java Runtime Environment (JRE) (page 885)
• Configure HTTPS (page 886)
• Add organizations (page 901)
• Configure log levels (page 893)
• Configure reporting storage (page 891)

Configure general system settings
General settings is part of system settings (page 929). Here, you can configure these settings:

• Default language: Select the language for your user interface.
• X-Forwarded-For header: Check the box if you want to use this header for auditing.
• Proxy: Connect your internet bound traffic.
• Hub: Integrate with Hub for library and CVE updates.
• Diagnostics: Send Contrast health statistics to enable proactive support and resolve support cases

faster.
• Agent diagnostics: Send Contrast agent data to improve rules, performance and to prioritize

product improvements.
• Heroku settings: Enter your password and SSO salt for the Heroku integration.

Manage diagnostics at a system level
Contrast collects diagnostics that measure customer product usage to help provide faster, more
proactive support and guide delivery of new functionality.

Contrast periodically sends snapshots of relevant data elements and aggregations to a diagnostics
service on Contrast’s hosted platform. Data that could be used to identify a customer or organization is
obscured using a one-way hash, and is encrypted both in transit and at rest. Due to privacy concerns,
the data doesn’t include application names, personally identifying information, code, vulnerability
identities or customer network identifiers.

The data is then stored in a Contrast database, where it’s made available to approved support and
development users for analysis and reporting. Within the database, the data is attributed to customers
to provide Customer Support insight into how to better assist Contrast customers.

Diagnostics improve customer support in three main ways:

• Customer Support analyzes diagnostics data for markers and reaches out proactively to customers to
prevent problems.

• Data is used to quickly diagnose existing problems and reduce the cycle time for successfully
resolving support cases.

• Deployment and usage insights help Contrast product development teams adjust and deliver new
functionality that better address customer needs.

As a SuperAdmin, ServerAdmin or System Administrator, you can enable or disable diagnostics for your
whole on-premises system:

1. In system settings, select General settings from the left navigation.
2. Under Internet settings, use the Diagnostics setting to disable or enable this feature. Diagnostics

are enabled by default.
Proxy settings apply to  Contrast Hub and diagnostics settings.

Contrast Documentation

System administration 931

https://hub.contrastsecurity.com/h/


TIP
You can also use the REST API to preview the data that will be transmitted to Contrast
in these diagnostics.

Allocate licenses at a system level
Contrast has these types of licenses:

• On-premises customers require a license to install (page 873) and upgrade (page 895) Contrast.
• Hosted and on-premises customers require specific licenses for Assess (application licenses),

Protect (server licenses), and SCA (library licenses).

Use this procedure to allocate Assess and Protect licenses to organizations.

Before you begin

• For on-premises customers, a SuperAdmin or ServerAdmin role is required to allocate Assess and
Protect licenses to a particular organization.
Contrast Security handles this activity for hosted customers.

• Licenses applied to applications permanently count towards the number of maximum allowable
applications. Deleting a licensed application has no effect on the number of licenses you are allowed
to apply to applications.

Steps to allocate licenses

1. Select SuperAdmin or ServerAdmin in the user menu.
You see a list of organizations. The Licenses column shows the total number of Assess and
Protect licenses available for each organization, followed by the number of unused licenses in
parentheses.

2. You see a list of organizations. The Licenses column shows the total number of Assess and
Protect licenses available for each organization, followed by the number of unused licenses in
parentheses.
• Select Assess or Protect in the Licenses column.

• Select the triangle ( ) at the end of a row and select License summary.

Contrast Documentation

System administration 932

https://api.contrastsecurity.com/


3. To add available Assess licenses to an organization:
a. Select Add more licenses above the Assess license bar.
b. In Assess licenses, enter the number of licenses you'd like to make available to this

organization.
c. In Expiration date, enter an expiration date for the licenses you are adding.
d. Select Allocate.

4. To remove unused Assess licenses from an organization, select Revoke unused licenses below
the Assess license bar.

5. To change the number of purchased Protect licenses allocated to an organization:
a. Select Change license allocation above the Protect license bar.
b. In License allocation, enter the number of licenses that you want to let the organization use.

The default value is the number of purchased licenses. To revoke licenses for the organization,
enter a value that's less than the number of purchased licenses. You can revoke more than the
number of purchased licenses.

c. Select Save changes.

Contrast Documentation

System administration 933



Steps for license details and settings
1. To view the number of licenses available for each organization, Select Organizations in the

header,
The Licenses column shows the total number of Assess and Protect licenses available for each
organization, followed by the number of unused licenses in parentheses.
If Assess licenses are nearing expiration, you see a red warning icon. Hover over the icon to see
the number of licenses expiring.

2. To view the number of available licences as well as the number of applications or servers that are
unlicensed, from the user menu, select System settings > Licensing.

3. To automatically apply licenses to new applications or servers, under Licensing, select the toggle
for Assess or Protect licenses. Then, select whether this setting applies to all applications or
servers or only new ones.
SuperAdmins, ServerAdmins and System Administrators also have the option to automatically
apply licenses when you add an organization (page 901).

4. In the top right of the Licensing window, you can select Allow Organization Administrators to
override these settings (this setting defaults to enabled).

Customize score settings at a system level
Contrasts designates an application score (page 950), which can optionally depend on a library
score (page 608). To customize score settings at a system level:

Contrast Documentation

System administration 934



1. Under system settings (page 929), select Score settings.
2. Select an option for Overall score to determine how applications are scored in Contrast:

• Default score is the average of your application's library score (page 608) and its custom code
score.

• Custom code-only score ignores library score when calculating the overall application score. If
you select this option, you can click to select specific languages, or apply it to all languages.

3. Select an option for Library score to determine how libraries are scored in Contrast:
• Default score uses an algorithm that includes vulnerabilities as well as the age and versioning of

a library.
• Vulnerability-only score bases scoring solely on vulnerabilities present in the library.

4. Select the box next to Allow organization override so that an Organization Administrator can
determine score settings at an organization level. (page 830)

5. Select Save.

NOTE
A RulesAdmin can configure policy settings in Policy Management so that any library
in violation automatically receives a failing score (F). Once these settings are chosen,
you'll see an alert message in Score Settings. Clicking the policy link in the alert
navigates you to Library Policy, where administrators may view and revise these
settings.

Manage library compliance policy
You can manage library compliance policy at the system level. Library compliance policy allows you
to restrict libraries that applications can safely use and set version requirements for specific libraries.
Contrast can flag applications that use restricted libraries and flag or fail libraries that violate the
compliance policy.

To manage library compliance policy:

1. Open the user menu (your name in the top right corner of Contrast) and select System
settings (page 929).

2. Select Policy.
3. Set compliance requirements for your policy: libraries that are restricted from use, library version

requirements, and whether Contrast should fail libraries that violate the policy.
4. Select Allow organization override, if you want Organization Administrators and RulesAdmins to

set compliance policy (page 803) at an organization level.

Manage email notifications at a system level
System Administrators can enable or disable and configure Contrast to communicate with an
appropriate SMTP system to receive these notifications.

Notifications allow Contrast users to receive alerts in specific situations, such as the discovery of a
vulnerability or an attack on an application or when a password is reset.

Organization Administrators can set default settings (page 827) for Contrast notifications at an
organization level. Individual users can adjust their own settings (page 519).

To configure notifications at a system level:

1. Under system settings (page 929), select Mail in the left navigation.

Contrast Documentation

System administration 935



2. Configure these settings:
• Enable mail: Use the toggle to enable or disable the feature.
• Mail protocol: Values can be "SMTP" or "SMTPs".
• Mail host: The fully qualified address of the SMTP server.
• Mail port: The likely value is "25".
• Use SMTP auth: Check the box to enable this setting.
• Mail user: A user account for authentication purposes on the SMTP system.
• Mail password: The password for the mail user associated with the SMTP system.
• Mail from: Enter the email address you want system notifications to be sent from.
• Enable STARTTLSL: Check the box to enable this setting.

3. Select Save.

Maintain Contrast on-premises
As a system administrator there are some ongoing tasks that are required for maintenance of the
system. You may need to:

• Back up MySQL databases (page 938)
• Improve performance (page 33)
• Upgrade Contrast (page 895)
• Upgrade the agents (page 896)
• Update library data (page 897)
• Update the Contrast license (page 899)
• Update the IP address (page 897)
• Manage SSL (page 940)
• Use the encrypted properties editor (page 936)

Use the encrypted properties editor
Contrast includes several configuration files in the $CONTRAST_HOME/data/conf directory. By default,
Contrast encrypts the configuration files for security, but you can modify some of these files through
workflows in Contrast.

For example, these are some of the encrypted properties files for on-premises installations:

Name Contents

ad.properties Settings to connect and configure Contrast to authenticate Active Directory groups.

ldap.properties Settings to connect and configure Contrast to authenticate LDAP groups.

database.properties Host and connection settings for communication between Contrast and MySQL.

saml.properties SAML keystore security settings.

Contrast also includes an editing tool to decrypt these files and assist with configuration. This is helpful
when you are running Contrast (page 882) and need to get values from encrypted properties files
outside of the application or automatically update a property in the files, such as automatic password
rotation.

To edit encrypted properties files:

1. Find the decryption tool in the $CONTRAST_HOME/bin directory.
• Linux: the file is a shell script called edit-properties.
• Windows: the file is a Windows command file called edit-properties.exe.

2. Run the tool from a command prompt. This opens an application that allows you to update the
value of an encrypted property:

$CONTRAST_HOME/bin/edit-properties -e $CONTRAST_HOME/data/esapi -
f $CONTRAST_HOME/data/conf/ad.properties

Contrast Documentation

System administration 936



3. You must provide input details to view or edit encrypted properties files. The basic inputs you need
are:
• The path to ESAPI.properties.
• The target properties file to edit.
To find this information for the encrypted properties editor, execute edit-properties with no
arguments:

contrast@EOP-TeamServer:~/contrast/bin$ ./edit-properties 

usage: property-editor
 -c,--comment <text>      The comment for the top of the file
 -e,--esapi <path>        The path to the ESAPI.properties file
 -f,--targetFile <file>   The properties file to edit
 -o,--print-value         Print out the value of the property and exit
 -p,--property <name>     The name of the property to set
 -v,--value <val>         The value of the property

4. This example shows you how to edit an encrypted file. Provide the path to ESAPI.properties and
the target properties file to edit. You will see the existing values encrypted in the file that you can
edit. The usage options above allow you to view or edit a single property.

contrast@TeamServer:~/contrast/bin$ ./edit-properties -e ../data/esapi/ -
f ../data/conf/ad.properties

ad.userDn                                         : cn=Directory Manager
ad.identity.attribute.name                        : mail
ad.password                                       : NotaRealPassword
ad.nested.groups.enabled                          : false
ad.group.users                                    : \
cn=ContrastUsers,cn=Users,dc=contrastsecurity,dc=com
ad.group.admin                                    : \
cn=ContrastAdmins,cn=Users,dc=contrastsecurity,dc=com
ad.url                                            : ldap://localhost:389
ad.base                                           : \
dc=contrastsecurity,dc=com

5. You can also retrieve or update unencrypted values for a property. To retrieve values, pass another
parameter to the properties editor. In this example, the user is looking for details about database
properties:

$CONTRAST_HOME/bin/edit-properties \
   -e $CONTRAST_HOME/data/esapi \
   -f $CONTRAST_HOME/data/conf/database.properties \
   -p jdbc.username \
   -o

To update unencrypted values, pass a different set of arguments to the properties editor:

$CONTRAST_HOME/bin/edit-properties \
   -e $CONTRAST_HOME/data/esapi \
   -f $CONTRAST_HOME/data/conf/database.properties \
   -p jdbc.username \
   -v joe.user \
   -c "Updating JDBC Password"

Contrast Documentation

System administration 937



NOTE
Add comments to indicate edits to encrypted properties files. This is useful for auditors
or others who need to track configuration changes.

MySQL backups
Use these procedures to maintain the MySQL databases that the Contrast installer creates.

These procedures do not apply to a MySQL database that you create for distributed environments.

• Create an automated MySQL backup (page 938)
• Backup MySQL manually (page 938)
• Restore database backups (page 939)
• Disable automated backups (page 939)

Backup MySQL manually
You can also use the backup-db script included with Contrast to do this.

Before you begin

• Be sure you have permission to run the backup-db script. Typically, you must be the installation
owner for a Contrast, root or Windows Administrator account to do this.

• Be sure that Contrast is running and MySQL is available.

Steps

1. If you have not done so, configure the database backup location. Set a location for
database.bk.dir by editing the $CONTRAST_HOME/data/conf/database.properties file with the
encrypted editor (page 936).

2. Run the backup command for your environment:
• Windows:$CONTRAST_HOME\bin\backup-db.cmd
• Linux:$CONTRAST_HOME/bin/backup-db.sh

Create an automated MySQL backup
You can create a backup of the Contrast MySQL database on a regularly scheduled basis. During
installation (page 873), you can select this option and define a time and location for storing database
backups.

If you skip this step during installation, you can still configure Contrast later to schedule database
backups.

Steps

1. Find Contrast database settings in $CONTRAST_HOME/data/conf/database.properties.
2. Use the encrypted properties editor (page 936) to identify database settings. The example below

shows a Contrast database with backups enabled, scheduled and in a specific location. You can
edit these settings, if any options need to change.

contrast@TeamServer:~/contrast/bin$ ./edit-properties -e ../data/esapi/ -
f ../data/conf/database.properties

database.bk.time                                  : 4:0:0
database.bk.enabled                               : true

Contrast Documentation

System administration 938



database.bk.dir                                   : /mnt/backups/mysql/
contrast

3. If you want to upgrade Contrast, you should capture any data created or changed since the last
scheduled backup.

Disable automated backups
You can stop automated backups of the Contrast MySQL database. Scheduled backups run
through schtasks on Windows and crontab on Linux.

To disable automated backups:

For Windows, use Task Scheduler to disable or delete ContrastBackup.

For Linux:

1. Switch to the user under which you installed Contrast and run crontab -l.
2. This lists the scheduled job. You will see:

0 2 * * * /usr/local/contrast/bin/backup-db.sh

3. Run  crontab -e to delete a single backup. Run crontab -r to delete all backups.

CAUTION
The -e option allows edits with Vim to delete selected backups. The -r option deletes
everything: be careful when you use it.

Restore database backups
Use this procedure to restore the MySQL database that the Contrast installer creates.

This procedure does not apply to MySQL databases that you create for distributed environments.

Before you begin
Database restoration should be performed by a MySQL Database Administrator.

Steps

1. Use the encrypted properties editor (page 936) to identify the MySQL database settings.
2. Shut down Contrast.
3. Start up MySQL individually using the MySQL service packaged with Contrast. Replace

<YourPath> with the path to your Contrast home.
• Windows:

"<YourPath>\mysql\bin\mysqld.exe" --defaults-
file="<YourPath>\data\conf\my.cnf"

• Linux:

sudo -u contrast_service <YourPath>/mysql/bin/mysqld --
defaults-file=<YourPath>/data/conf/my.cnf --basedir=<YourPath>/mysql --
datadir=<YourPath>/data/db --plugin-dir=<YourPath>/mysql/lib/plugin --
lc-messages-dir=<YourPath>/mysql/share --tmpdir=/tmp --lc-
messages=en_US --log-error=<YourPath>/logs/mysql_error.log --pid-
file=<YourPath>/data/proc/MysqldResource.pid --port=13306

Contrast Documentation

System administration 939



4. Connect to MySQL. Replace <jdbc.host>, <jdbc.port>, <jdbc.user> and <jdbc.schema>
with your host, port, user and schema.
• Windows:

mysql -h <jdbc.host> -P <jdbc.port> -u <jdbc.user> -p <jdbc.schema>

• Linux:

./mysql -h <jdbc.host> -P <jdbc.port> -u <jdbc.user> -p <jdbc.schema>

5. Drop the Contrast database with drop database <jdbc.schema>;.
6. Create the Contrast database with create database <jdbc.schema>;.
7. Grant permissions to the Contrast user with GRANT ALL PRIVILEGES ON *.* to

'contrast'@'%';.
8. Exit from MySQL.
9. Restore the MySQL backup. Replace <backup_location> with your backup location and

<backup_filename> with your backup filename.
• Windows:

mysql -h <jdbc.host> -P <jdbc.port> -u <jdbc.user> -
p <jdbc.schema> < <backup_location>/<backup_filename>

• Linux:

./mysql -h <jdbc.host> -P <jdbc.port> -u <jdbc.user> -
p <jdbc.schema> < <backup_location>/<backup_filename>

10. Shut down MySQL:
• Windows:

Use the Windows Service Manager application to shut down the MySQL service.
• Linux:

$CONTRAST_HOME/mysql/bin/mysqladmin.exe shutdown -h localhost -
P 13306 -u contrast -p

You are prompted for the password that is set in the encrypted properties editor.
11. Restart the fully-restored Contrast and MySQL together.

Manage SSL
On-premises customers may need to use a Secure Sockets Layer (SSL) in the following situations:

• Setting up HTTPS proxy authentication (page 927)
• Integrating with LDAP (page 919) or Active Directory (page 915)
• Securing communication between agents and the Contrast application

Contrast Documentation

System administration 940



Reference

These topics may be useful as an occasional reference on how to use Contrast:

• Glossary (page 941)
• Roles and permissions (page 945)
• Agent supported technologies (Java (page 85), .NET Framework (page 174), .Net Framework

(Legacy), .NET Core (page 232), Node.js (page 290), Python (page 360), Ruby (page 414),
Go (page 473))

• Application scoring guide (page 950)
• Library scoring guide (page 608)
• Log levels (page 952)
• Supported browsers (page 956)
• Regular expressions for application exclusions (page 802)

Glossary of terms
These terms are defined specifically as they apply to users of Contrast. You can hover over these terms
in other topics to pull up the definition in context.

account takeover (ATO) An account takeover is the result of an attack that steals login
credentials or otherwise breaks authentication in web applications.

agent An agent is language-specific code that is installed in a web application
to gather and analyze security data, and report findings to Contrast
when necessary.

application An application is a logical grouping of customer code analyzed by a
Contrast agent.

attack An attack (page 706) is made up of one or more attack events that
occur within a discrete time frame.

attack event An attack event is a violation of Protect rules or other
suspicious application activity in instrumented applications. The event
corresponds to a single attack vector, such as an HTTP request or
SQL query. Multiple attack events make up an attack, usually in the
same area of code and timeframe.

brute-force attack A brute-force attack is the systematic submission of many passwords
or passphrases with the intent of eventually guessing correctly.

chief information security
officer (CISO)

The chief information security officer directs an organization's
information security program to assure and demonstrate that sensitive
assets are well-protected and staff can manage and prevent
vulnerabilities.

command injection Command injection attacks target the host operating system through a
vulnerable application. They happen when a user passes unsafe data
to a system shell through a form, cookie or HTTP header or some
other part of the application.

common language runtime
(CLR)

Common Language Runtime manages the execution of .NET
Framework programs.

Contrast Documentation

Reference 941

https://support.contrastsecurity.com/hc/en-us/articles/12602794806804-Install-the-NET-Framework-Agent-legacy-
https://support.contrastsecurity.com/hc/en-us/articles/12602794806804-Install-the-NET-Framework-Agent-legacy-


Common Vulnerabilities and
Exposures (CVE)

Common Vulnerabilities and Exposures is a list of publicly known
cybersecurity vulnerabilities, used internationally to identify and track
types of vulnerabilities.

container image A container image is a static file with executable code that can create a
container on a computing system.

continuous integration/
continuous delivery (CI/CD)

Agile practice that encourages continuous iterations and automation in
building, testing and deployment.

Contrast command line
interface (Contrast CLI)

The Contrast CLI is a text-based user interface. It can be run in the
development environment to get early software composition analysis
(SCA) visibility of your open-source libraries before you build and
deploy. Results from the CLI can be viewed in the text-based response
and they are also represented as a dependency tree (page 607) in
Contrast.

Contrast Hub The Contrast Hub is where on-premises customers can download the
Contrast installer and license files and check for agent updates.

Contrast service The Contrast service is a program written in Go that connects the
Contrast web interface with the Node.js, Ruby and Python agents.

credential stuffing Credential stuffing is a brute force attack that automatically injects pairs
of breached usernames and passwords to access user accounts.

cross-site scripting (XSS) Cross-site scripting is an attack that occurs when malicious scripts are
injected into a web application through user inputs that generate output
without validating or encoding it.

dependency confusion Dependency confusion, also known as a "substitution attack," is when
an attacker registers the same name for an organization's internal
library on a public package index in order to send vulnerable or
malicious code into the organization's private code repositories.

distroless image Distroless images contain only your application and its runtime
dependencies. They do not contain package managers, shells, or
any other programs you would expect to find in a standard Linux
distribution.

dynamic application security
testing (DAST)

A security testing technology that is designed to detect conditions that
point to a security vulnerability in an application in its running state.

environment In Contrast, applications are organized into one of three environments:
development, test (QA) and production.

environment variable Environment variables are values you can pass to software at runtime,
usually key/value pairs that you define outside of an application. In
Contrast, these are used to configure the agents (page 70) that
instrument your applications and make sure they work within your
preferred frameworks as expected and report metadata you want to
see in Contrast.

Exploit Prediction Scoring
System (EPSS)

Calculation based on the likelihood of a vulnerability being exploited.

EPSS provides a probability range between 0 to 1 (0 and 100%). A
higher score indicates a vulnerability likely will be exploited within 30
days.

Contrast Documentation

Reference 942

https://cve.mitre.org/
https://hub.contrastsecurity.com/


The EPSS percentile is a percentage score assigned to a specific
vulnerability that indicates how likely it is to be exploited compared
to other vulnerabilities. For instance, a vulnerability with an EPSS
percentile of 90% means it has a higher probability score than 90%
of all other CVEs in the group.

false positive A vulnerability that is falsely reported.

flow map A flow map is a visualization of an instrumented application in Contrast
that shows all back-end systems it uses and any other applications
connected to it. This helps you assess risk by analyzing what else
touches vulnerable applications.

instrument Monitor applications with software agents that observe and report data
at runtime. Contrast agents send security vulnerability data about your
applications based on exercised routes.

interactive application
security testing (IAST)

Security technology that analyzes data flows within a running
application to detect and report possible security vulnerabilities.

IP allowlist An IP allowlist is a rule that allows any HTTP request from IP
addresses on that list.

IP denylist An IP denylist is a rule that blocks any HTTP request from IP
addresses on that list.

library A library is any packaged code included in an application.
Libraries (page 598) can be public or private.

lightweight directory access
protocol (LDAP)

LDAP is a lightweight client-server protocol for accessing and
maintaining directory services. In Contrast, on-premises can use
LDAP (page 919) to manage users and logins.

manifest Files that are stored with a project to declare which dependencies are
required by a project.

National Institute of
Standards and Technology
(NIST)

NIST is a government agency that promotes U.S. innovation
and industrial competitiveness by advancing measurement science,
standards, and technology, in multiple fields including cybersecurity.

Not a problem For library status. This library has vulnerabilities that are acknowledged
and the risks are acceptable.

Open Web Application
Security Project (OWASP)

Open Web Application Security Project® is a nonprofit foundation that
works to improve the security of software through an open platform that
supports shared security projects and member education. The OWASP
Top Ten lists the most critical security defects in Web applications.

path traversal Path traversal is an attack that attempts to access critical system files
and directories stored outside the web root folder. It uses variables
that reference files with “dot-dot-slash" (../) sequences or absolute file
paths.

policy A policy is the set of rules for a given application or library that
triggers security violations, status changes, or notifications when
certain conditions are true. Policies assure more consistent security
standards across applications or teams.

Contrast Documentation

Reference 943

https://www.nist.gov/
https://owasp.org/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/


profiler chaining Profiler chaining is a way to run the .NET Framework or .NET Core
agent alongside other .NET profiler agents, such as performance or
APM tools.

Remediated For library status. The vulnerable library has been remediated.

Reported For library status. Default status when a library with vulnerabilities is
detected by Contrast.

Route A route, as reported in Contrast Assess, is a function signature of the
method that handles requests to one or more URL patterns. The exact
format can vary, depending on the language of the Contrast agent you
are using. A route can have multiple URLs associated with it.

rule A rule is a security control used to identify a vulnerability or attack
event. If the rule matches, the agent sends a vulnerability or attack
event to Contrast for the affected application.

runtime application self-
protection (RASP)

Contrast uses RASP methods to monitor attacks and actively defend
applications in production.

score Contrast provides library (page 608) and application (page 950)
scores that reflect the current security situation for your applications
or libraries.

security assertion markup
language (SAML)

SAML is an XML-based standard used to create and exchange
security information between online partners, such as single sign-on
authentication.

security incident event
management (SIEM)

SIEM systems collect and analyze security events and related data
from other systems to support threat detection, compliance, and
security incident management. Contrast integrates with several leading
SIEM systems.

sensitive data masking This feature redacts sensitive data in Contrast logs and other data
transmissions from the Contrast agent, without affecting how that data
is processed by the application.

single sign-on (SSO) Single sign-on is an authentication or user identification service that
gives users access to multiple systems with only one set of credentials.

sink In data flow analysis (page 699), the sink is where data ends. A sink is
any external format or location to which data is written.

Software Composition
Analysis (SCA)

Identify vulnerable libraries, fail a build based on CVE severity, and
view a dependency tree to understand the dependencies between
libraries and where vulnerabilities have been introduced.

software development life
cycle (SDLC)

The series of steps by which ideas become software that is used by
people.

source In data flow analysis (page 699), the source is where data starts. A
source is any input data or request that enters a system.

SQL injection (SQLi) A SQL Injection attack inserts or "injects" a SQL query within user
input data from the client to get it into the application. The intent is to
read or modify database data or send commands to the database (for
example).

Contrast Documentation

Reference 944

https://xkcd.com/327/
https://xkcd.com/327/


stack trace A stack trace lists the sequence of events that led to a failure. For
Contrast, the stack trace shows the events that led to a security
vulnerability.

static application security
testing (SAST)

A method of finding potential vulnerabilities in applications without
installing or running the application.

testing coverage This is a testing technique that monitors the number of tests that have
been executed.

unused functions Also called shadow functions. This is a function on a cloud
environment that has not been invoked for over 90 days.

web application firewall
(WAF)

A WAF inspects and filters web traffic to defend applications from
common attacks.

webhook Integration method that sends real-time data from one application to
another via HTTP every time a specified event occurs.

Roles and permissions
Permissions and capabilities are granted to users depending on the role they are assigned. Roles
exist at the application (page 945), organization (page 947) and (for on-premises customers)
system (page 949) levels. Most of these roles are defined when a user is assigned to an access
group (page 818).

You can also:

• View your own permissions (page 519)
• Manage organization permissions (page 818)
• Manage system permissions (page 900)
• Grant Protect permissions (page 908)

NOTE
API-Only users can access Contrast's REST API, but can't log in to the user interface.
Contrast doesn't recommend the creation of administrator API accounts.

Application roles
Application roles give users permissions and capabilities within a particular application. Application
roles are assigned to access groups (page 818).

Use these application roles to grant permissions and capabilities within an application:

Contrast Documentation

Reference 945



View The View role for applications (Application Viewer) has read-only access to the Contrast interface
to see scores, libraries, vulnerabilities and comments, but cannot perform edits to traces to the
application.

Edit The Edit role for applications (Application Editor) can remediate findings, add tags, manage
vulnerabilities, edit attributes, merge applications, add or delete applications, and create servers.
The majority of Contrast users have this role.

Contrast Documentation

Reference 946



Rules Admin The Rules Admin role for applications (Application Rules Admin) can edit rules and policies in the
application, enable Protect, and manage notifications and scoring for the application.

Admin The Admin role for applications (Application Administrator) has no restrictions and can manage
other users' access to the application.

The No Access role blocks user access to the application.

You can add application roles when you create or edit an organization access group (page 818).

See also
View permissions (page 519)

Organization roles
Users may have different roles across different organizations.

Every user has a default role for the default organization.

These are the organization roles:

Contrast Documentation

Reference 947



View The View role for organizations (Organization Viewer) has read-only access to the Contrast
interface to see scores, libraries, vulnerabilities and comments, but cannot perform edits to traces
to the application.

Edit The Edit role for organizations (Organization Editor) can remediate findings, add tags, manage
vulnerabilities, edit attributes, merge applications, add or delete applications, and create servers.
The majority of Contrast users have this role.

Contrast Documentation

Reference 948



Rules Admin The Rules Admin role for organizations (Organization Rules Admin) can edit rules and policies in
the application, enable Protect, and manage notifications and scoring for the organization.

Admin The Admin role for an organization (Organization Administrator) is responsible for the
configuration and management of the organization.

You assign organization roles by adding users to an organization access group (page 818).

See also
View permissions (page 519)

System roles

NOTE
These roles are only available to on-premises customers.

Contrast Documentation

Reference 949



When deciding how to manage system administration (page 900), you can use these roles to assign
permissions and capabilities:

• A SuperAdmin is responsible for the installation and setup of on-premises instances. They may
also be responsible for the system administration of Contrast, however, this may be assigned to one
or more System Administrators. SuperAdmins can configure organizations, applications, servers,
vulnerabilities, users and groups.

• A ServerAdmin is identical to a SuperAdmin except without access to users or groups. They have
access to the ServerAdmin option in the user menu, which allows them to configure organizations,
applications, servers and vulnerabilities.

• A System Administrator is responsible for maintaining organizations and groups. They have
access to the SuperAdmin option in the user menu, which allows them to configure organizations,
applications, servers, vulnerabilities, users and groups.

• A System Observer has read-only access to organizations, users, applications, groups and traces.
They have read-only access to the Observer option in the user menu, which allows them to view
organizations, applications, servers, vulnerabilities and users.

• The No Access role for a particular organization blocks users from that organization.

Application scoring guide
The application score helps you gauge the general performance of each application.

Scores are based on how much of the application has been exercised, as well as the amount and
severity of vulnerabilities found for that application.

Numeric scores map to letter grades that are shown in Contrast:

• A: 90-100
• B: 80-89
• C: 70-79
• D: 60-69
• F: 35-59

To calculate the application score, find the average of the application's library score (page 608) and the
custom code score.

To calculate the custom code score, start with 100 points and subtract penalty points for the number of
vulnerabilities found in your application times a penalty weight for their severity, shown here:

• Critical: Multiply the number of vulnerabilities by 20
• High: Multiply the number of vulnerabilities by 10
• Medium: Multiply the number of vulnerabilities by 5
• Low: Multiply the number of vulnerabilities by 1

Vulnerabilities are weighted differently depending on how likely they are to be exploited and how
serious the effects would be.

For example, a SQL injection is considered Critical because automated tools exist to exploit them
without expertise. An attacker who doesn't know anything about your application or schema can
exfiltrate your entire database contents.

On the other hand, using a hashing algorithm like SHA-1 is considered Low because it has been known
to exhibit serious weaknesses. Also it requires the resources of a very skilled attacker with extensive
backing.

Contrast Documentation

Reference 950



TIP
For example, to calculate your application score:

First determine your custom code score. If your application had 0 Critical, 1 High, 2
Medium and 1 Low vulnerability, your custom code score would be:

100 - (20 X 0) - (10 X 1) - (5 X 2) - (1 X 1)= 79

If you are running Contrast on an application with a library score of 85 and a custom
code score of 79, your application score would be 82 which would be a B.

85 + 79 = 164
164/2 = 82

To improve your score:

• Enable Protect rules (page 789) and CVE shields to remove protected vulnerabilities from the score
calculation.

• Remediate Critical and High vulnerabilities in your custom code.
• Address the vulnerable libraries.
• Update High risk libraries.

Library scoring guide
Contrast provides letter grades for the security of your application's libraries so that you can use them
as a reference point during analysis. The grades map to scores as follows:

• A: 90 - 100
• B: 80 - 89
• C: 70 - 79
• D: 60 - 69
• F: 35 - 59

Scores are based on three penalty factors:

• Time: The age of the library is calculated based on the number of full years between the release of
the latest version and the version used in the application, multiplied by 2.5.

• Status: The status is calculated based on the number of versions that have been released since the
current library in your application, multiplied by 10.

• Security: The CVE penalty of the library is the highest severity of all known CVEs for this library,
multiplied by 10.

NOTE
Organization administrators can adjust the scoring method (page 830) to include only
security criteria.

Contrast Documentation

Reference 951



TIP
For example:

If you're using a library from January 2010 and the latest version came out
in September 2013, the number of full years passed is two. So your time penalty would
be:

2 x 2.5 = 5

If you're using Version 1.1.1, but Versions 1.1.2 and 1.1.3 have been released, your
penalty would be:

2 x 10 = 20

If you have a library with the scores 2.4 and 2.2, the penalty would be:

2.4 x 10 = 24

The final score of the library is calculated by subtracting each of the three penalty
values from 100.

100 - 5 - 20 - 24 = 51

A score of 51 maps to a letter grade of F.

Log levels
The log level setting controls which events are processed by server logging, and can help you more
effectively capture events. They can be configured at a system level (page 893) or for a particular
server (page 592) by any user with Editor permissions.

Log levels follow the Log4j standard and honor their level designations as much as possible.

INFO is the default value. ERROR level is sufficient in most cases, unless a problem occurs and you
need to collect more detailed metrics.

Log level Description

ERROR Gives information about a serious error that needs to be addressed and may result in an unstable state.

WARN Gives a warning about an unexpected event to the user. The messages coming out of this level may not halt the
progress of the system.

INFO Gives the progress and chosen state information. This level is useful for the end user.

DEBUG Helps the developer debug the application. Level of the message logged is focused on providing support to an
application developer.

TRACE Gives more detailed information than the DEBUG level.

Events and generic webhook variables
You can customize your generic webhook (page 748) response with data from Contrast events
such as NEW_VULNERABILITY and SERVER_OFFLINE. Each event contains general (page 750),
application (page 750), server (page 750) or vulnerability (page 750) variables you can call in your
payload request.

Event Variables
ATTACK_END General (page 750), Application (page 749), Server (page 750)

ATTACK_EVENT_COMMENT General (page 750), Application (page 750), Server (page 750)

Contrast Documentation

Reference 952



Event Variables
ATTACK_UPDATE General (page 750), Application (page 750), Server (page 750)

EXPIRING_LICENSE General (page 750), Application (page 750)

NEW_ASSET (if new application) General (page 750), Application (page 750) and Server (page 750) (if new
application)

NEW_ATTACK_APPLICATION General (page 750), Application (page 750), Server (page 750)

NEW_ATTACK_UPDATE General (page 750), Application (page 750), Server (page 750)

NEW_ATTACK General (page 750), Application (page 750), Server (page 750)

NEW_VULNERABILITY_COMMENT General (page 750), Application (page 750), Server (page 750),
Vulnerability (page 750)

NEW_VULNERABILITY General (page 750), Application (page 750), Server (page 750),
Vulnerability (page 750)

NEW_VULNERABLE_LIBRARY General (page 749), Application (page 750)

SERVER_OFFLINE General (page 750), Server (page 750)

VULNERABILITY_CHANGESTATUS_CLOSED General (page 750), Application (page 750), Server (page 750),
Vulnerability (page 750)

VULNERABILITY_CHANGESTATUS_OPEN General (page 750), Application (page 750), Server (page 750),
Vulnerability (page 750)

VULNERABILITY_DUPLICATE General (page 750), Application (page 750), Server (page 750),
Vulnerability (page 750)

Generic webhook variables
You can customize your generic webhook (page 748) response with data from Contrast events such
as NEW_VULNERABILITYand SERVER_OFFLINE. Each event contains variables you can call in your
payload request. Variables are either for general use or for an application, server or vulnerability.

Variables Description

General variables
$EventType The event type responsible for triggering the webhook

For example: SERVER_OFFLINE

$Message A message summarizing the event that triggered the webhook

$OrganizationId The unique ID Contrast assigns to an organization when it is
created

$OrganizationName The name of your organization

$Title Always returns “Contrast Security”

Application variables
$ApplicationChild Returns true if the application is a child application, false if not

$ApplicationCode A secondary shorthand that appears in the title of an application,
and is blank by default

For example: TEST

$ApplicationContextPath The context path of the application

For example: /example/somethingelse

$ApplicationFirstSeen When the application was first seen, in Unix time

For example: 1572033840000

$ApplicationHasParentApp Returns true if the application has a parent, false if not

$ApplicationImportance Enumerated value of the application Importance level

For example: MEDIUM

$ApplicationId The unique ID Contrast assigns to an application when it is
created

For example: 49fe2978-1833-4441-83db-2b7o486d9413

$ApplicationImportanceDescription The importance level assigned to the application For example:
Medium

$ApplicationLanguage The programming language of the application

Contrast Documentation

Reference 953



Variables Description
$ApplicationLastSeen When the application was last seen, in Unix time For example:

1572033840000

$ApplicationLicenseLevel Whether or not the application has an Assess license Values:
Licensed, Unlicensed

$ApplicationMaster Returns true if the application is a primary application, false if not

$ApplicationName The name of the application

$ApplicationParentAppId The unique ID Contrast assigns to an application when it’s
created, in this case, the parent application, if it exists

For example: 49fe2978-1833-4441-83db-2b7o486d9413

$ApplicationTags A comma separated list of the Application tags.

$ApplicationTotalModules The number of modules your application has

Server variables
$Environment The environment of the server For example: DEVELOPMENT or

PRODUCTION

$ServerId The ID of the server involved in the event

If more than one server is involved, this is a comma-delimited list
of server IDs.

$ServerName The name of the server involved in the event

If more than one server is involved, this is a comma-delimited list
of server names

Vulnerability variables
$Severity If this event is triggered by a vulnerability, this is the severity of the

vulnerability

$Status If this event is triggered by a vulnerability, this is the status of the
vulnerability

$TraceId If this event is triggered by a vulnerability, this is the vulnerability
ID

$VulnerabilityAgentLanguage The application language or framework name of the where the
vulnerability was discovered (for example,.Java, .NET, Ruby, and
so forth.)

$VulnerabilityAppVersionTags The application versions the vulnerability is found in

For example: v1.2.3

$VulnerabilityAutoRemediatedExpirationPeriod Auto-remediated expiration period for the vulnerability, in Unix time

For example: 1572033840000

$VulnerabilityBugTrackerTickets A comma delimited list of tickets created when the vulnerability
was sent to bugtracker

For example: ticket1, ticket2, ticket3

$VulnerabilityCategory The category of vulnerability found For example: Injection

$VulnerabilityClosedTime When the vulnerability was closed, in Unix time

For example: 1572033840000

$VulnerabilityConfidence Confidence of the vulnerability

$VulnerabilityDefaultSeverity Default severity of the vulnerability

$VulnerabilityDiscovered When the vulnerability was first discovered, in Unix time

For example: 1572033840000

$VulnerabilityEvidence The evidence of the vulnerability

$VulnerabilityInstanceUuid The unique ID Contrast assigns to a vulnerability instance when it
is created

For example:  R33T-N00B-TGIF-RM6P

$VulnerabilityFirstTimeSeen When the vulnerability was first seen, in Unix time For example:
1572033840000

$VulnerabilityImpact The impact level of the vulnerability Values: Low, Medium, High

$VulnerabilityLastTimeSeen Last time the vulnerability was seen, in Unix time For example:
1572033840000

Contrast Documentation

Reference 954



Variables Description
$VulnerabilityInstanceLastTimeSeen Last time the vulnerability was seen, in Unix time For example:

1572033840000

$VulnerabilityLicenseLevel License level of the vulnerability

$VulnerabilityLikelihood The likelihood of the vulnerability

Values: Low, Medium, High

$VulnerabilityReportedToBugTracker When the vulnerability was sent to a bugtracker, in Unix time

For example: 1572033840000

$VulnerabilityReportedToBugTrackerTime Returns true If the vulnerability was sent to a bugtracker

$VulnerabilityRule Rule associated with the vulnerability

$VulnerabilityRuleName Name of the rule associated to the vulnerability

$VulnerabilityRuleTitle Title of the rule associated to the vulnerability

$VulnerabilitySubStatus Substatus of the vulnerability

$VulnerabilityTags Custom tags associated with the vulnerability

For example: my-custom-tag

$VulnerabilityTitle Title of the vulnerability

$VulnerabilitySubStatusKeyCode Key code of the vulnerability substatus

$VulnerabilityTotalTracesReceived Total number of times the vulnerability was received

$VulnerabilityUuid The unique ID used to look up a vulnerability

$VulnerabilityVisible true if the vulnerability is licensed and visible, false if not

$VulnerabilityRule If event is triggered by a vulnerability, this is the rule that the
vulnerability violated

$VulnerabilityTags If event is triggered by a vulnerability, this is a comma-delimited
list of tags associated with the vulnerability

Regular expression reference
Use this table, and the examples below, for reference when creating application exclusions (page 801):

Effect Pattern Example pattern Example match

Start of a string ^ ^w+ Start of a string

End of a string $ w+$ End of a string

Case-insensitive match of following string (?i) (?i)%0a %0a or %0A

A single character of: a, b or c [abc] [abc]+ a bb ccc

A character except: a, b or c [^abc] [^abc]+ Anythingbutabc.

A character in the range: a-z [a-z] [a-z]+ Only a-z

A character not in the range: a-z [^a-z] [^a-z]+ Anythingbuta-z.

A character in the range of: a-z or A-Z [a-zA-Z] [a-zA-Z]+ abc123DEF

Any single character . .+ abc

Any whitespace character \s \s anywhitespacecharacter

Any non-whitespace character \S \S+ any non-whitespace

Any digit \d \d not 1 not 2

Any non-digit \D \D+ not 1 not 2

Zero or one of a a? ba? ba b a

Zero or more of a a* ba* a ba baa aaa ba b

One or more of a a+ a+ a aa aaa aaaa bab baab

Exactly 3 of a a{3} a{3} a aa aaa aaaa

3 or more of a a{3,} a{3,} a aa aaa aaaa aaaaaa

Between 3 and 6 of a a{3,6} a{3,6} a aa aaa aaaa aaaaaa aaaa

Period (dot) is a literal character . a.b string.string

Contrast Documentation

Reference 955



Supported browsers
Contrast is web-based application for HTML5, and the interface is based on React and AngularJS. It
works well with the latest version of any modern browser. Contrast actively tests our product in the
current and last major version of the following browsers:

• Chrome
• Edge
• Firefox
• Safari

Opera browsers or older versions of Internet Explorer, Firefox, or Safari browsers may still work with
Contrast, but some features may not display as intended.

Contrast Beta Terms and Conditions
Contrast beta products and features adhere to these conditions:

• This product is in active development and undergoing continuous improvements.
• These beta products are provided as-is without warranty of any kind.
• Since beta products are still in development, there may be issues. Do not use beta versions in

production environments.
• Customers may be required to sign additional agreements in order to use beta products.
• The beta program is for qualified users who want early access to new features and enhancements,

and who agree to provide feedback. Please send comments, questions or bug reports about beta
products to support@contrastsecurity.com.

Privacy and data collection
It’s important that Contrast Security understands how customers are using our products so they can be
improved. This information helps Contrast Security resolve problems and fix bugs.

We collect data through:

• System diagnostics (page 931)
• .NET Framework and .NET Core agent telemetry (page 230)
• Ruby telemetry (page 473)
• Python telemetry (page 413)

The collected data is anonymous and does not contain application data. It is collected by Contrast
Security, and is never shared. It is governed by Contrast Security’s Privacy Policy.

Protecting your privacy is important to us. If you suspect we are collecting sensitive data or the data
is being insecurely or inappropriately handled, send an email to security@contrastsecurity.com for
investigation.

Contrast Documentation

Reference 956

https://www.contrastsecurity.com/privacy-matters#:~:text=Collection%20and%20Use%20of%20Information

	Contrast Documentation
	Table of Contents
	Welcome to Contrast
	Customization
	Next steps
	How Contrast works
	How Contrast integrates with your development environment
	Analysis techniques and data sources
	Contrast agents
	Agent configuration
	Static scans
	Protection for cloud-native applications
	Integrations

	Contrast walk through
	Customize the Contrast environment
	Access groups
	Application and server naming
	Session metadata

	Step 1: Configure applications for security testing
	Step 2: Configure applications to block attacks
	Step 3: Fix code and retest applications

	Hosted (SaaS) versus on-premises deployment
	Benefits and drawbacks of hosted solutions
	Benefits and drawbacks of on-premises solutions
	Contrast feature comparison

	Assess
	Features
	Customization

	SCA
	Features
	Contrast data

	Protect
	How Protect works
	Customization
	See also

	Contrast Protect licensing guide
	Assess versus Protect licenses
	Common scenarios
	Example: StreamFlix, a Video Streaming Platform
	Key insights


	Scan
	Features
	See also

	Serverless Application Security
	Features
	Benefits
	How it works
	Security and privacy
	Requested permissions

	See also

	Contrast performance and resource consumption
	See also

	Community Edition (CE)
	Community Edition features
	Community Edition portal
	Next steps


	Contrast for developers
	The Contrast platform
	Code analysis during development
	Analysis of open source libraries
	Code analysis during runtime
	Protection for production builds
	Next step
	Contrast analysis paths
	Analysis paths during development
	Analysis paths for open source libraries
	Analysis path during runtime
	Protection path for production builds
	GitHub Actions

	Code analysis
	Next steps
	Use CLI for open source library analysis
	Before you begin
	Steps
	Next steps

	Use CLI for static scanning
	Before you begin
	Steps
	Next steps

	Use CLI for serverless function scanning
	Before you begin
	Steps
	Next steps

	Use CLI to find vulnerabilities
	Before you begin
	Steps
	Next steps

	See also

	Use GitHub app for open source library analysis
	Before you begin
	Steps
	Next steps

	Use GitHub action for static scanning
	Before you begin
	Steps
	Next steps

	Instrument applications for open source library analysis
	Steps
	Next steps

	Instrument applications to find vulnerabilities
	Basic steps
	Steps for using a Contrast IDE plugin
	Next steps

	Use Contrast web interface to set up function scanning
	Steps
	Next steps

	Use Contrast web interface for static scanning
	Before you begin
	Steps
	Next steps


	Analysis results
	Get results from the CLI
	Steps

	Get results from IDE integration
	Before you begin
	Steps

	Get results in SARIF files
	Steps

	Get results in the Contrast web interface
	Before you begin
	Steps


	Monitor or block attacks
	Instrument applications for Protect
	Before you begin
	Steps
	Next step

	View attack data in the Contrast web interface
	Steps


	Integration options for continuous integration/continuous delivery

	Agents
	Install an agent
	Java
	.NET Framework
	.NET Core
	Node.js
	PHP
	Python
	Ruby
	Go
	Download an agent configuration file
	Steps

	Java installation and configuration workflows
	Java installation and configuration with JAR files
	Before you begin
	Steps

	Java installation and configuration to an application server
	Before you begin
	Steps

	Java installation and configuration with build automation tool integrations
	Before you begin
	Steps

	Java installation and configuration in a container
	Before you begin
	Steps

	Chef cookbook for Contrast agents
	Requirements
	Integration example


	.NET Framework installation and configuration workflows
	.NET Framework installation and configuration with an installer
	Before you begin
	Steps

	.NET Framework installation and configuration with Azure App Service
	Before you begin
	Steps

	.NET Framework installation and configuration in a container
	Before you begin
	Steps


	.NET Core installation and configuration workflows
	.NET Core basic installation and configuration
	Before you begin
	Steps

	.NET Core installation and configuration with an installer
	Before you begin
	Steps

	.NET Core installation and configuration with Azure App Service
	Before you begin
	Steps

	.NET Core installation and configuration in a container
	Before you begin
	Steps


	Node.js installation and configuration workflows
	Node.js basic installation and configuration
	Before you begin
	Steps

	Node.js installation and configuration in a container
	Before you begin
	Steps

	Node.js installation and configuration with Cloud deployment integrations
	Before you begin
	Steps


	PHP installation and configuration workflow
	PHP installation and configuration by repository
	Before you begin
	Steps


	Python installation and configuration workflows
	Python installation and configuration by middleware
	Before you begin
	Steps


	Ruby installation and configuration workflow
	Ruby installation and configuration by middleware
	Before you begin
	Steps


	Go installation and configuration workflow
	Go installation and configuration with an installer
	Before you begin
	Steps


	Ansible playbook for Contrast agents
	Resources
	Ansible Playbook example

	Install .NET agents with infrastructure as code tools
	Install .NET agents with Terraform
	Before you begin
	Step 1: Configure the agent
	Step 2: Configure site extensions with Terraform

	Install .NET agents with Azure Resource Manager
	Before you begin
	Step 1: Download an agent configuration file
	Step 2: Edit the ARM template
	Step 3: Deploy the application from the ARM template


	Configure an agent
	Steps
	Find the agent keys
	Steps

	Order of precedence
	See also
	YAML configuration
	Use the Contrast agent configuration editor
	Environment variables
	See also


	Additional configuration
	Additional configuration values set with environment variables
	Additional configuration values set by web.config
	Additional configuration values set by system properties
	Additional configuration values set in the YAML
	Tags and data
	Tags
	Metadata
	Session metadata



	Methods for exercising applications
	Deployment to CI/CD pipeline
	Details
	

	Deployment with manual testing
	Details
	

	Deployment with web application test tools
	Details
	

	Deployment with API test tools
	Details
	

	Deployment with DAST tools
	Details
	

	Deployment with open-source crawlers
	Details
	

	Deployment with manual penetration testing
	Details
	

	Deployment with Burp Suite-based penetration testing
	Details
	

	User curl commands with Assess data
	Details
	


	Java agent
	Supported technologies for Java (Kotlin, Scala) agent
	Java
	Kotlin
	Scala
	WebSphere configuration

	Install the Java agent
	Contrast and hot deployments
	Contrast and OpenTelemetry agents
	Quick start
	Basic installation
	Build-integrated installation
	Install the Java agent using Maven Central
	Install the Java agent using the Debian repository
	Install the Java agent with the RPM repository
	Install the Java agent using a container
	Before you begin
	Step 1: Install the agent
	Step 2: Configure the agent
	Step 3: Update JVM parameters
	Step 4: Run the application image
	See also

	Install Java with infrastructure as code tools
	Install the Java agent in an existing Gradle project with Docker
	Java agent installation with VMware Tanzu Application Service
	Contrast service
	Java buildpacks
	Requirements
	Configuration options
	Example
	See also
	Add Contrast service broker for VMware Tanzu
	Steps
	See also

	Add the Contrast service broker tile for VMware Tanzu
	Steps
	See also

	Set up agent proxy communication for Contrast service broker
	Steps
	See also


	Install the Java agent with AWS Elastic Beanstalk
	Before you begin
	Step1: Specify settings to download the Contrast Java agent
	Step 2: Create an agent configuration file
	Step 3: Update JVM parameters
	Step 4: Deploy the agent using the .ebextensions configuration

	Install the Java agent with automatic updates on Linux
	Scala
	Kotlin
	Java application servers
	See also
	Configure the Java agent for JBoss EAP, JBoss AS or WildFly
	Run JBoss with the Java agent
	Use WildFly with Java 2 security manager

	Configure the Java agent for Jetty
	Configure the Java agent for Tomcat
	Run from Windows or Unix
	Run on the Tomcat service in Windows
	Run Tomcat with Java 2 security

	Configure the Java agent for WebLogic
	Unix
	Windows
	Use Java 2 with WebLogic

	Configure the Java agent for WebSphere
	Websphere trust and key store
	Add Contrast with Websphere
	Add Contrast with the WebSphere Administration Console
	Use Java 2 with WebSphere


	Java Quick Start Guide
	Prerequisites
	Install


	Configure the Java agent
	Java system properties
	Java YAML configuration template
	Java system properties
	Java YAML configuration template
	Configure the Java agent for standalone applications
	Transport Layer Security (TLS)
	Use the Java Agent with the Java Platform Module System (JPMS)
	Java 2 security

	Legacy Java agent
	Steps

	Java agent telemetry

	.NET Framework agent
	Supported technologies for the .NET Framework agent
	System requirements for .NET Framework agent
	Install the .NET Framework agent
	.NET Framework agent installer for Windows
	Install the .NET Framework agent using Contrast
	Install the .NET Framework agent using command line

	Install the .NET Framework agent for Azure App Service
	Before you begin
	Steps

	Install the .NET Framework agent using a container
	Before you begin
	Step 1: Install the agent
	Step 2: Configure the agent
	Step 3: Add profiler variables and authentication credentials
	Examples
	See also

	Install the .NET Framework agent manually with NuGet
	Install the .NET Framework agent with Web API and Owin
	Agent upgrade service
	Update the .NET Framework agent
	Before you begin
	Update the agent automatically
	Use the Contrast API to download the agent
	See also


	Configure the .NET Framework agent
	.NET Framework agent-specific settings for Azure App Service
	Configure .NET Framework with web.config file
	.NET Framework YAML template
	Certificate exceptions

	Use the .NET Framework agent with IIS Express
	Use the .NET Framework agent with applications on Azure
	Use Azure Service Fabric with the .NET Framework or .NET Core agent
	Profiler chaining for the .NET Framework agent
	.NET Agent Explorer
	Agent Explorer access
	Agent Explorer details

	.NET Framework Contrast tray
	Use application pools in IIS
	Denylist or allowlist an application pool

	.NET Framework and .NET Core Telemetry

	.NET Core agent
	.NET Core supported technologies
	.NET Core system requirements
	Install the .NET Core agent
	Install the .NET Core agent manually
	Before you begin
	Steps
	IIS and IIS Express
	Bash (Linux)
	Powershell or Powershell Core (Windows)
	Launch profile (dotnet.exe)

	Install the .NET Core agent manually with NuGet
	Before you begin
	Steps

	Install the .NET Core agent with Azure App Service
	Before you begin
	Steps

	Install the .NET Core agent with the .NET Core agent for IIS installer
	Before you begin
	Install the agent using Contrast
	Install the agent using command line

	Install the .NET Core agent in a container
	Before you begin
	Step 1: Install the agent
	Step 2: Configure the agent
	Step 3: Add profiler variables and authentication credentials
	Step 4: Instrument your application

	Agent upgrade service
	Update the .NET Core agent

	Configure the .NET Core agent
	Configure the .NET Core agent for Azure App Service
	See also

	Configure .NET Core agent with environment variables
	.NET Core YAML configuration template

	.NET Agent Explorer
	Agent Explorer access
	Agent Explorer details

	Profiler chaining for the .NET Core agent
	Automatic (Windows and IIS)
	Automatic (Linux)
	Manual

	.NET Framework and .NET Core Telemetry
	Supported Azure functions
	Configuration


	Node.js agent
	Contrast service
	Supported technologies for Node.js
	Supported technologies for v4 Node.js (Legacy)

	System requirements for the Node.js agent
	Install the Node.js agent
	Install Node.js agent manually
	Install the Node.js agent using a container
	Before you begin
	Install the agent
	Configure the agent
	Run and verify
	See also
	Install the agent when creating the Docker image
	Distroless containers

	Install Node.js with IBM Cloud
	Install Node.js agent with VMware Tanzu
	Buildpacks
	Configuration
	See also
	Add the Contrast service broker tile for Node.js
	Before you begin
	Steps
	See also

	Add the Contrast service broker for Node.js
	Steps
	See also


	Update the Node.js agent
	Before you begin
	Steps
	See also


	Configure the Node.js agent
	Environment variables
	Node.js YAML template

	Reduce container startup time
	Use the rewriter

	Use the Node.js agent with ESM
	Transpilers, compilers, source maps and the Node.js agent
	Source maps

	Node.js telemetry

	PHP agent
	PHP agent supported technologies
	PHP agent system requirements
	Install the PHP agent
	Install PHP agent with Debian
	Steps
	Notes

	Install PHP agent with Red Hat Package Manager (RPM)
	Steps
	Notes


	Configure the PHP agent
	PHP YAML template


	Python agent
	Supported technologies for the Python agent
	System requirements for the Python agent
	Install the Python agent
	Install the Python agent with PyPI
	Python update agent
	Before you begin
	Install the agent and use scripts for automatic updates
	Install and update manually
	See also


	Configure the Python agent
	Contrast Service Configuration (before version 5.19.0 only)
	Python YAML template
	Validate the Python agent configuration
	Steps to run the script
	See also

	Configure middleware
	AIOHTTP
	Bottle
	Django
	Falcon (ASGI)
	Falcon (WSGI)
	FastAPI
	Flask
	Pyramid
	Quart
	WSGI

	Python web servers
	Gunicorn
	Uvicorn
	uWSGI configuration

	Python YAML template

	Python telemetry
	Contrast Runner
	Using the runner


	Ruby agent
	Supported technologies for the Ruby agent
	System requirements for the Ruby agent
	Install the Ruby agent
	Install the Ruby agent with RubyGems as a gem source
	Ruby update agent
	Before you begin
	Install and use scripts automatic updates
	Install the gem manually
	See also


	Configure the Ruby agent
	See also
	Ruby YAML template
	Ruby frameworks
	Configure with Grape
	Configure Grape with config.ru

	Configure with Rails
	Configure with Sinatra
	Configure Sinatra with config.ru

	See also

	Ruby web servers
	See also
	Configure Passenger
	Timeouts
	Forking
	See also

	Configure Puma
	Timeouts
	Forking
	See also

	Configure Thin
	Timeouts
	Forking
	See also

	Configure Unicorn
	Configure forking
	Configure timeouts
	Configure APMs
	See also


	Ruby YAML template

	Ruby telemetry

	Go agent
	Supported technologies for the Go agent
	Install the Go agent
	Steps
	Install the Go agent in a container
	Before you begin
	Install, build, and run the Go application
	Docker example
	Example of environment variable configuration

	See also

	Install the Go agent with direct download

	Configure the Go agent
	Location of the Go configuration file
	Go YAML template


	Contrast service
	Install the Contrast service
	Configure the Contrast service
	Install the Contrast service
	Configure the Contrast service

	Agent Operator (Kubernetes operator)
	Security policies
	See also
	Supported technologies for Agent Operator
	Kubernetes / OpenShift support
	Agent types

	Agent Operator networking requirements
	Install the Agent Operator
	Custom registries
	Steps
	See also
	Agent Operator walkthrough
	Before you begin
	Step 1: Install the operator
	Step 2: Configure the operator
	Step 3: Inject workloads
	Step 4: Uninstall the operator (optional)
	See also

	Agent Operator minimum configuration
	Minimum configuration
	See also

	Upgrade the operator
	Minor and patch upgrades
	Major upgrades
	See also


	Uninstall the Agent Operator
	Agent Operator configuration
	AgentConfiguration
	AgentConnection
	AgentInjector
	ClusterAgentConfiguration
	ClusterAgentConnection
	See also

	.NET Core chaining support
	Agent Operator Telemetry
	Operator v0.3.0


	Agent performance
	See also
	Agent performance with Protect
	What can impact Protect performance?
	See also
	Performance expectations for the Java agent with Protect
	CPU Usage
	Memory consumption
	Latency

	Performance expectations for the .NET Core agent with Protect
	CPU usage
	Memory consumption
	Latency




	Use Contrast
	Supported languages for Contrast
	Additional technologies for Contrast Scan

	Manage user settings
	Log in to Contrast
	Change your password
	Set up two-step authentication
	Manage your profile
	View your API keys
	Steps

	Manage user notifications
	View your permissions
	See also


	Projects
	See also
	View projects
	

	Export project details
	Steps

	Account connections
	GitHub
	Bitbucket
	GitLab


	Applications
	View applications
	Application details
	Dashboard
	Environment details


	Edit application settings
	Field descriptions

	Add tags to applications
	Merge and unmerge applications
	Steps

	Archive and unarchive applications
	Reset an application
	Reset behavior
	Before you begin
	Steps

	Delete applications
	Use session metadata filters
	Configure session metadata

	Route coverage
	Web request example
	How route coverage works
	Frameworks and technologies
	Exclusion of built-in routes and applications
	View route details
	See also

	Route exclusion and inclusion
	Effects of route exclusion
	Effects of route inclusion
	Exclude routes
	Include routes

	Configure route expiration policy
	Before you begin
	Steps


	Flow maps
	View flow maps
	Understand flow maps


	Scans
	Scan tasks
	See also
	Scan release notes
	Scan engine and Scan local engine
	Scan 1.0.9
	Scan 1.0.8
	Scan 1.0.7
	Scan 1.0.4
	Scan 1.0.3
	Scan 0.0.63
	Scan 0.0.60
	Scan 0.0.56 - 0.0.59

	Scan web interface
	March release: Scan web interface
	February release: Scan web interface
	January release: Scan web interface and CLI
	December release: Scan web interface
	November release: Scan web interface
	June release: Scan web interface
	May release: Scan web interface
	April release: Scan web interface


	Scan process
	Scan workflow
	Data entry points for Java binary scans
	

	Contrast Scan supported languages and technologies
	Scan package preparation
	Artifact types
	Access to class files and dependencies
	Frameworks
	Avoid use of thin JAR files

	View scan projects
	Before you begin
	Steps

	Create a scan project
	Next step

	Delete scan projects
	Before you begin
	Steps

	Start a scan
	Before you begin
	Steps

	Cancel a scan
	Monitor scans
	Steps

	Generate a SAST Attestation report
	Steps
	SAST attestation report details

	Contrast Scan local engine
	Supported platforms
	Proxy server settings for local scans
	Package preparation for local scans
	Scan process
	Download the Java JAR file
	Local scan engine environment variables
	Run local scan
	Before you begin
	Steps
	Command options
	Exit codes

	Exclude files and folders for Contrast Scan
	Before you begin
	Steps

	Use Contrast Scan for GitHub repositories
	Before you begin
	Steps
	Required inputs
	Optional inputs
	See also

	View local scan results
	Steps


	Analyze scan results
	View scan details
	Edit Scan vulnerability status
	Steps

	Download scan results
	Before you begin
	Steps for SARIF download
	Steps for CSV download

	SARIF file data
	Scanner data
	Vulnerability data
	Scan analysis


	View scan policies
	Change scan settings
	Archive scan projects
	Unarchive scan projects
	Integrate scans with build pipelines
	Before you begin
	Steps
	Examples
	Example: Scan integration with GitHub
	Example: Scan integration with Jenkins
	Integration setup

	Example: Scan integration with GitLab
	Pipeline setup example



	Servers
	Server settings
	Settings in a configuration file
	Agent configuration instructions
	Contrast options
	View servers
	Steps
	Server details
	Summary
	Statistics
	Activity


	Configure server settings
	Steps

	Application sampling
	How sampling works

	Use automatic diagnostic collection
	Before you begin
	Steps

	Send output to syslog
	Syslog receivers


	Libraries
	See also
	SCA release notes
	September release
	August release

	View libraries
	Static and runtime tabs

	Discover or delete libraries
	Add tags to libraries
	Send library information
	Analyze runtime library usage
	Export library details
	Data fields

	View open-source licenses
	View dependency trees
	Library scoring guide
	CVE search

	Contrast Serverless
	See also
	Contrast Serverless release notes
	IDS release notes
	IDS Layer version 1.5.0
	IDS Layer version 1.4.0
	IDS Layer version 1.3.0
	IDS Layer version 1.2.0
	IDS Layer version 1.1.0
	IDS Layer version 1.0.0

	Third-party packages
	IDS Layer version 1.5.0
	Node.js
	Python

	IDS Layer version 1.4.0
	Node.js
	Python

	IDS Layer version 1.0.0 - 1.3.0
	
	Node.js
	Python




	Contrast Serverless supported languages
	Contrast Serverless supported platforms
	Multi-region support
	Supported regions
	How it works

	Inventory
	Inventory criteria

	Scan types and monitoring
	Static scans
	Dynamic scans
	Continuous monitoring

	Get started with Contrast Serverless for AWS
	Next steps
	AWS policy and permissions for running Contrast Serverless
	Obtain a policy


	Get started with Contrast Serverless for Azure
	Next steps

	Scan functions on demand
	Steps
	Functions table explained


	View results
	Result details
	Scan status details
	Download serverless scan results
	Before you begin
	Steps


	Change inventory criteria
	Change serverless scan settings
	View function and service relationships
	Graph limits
	What is the element count?
	What can I do if I have too many elements and the graph does not render?
	Adding/updating tags
	When will I see the new tags in the graph?

	Account Inventory Settings


	Contextual risk scores
	Vulnerability score
	Impact (access level) score
	Likelihood (accessibility) score

	Upgrade Contrast Serverless
	Before you begin
	Steps
	Stack change-set
	Before you begin
	Steps


	Block accounts
	Offboard Contrast Serverless
	Before you begin
	Steps

	Uninstall Contrast Serverless
	Before you begin
	Steps


	Contrast CLI
	Before you start
	About Contrast CLI
	Contrast CLI supported languages and package managers
	Install Contrast CLI
	With Homebrew
	With NPM/YARN
	With Binaries

	Authenticate your credentials
	Security analysis
	Run a SAST scan
	Find vulnerable libraries
	Find vulnerabilities in your AWS lambda functions
	Find vulnerabilities with Contrast Assess
	Use Assess CLI with Java agents
	Before you begin
	Steps

	Use Assess CLI with .NET agents
	Before you begin
	Steps

	Use Assess CLI with Node.js agents
	Before you begin
	Steps

	Use Assess CLI with Python agents
	Before you begin
	Steps

	Use Assess CLI with Ruby agents
	Before you begin
	Steps

	Use Assess CLI with Go agents
	Before you begin
	Steps


	Contrast CLI commands
	Authentication/connectivity
	auth
	config
	version
	Main functions
	audit
	assess
	scan
	lambda
	Help and learn
	help
	learn

	Legacy Contrast CLI
	Legacy Contrast CLI - supported languages
	Legacy Contrast CLI - Install
	Legacy Contrast CLI - Register applications
	Legacy Contrast CLI - commands
	General commands
	SCA
	Scan



	Vulnerabilities
	View vulnerabilities at an organization level
	See also

	View application vulnerabilities
	Open vulnerabilities for merged applications
	See also

	View vulnerability rates
	Steps

	Add and delete vulnerabilities
	Group vulnerabilities by sink
	Merge vulnerabilities
	Add a tag to a vulnerability
	Track vulnerabilities
	Analyze vulnerability events
	Fix vulnerabilities
	Export vulnerability findings
	Find CWEs associated with CVEs
	Steps

	Vulnerability status
	Edit vulnerability status
	Set a custom reason that vulnerabilities are Not a problem
	Review pending vulnerability status changes

	Edit vulnerability severity

	Attacks
	Event data retention
	Tasks
	View attacks
	Attack details

	Monitor attacks
	Manage attacks
	Add tags to attacks
	Steps

	Run attack scripts

	Contrast Security GitHub App
	How it works
	Contrast Security GitHub App supported languages
	Installation and authorization
	Contrast and GitHub secrets
	Before you begin
	Steps

	Add or disconnect GitHub repositories
	Add a repository
	Disconnect repositories

	Troubleshoot

	Reports
	Attestation reports
	Before you begin
	Steps to generate an Attestation report

	DISA STIG Viewer checklists
	Software bill of materials (SBOM)
	Before you begin
	Steps

	Vulnerability trend reports
	Organization statistics
	Remediation summary package
	Before you begin
	Steps



	Integrations
	Cloud integrations
	Chat tools
	Code repository integrations
	Continuous integration and build tools
	Enterprise and extensibility integrations
	IDE plugins
	Incident management systems
	SIEM tools
	Work tracking platforms
	Integrate with Agile Central
	Manage Agile Central credentials

	Integrate with AWS Security Hub using Contrast Assess
	Before you begin
	Configure
	Configure AWS Security Hub to accept findings from Contrast
	Configure Contrast Assess to send findings to AWS Security Hub

	Set up applications in Contrast Assess
	Retry mechanism

	Integrate with AWS Security Lake using Contrast Assess
	Before you begin
	Create a Custom Source in AWS
	Connect to AWS Security Lake
	Set up applications in Contrast Assess
	Retry mechanism

	Integrate with Azure Boards
	See also
	Connect to Azure Boards
	Steps
	See also

	Automatically create tickets
	Steps
	See also

	Two-way integration
	Steps
	See also

	Set Azure Boards personal access tokens
	Steps
	See also


	Azure Pipelines extension
	Install and configure the Azure Pipelines extension
	Configure a task in the Azure Pipelines extension
	Add a release gate to a pipeline in Azure Pipelines

	Use Azure Service Fabric with the .NET Framework or .NET Core agent
	Contrast - Bamboo plugin
	Install and configure
	Configure vulnerability thresholds

	Integrate with Bugzilla
	Eclipse
	Generic webhooks
	Connect
	Generic webhook variables
	Events and generic webhook variables

	Integrate with GitHub
	Gradle plugin
	Clone a sample web application
	Use the plugin

	Contrast IntelliJ plugin
	Install, configure, and use the IntelliJ plugin:
	Configure the Java agent for IntelliJ

	Contrast Jenkins integration
	Install and use Jenkins plugin
	See also
	Connect
	Before you begin
	Define a connection
	See also

	Define security controls at a system level
	Define security controls as a post-build action step
	Define vulnerability security controls for pipelines in Jenkins
	Download with contrastAgent
	Verify application with contrastVerification

	Jenkins security controls
	Define a job outcome policy
	Before you begin
	Define a policy

	Run a build

	Integrate with Jira
	See also
	Connect to Jira
	Setup Contrast for Jira
	See also

	Configure Jira for Assess
	Before you begin
	Steps

	Configure Jira for Serverless
	Before you begin
	Steps

	Manage Jira credentials
	See also


	Integrate Jira Cloud with Contrast Scan
	Steps

	Contrast Maven plugin
	Goals
	See also

	Integrate with Microsoft Teams
	Integrate with PagerDuty
	Integrate with Solutions Business Manager
	Integrate with ServiceNow
	Connect to ServiceNow
	Retry mechanism


	Integrate with Slack
	Integrate with Splunk on-call (formerly VictorOps)
	Contrast Visual Studio plugin
	Contrast Visual Studio Code plugin
	Contrast Visual Studio for Mac plugin

	Administration
	Rules and policy administration
	Set Assess rules
	Set Assess rules for organizations

	Security controls
	Types of security controls
	When to use security controls
	Effects of using security controls
	Roles for security controls management
	Supported languages
	Security control example
	Add, edit or delete security controls
	Steps
	Create security controls for specific vulnerabilities


	Vulnerability management policies
	Types of Auto-verification policies
	Auto-verification behavior
	Session metadata for session-based and route-based auto-verification
	Violation policies
	Policy triggers
	Environments
	Multiple policy actions
	Set auto-verification vulnerability policies
	Before you begin
	Set an auto-verification policy
	Configure a test run for session-based auto-verification
	Update a vulnerability policy

	Auto-verification supported frameworks
	Set violation vulnerability policies

	Protect rules
	Set Protect rules
	Set Protect rules for organizations

	CVE shields
	View CVE shields
	Set modes for CVE shields
	Set modes for CVE shields for organizations

	Manage virtual patches
	Add or edit log enhancers
	Application exclusions
	Add application exclusions
	Before you begin
	Steps

	Regular expression reference
	Wildcard expressions
	Wildcard expression examples


	Set compliance policy
	IP management
	See also
	Deny or allow IP addresses
	Before you begin
	Steps

	Manage source names

	Set library policy
	Sensitive data masking
	Manage sensitive data types

	Add and edit notifications as a RulesAdmin

	Organization administration
	Enable Assess
	Before you begin
	Steps

	Enable Protect
	Before you begin
	Let users access Protect data
	Enable Protect for servers
	License behavior

	Configure organization settings
	Steps
	Configure general organization information
	Allocate licenses for organizations, applications, and servers
	Before you begin
	Steps

	Manage users, groups and permissions at an organization level
	Add or edit a user at an organization level
	Add, edit, or delete an organization access group
	Create an API only user
	Before you begin
	Steps


	Manage usage analytics
	Restricted edit role
	Steps

	Set a password policy at an organization level
	Restrict email domains
	Set IP range
	Enable two-step authentication at an organization level
	Configure single sign-on (SSO) at an organization level
	See also

	Set server defaults at an organization level
	Steps

	Set application defaults at an organization level
	Before you begin
	Steps
	Create requests for application metadata
	Steps



	Manage notifications at an organization level
	Set administrative notifications
	Set default user notifications
	Create custom notifications

	Customize score settings at an organization level
	Role-based access control
	Access control settings
	Methods for managing access control
	Naming standards and requirements
	Actions and permissions
	Organization actions and permissions
	Application actions and permissions
	Project actions and permissions
	Protect actions and permissions
	Serverless actions and permissions

	Migration from organization users and groups
	What happens after migration

	Users
	Users tab
	Filters and sorting
	Tasks
	Add a user
	Before you begin
	Steps

	Edit a user
	Steps

	Delete a user
	Steps

	Create an API only user
	Before you begin
	Steps


	Resource groups
	Resource groups tab
	Built-in resource groups
	Add resource groups
	Steps

	Edit custom resource groups
	Steps

	Delete custom resource groups
	Steps


	Roles
	Roles tab
	Built-in roles and actions
	Organization roles
	App Security roles
	DevOps roles
	Application roles
	Scan project roles
	Protect roles
	Serverless roles

	Add roles
	Before you begin
	Steps

	Edit custom roles
	Steps

	Delete roles
	Steps

	Best practices for custom roles
	Custom role planning
	Resource groups
	Example


	User access groups
	User access groups tab
	Built-in user access groups
	See also
	Add user access groups
	Before you begin
	Steps

	Edit user access groups
	Steps

	Delete custom user access groups
	Steps



	Require vulnerability approval
	View audit log
	Impersonation
	Impersonation access
	Audit log
	Enable impersonation
	Before you begin
	Steps




	System Administration
	Get started on-premises
	Contrast installation
	Next steps
	Contrast system requirements
	MySQL and Java requirements for distributed installations
	SuperAdmin account
	Distributed configuration for large number of agents

	Sizing recommendations for the Contrast application
	Download Contrast software with curl commands
	Steps for downloading installation files
	Additional software downloads

	Download the Contrast installer
	Steps

	Install Contrast on-premises
	Before you begin
	Steps
	Additional options

	Deploy Contrast with a WAR file
	Before you begin
	Steps

	Create a distributed MySQL environment
	Steps

	Distributed deployment of Contrast
	Distributed configuration example
	Before you begin
	Set up distributed servers

	Run Contrast
	Default and SuperAdmin credentials
	Restart Contrast
	Uninstall Contrast

	Post-installation
	Post-installation tasks
	Configure Tomcat
	Configure the Java Runtime Environment (JRE)
	Configure HTTPS
	Use the Contrast HTTPS connector
	Certificate Signing Request (CSR) is required
	No CSR is required

	Use the reverse proxy method

	Configure HTTP headers
	Steps

	Customize MySQL
	Steps

	Set up a proxy configuration
	Steps

	Configure reporting storage for the system
	Contrast logs
	Configure logs at a system level

	Use Redis as a shared cache (on-premises)
	Contrast properties for Redis
	Before you begin
	Steps


	System updates and upgrades
	Updates and upgrades
	Upgrade Contrast
	Before you begin
	Steps

	Upgrade agents (on-premises)
	Steps

	Update your IP address
	Upgrade SCA library data manually
	Before you begin
	Steps

	Upgrade SCA library data automatically
	Before you begin
	Steps

	Update your on-premises Contrast license

	Manage system administration
	Manage multiple organizations
	Add/edit an organization
	Before you begin
	Steps


	Manage users and permissions at a system level
	Add or edit a user at a system level
	Add multiple users to an organization
	Before you begin
	Steps

	Designate SuperAdmins or ServerAdmins
	Add, edit or delete a system access group
	Grant Protect permissions (on-premises)
	Automatically add users to groups with SSO
	References
	See also

	Default and SuperAdmin credentials
	Impersonate users
	Before you begin
	Steps


	Configure authentication
	Enable two-step authentication at a system level
	Configure Microsoft Active Directory
	Access if AD is offline
	Steps
	Configure groups for Active Directory
	Steps

	Configure settings for Active Directory
	Use self-signed or privately-signed certificates with Active Directory

	Configure LDAP
	Access if LDAP is offline
	Steps
	Configure groups for LDAP
	Configure users for LDAP
	Use self-signed or privately-signed certificate with LDAP

	Configure single sign-on (SSO) at a system level
	Before you begin
	Steps
	See also

	Enable HTTPS proxy authentication
	Set a password policy at a system level
	Reset SuperAdmin password on Linux
	Steps

	Reset SuperAdmin password on Windows

	Manage keys

	Configure system settings
	Steps
	Additional system settings
	Configure general system settings
	Manage diagnostics at a system level
	Allocate licenses at a system level
	Before you begin
	Steps to allocate licenses
	Steps for license details and settings

	Customize score settings at a system level
	Manage library compliance policy
	Manage email notifications at a system level

	Maintain Contrast on-premises
	Use the encrypted properties editor
	MySQL backups
	Backup MySQL manually
	Before you begin
	Steps

	Create an automated MySQL backup
	Steps

	Disable automated backups
	Restore database backups
	Before you begin
	Steps


	Manage SSL


	Reference
	Glossary of terms
	Roles and permissions
	Application roles
	See also

	Organization roles
	See also

	System roles

	Application scoring guide
	Library scoring guide
	Log levels
	Events and generic webhook variables
	Generic webhook variables
	Regular expression reference
	Supported browsers
	Contrast Beta Terms and Conditions
	Privacy and data collection


